
Database Analytics and Performance on Dataset of
Global Temperature Changes (1970 – 2021)

Tomáš Staroň, Michal Kvet
University of Žilina

Žilina, Slovakia
Michal.Kvet@fri.uniza.sk

Abstract—The main objective of this work is to demonstrate how
various database optimization tools can be used in climate change
research to enhance data processing and analytical efficiency.
This study analyses global temperature changes across all
countries from 1970 to 2021, leveraging optimization techniques
available in Oracle Database. By applying indexing, materialized
views, and partitioning strategies, we significantly improve query
performance, enabling faster and more efficient data analysis.
Key findings include the identification of countries with the most
significant temperature rises, particularly in Arctic regions, and
the detection of extreme interannual variations. This research
highlights the important role of database optimization in climate
studies, offering a framework for more efficient data
management and analysis.

I. INTRODUCTION
The dataset that is analysed in this work consists of data

across all countries from 1970 to 2021. It includes information
about global surface temperatures based on different sources
including weather stations, satellites and ocean buoys. The
temperature is measured by the unit of degree Celsius. The
temperature is presented by the change from the baseline
temperature that was measured as an average in the years 1951
and 1980. If The temperature increased, then the index is
positive and if the temperature decreased the index is negative.

Analysing this dataset can provide valuable insights into the
ongoing issue of global warming. By examining temperature
changes across different geographic locations, we can assess
whether temperatures are indeed rising and how climate
patterns are evolving over time.

II. DATA STRUCTURE AND PROCESSING

Data are free to access on the website Kaggle.com [1] – [6].
The structure of the dataset is simple. CSV file which includes
different columns:

ObjectId - identifies the row of the dataset,
Country Name – identifies the country,
Unit – unit of temperature measurements,
Change – Indicates the type of temperature
measurements, in this case the temperature was
always the surface temperature,
Year – columns representing the change of the
temperature in comparison with the baseline
temperature, columns are for years 1970 to 2021.

To process the data, we decided to use the tool Oracle SQL
developer. This tool works with the Oracle database which has
available performance and analytic tools that we need to use
[6] [8].

To load the data into our Oracle database we firstly needed
to get rid of the unnecessary data. In this case it was column
Unit and Change, since they included only 1 unique value. For
this step we can use any free online tool which can extract
column from csv file.

Fig. 1. Preview of data in the input csv file after extracting the unimportant
columns.

Inside Oracle SQL developer we can import the data
directly from csv file. If the file is valid (contains structured
columns and rows) it can automatically create the table with
desired structure.

In any case, certain complications may arise while using
this tool. While importing our data we had to face the problem
with the values in temperature change values. There was an
issue with the localization. Our database expected that number
values with decimal points would include “decimal commas”,
but our csv file included “decimal dots”. This issue can be
solved by different approaches. The easiest way to handle this
was to run this SQL query:

ALTER session SET nls_territory = 'UNITED KINGDOM';

After applying this, the import tool then was able to handle
the situation and convert the string from the csv file into
number values to store them in our table. In result our table
includes 227 rows for all the countries (226 countries and 1
row for average world value) and each with 54 columns
(ObjectId, Country_Name and 52 temperature columns). Some
countries may be missing.

III. TABLE TRANSFORMATION TO NORMALIZED FORM

Since SQL is more efficient for operations on longs tables
(so-called normalized format), we can use relational operator

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 284 --

UNPIVOT [8] [9] to transform a wide table into a normalized
form. In order to do this we ran a script in the figure below.

Fig. 2. SQL query that normalized imported data by using UNPIVOT
relational operator

The result normalized data preview is in the figure below.
Now we can access all necessary data by better approach.

Fig. 3. Preview of normalized data

The created table consists of 10896 rows.

Result table “temp_changes_unpivoted” columns:

ID – Number data type and primary key of the
table, which identifies the row,
COUNTRYNAME – VARCHAR2 data type,
identifying country by its name,
YEAR – Number (38, 0) data type, indicates to
which year, the current row information, is
dedicated,
TEMPCHANGE – Number (38, 0) data type, the
value by which the temperature changed in
comparison with the baseline temperature.

IV. INDEXES

Indexes are essential for optimizing database performance,
enabling faster data retrieval by reducing the number of
scanned rows. Instead of searching the entire table, indexes act
as structured "shortcuts" that guide queries directly to relevant
data [7] – [11].

In large datasets like our global temperature database,
frequent queries on specific countries and years can be slow
without proper indexing. By implementing indexes, we
significantly improve query efficiency, making data analysis
more responsive and scalable [9].

A. Base index

When a primary key is defined on a table, Oracle Database
automatically creates a unique index on the corresponding
column(s). In our case, an index is created on the ID column,
ensuring fast lookups and efficient access to individual rows.
This functions as the default access path for retrieving data from
the table.

B. Creating additional indexes

We have established a hypothesis that creating additional
indexes on frequently queried columns will improve query
performance by reducing the time required to retrieve data.
The "cost" metric provides an estimate of the query execution
complexity, allowing us to identify inefficient operations and
optimize query performance. By monitoring and minimizing
the cost value, we aim to improve the execution speed of
queries, which is essential when working with large datasets
like our temperature change data.

To test this hypothesis, we ran a simple script with several
'WHERE' clauses to compare the query performance with and
without additional indexes, attempting to confirm or refute our
assumption.

Fig. 4. Select query used to test the improvement of adding additional indexes

After running the script, the results were gathered fast
since the dataset is not that big, but the cost was 15. In the next
experiments we tried to improve this value by lowering it.

1) Index over column countryname

Firstly, we decided to create an index over temperature
column. The query is simple:

 CREATE INDEX idx_countryname
 ON temperatures(countryname);

The created index had a discernible impact on the cost
value. It was lowered down to 2, making a very serious
difference.

To test the effectiveness of all indexes we need to drop the
previously added index.

2) Index over column year

The steps are the same, run the similar script as the one
before, but change the column name to “year”.

CREATE INDEX idx_countryname ON temperatures(year);

The applied index improved the cost value to 2 also.

3) Combined index of countryname and year

The created indexes can also be combined with multiple
columns. We decided to test if the combination of the

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 285 --

countryname and year column in the newly created index will
make any difference. The script we ran:

 CREATE INDEX idx_countryname_year
 ON temperatures(countryname, year);

The results were surprising since the cost improved, but
only to value of 3. This behaviour can be explained by the
way the combined index is structured:

The combined index is designed to optimize
queries filtering by both countryname and year in
the specific order of countryname first, then year,
In cases where both columns are used in the
query, the combined index should be more
efficient. However, in this case, the database
might still be using a suboptimal plan because of
factors like the distribution of data, the order of
columns in the index, or the way the optimizer
estimates query costs.

Additionally, the query’s use of the BETWEEN clause on
year and the equality check on countryname might not align
perfectly with how the combined index is structured, causing
the query optimizer to resort to a less efficient plan, such as
scanning the full index, rather than fully utilizing the
combined index for both columns.

Thus, while the combined index is intended for use with
both columns, individual indexes on each column
(countryname and year) worked better in this specific case,
resulting in a lower cost.

4) Hypothesis evaluation

After testing various indexing strategies, we can now
evaluate our hypothesis that creating additional indexes on
frequently queried columns improves query performance by
reducing the query cost.

The initial query without indexes had a "cost" of 15, which
indicated inefficient query execution. After creating individual
indexes on countryname and year, the cost improved to 2,
confirming that indexing each column separately had a
positive effect on performance.

When we applied the combined index on countryname and
year, we expected further improvement in performance.
However, the cost only dropped to 3, which was less than the
improvement achieved by the individual indexes. This
suggests that while combined indexes are often efficient for
queries involving both columns, they may not always
outperform individual indexes, especially when the query
optimizer does not fully optimize for both columns' combined
structure.

Thus, our hypothesis was partially confirmed: indexing
frequently queried columns does improve performance, but the
combined index did not perform as expected, highlighting that
in certain query patterns, individual indexes might be more
effective than a combined index.

V. MATERIALIZED VIEWS
An important optimization strategy for improving query

performance is to use a materialized view. This feature allows
us to precalculate frequently requested values, which can save
time when the data is required often, especially in the context
of large datasets.

A materialized view stores the result of a query physically
and periodically refreshes the data. This can significantly
speed up query execution since it avoids recalculating the
result every time a query is run.

We decided to create a materialized view for retrieving
average temperature of each country. The test query before
creating the materialized view resulted with time of 130ms in
average.

Fig. 5. Query to test the effect of materialized view

We ran this script to create the materialized view:

Fig. 6. Materialized view for retrieving average temperature of each country

The breakdown of key words in the script:

BUILD IMMEDIATE – this ensures that the
materialized view is created and populated with
data immediately when the command is executed,
allowing it to be used right after its creation,
REFRESH COMPLETE ON DEMAND – the
materialized view can be manually refreshed as
needed. The term complete refers to the fact that
every row of the materialized view is completely
recomputed during the refresh, ensuring that all
the data is fully up to date with the latest changes
from the source table (temperatures).

ROUND(AVG(tempchange), 5) –

This part of the query calculates the average
temperature change for each country. The
ROUND function is used to limit the result to 5
decimal places, ensuring that the computed
average is precise and consistently formatted,

GROUP BY countryname –

The GROUP BY countryname clause organizes
the data by each unique countryname. This means
the query will calculate the average temperature
change for each country individually, as opposed
to calculating a single average for all countries
combined.

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 286 --

Fig. 7. Query to test the time cost of retrieving data from materialized view

Receiving data from the materialized view resulted with
lower time, in average it took 110ms. This means that the
effect of applying the materialized view saved 15% of time in
comparison with the base query.

VI. PARTITIONING

Partitioning helps optimize large databases by splitting
tables into smaller, more manageable sections. Each partition
can be stored and accessed separately, improving query speed.
This is especially useful for time-series data like global
temperature records, where analysis often focuses on specific
periods or regions. Below are the partitioning methods used in
this study and their key benefits [10] [12] [13].

A. Range Partitioning
Range partitioning divides data based on specified value

ranges. For the temperature dataset, the table was partitioned
into four time intervals:

1970–1990 (p_1970_1990),
1991–2000 (p_1991_2000),
2001–2010 (p_2001_2010),
2011–2021 (p_2011_2021).

Fig. 8. Range Partitioning by the year

The results can be checked by the same technique by
running timer over the query that would be run on non-
partitioned table and over this new partitioned table. The
results didn’t make a big difference since the dataset is small
to make a significant difference.

B. Hash Partitioning
Hash partitioning distributes data across partitions using a

hash function applied to a column. This method ensures even
data distribution, reducing hotspots and improving load
balancing.

Advantages:

Ideal for queries filtering by non-sequential columns
(e.g., country names).
Enhances parallel read/write operations.

Reduces contention in high-concurrency
environments.

We used the hash partitioning shown in the figure below.

Fig. 9. Hash Partitioning

This partitioning is made by the countryname column.

C. Composite Partitioning
Composite partitioning is a combination of the basic data

distribution methods; a table is partitioned by one data
distribution method and then each partition is further
subdivided into subpartitions using a second data distribution
method. All subpartitions for a given partition represent a
logical subset of the data.

Fig. 10. Composite Partitioning

Composite partitioning combines range and hash methods.
The dataset is first partitioned by year ranges (RANGE), and
each partition is further subdivided using hashing on
countryname (HASH). We used this to optimize both time-
based and region-based queries.[7]

Since our dataset is small, we were not able to measure the
real impact of our partitionings, but there is a study that
measured the improvement of 18-22% in horizontal database
table partitioning. [4]

VII. DATA ANALYSIS AND FINDINGS

In this chapter, we will go through the interesting facts that
were found by analysing the dataset.

A. Countries with the most rising temperatures (2000 - 2024)
For this purpose, we also created one more materialized

view, which will store information about top 10 countries by
highest average temperature rise judging by years 2000 to
2021.

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 287 --

Fig. 11. Materialized view to store information about top 10 countries by
temperature rise in years 2000-2021

Fig. 12. Results of the top 10 average temperature change

The analysis reveals that Finland leads with the highest rise
(+1.61°C), followed closely by Cabo Verde (+1.59°C) and
Estonia (+1.58°C). Notably, Arctic and Eastern European
nations dominate the list, with Russia, Belarus, and Latvia all
showing increases above +1.50°C, underscoring accelerated
warming in northern latitudes.

Key Observations:

1) Geographic Concentration: 7 of the top 10 countries
are in Northern/Eastern Europe or adjacent regions, aligning
with global observations of amplified Arctic warming.

2) Magnitude of Change: All listed countries exceeded an
average rise of +1.48°C, far surpassing the global average
(typically +0.8–1.2°C for this period).

3) Cabo Verde’s Anomaly: As the sole tropical entry, its
presence suggests localized climate shifts beyond polar
amplification.

B. Detection of extreme temperature deviations

Climate variability often manifests in abrupt temperature
shifts between consecutive years. To identify the most
dramatic fluctuations, we analysed year-to-year changes across
all countries using a SQL query that calculates the absolute
difference in temperature between each year and its preceding
year.

Fig. 13. SQL Query to get top 10 countries by the most significant interannual
temperature change

The results are shown in the figure below:

Fig. 14. Top 10 countries with the highest interannual temperature change

Key observations:

1) Finland (1976) the most severe drop

-2.77°C year-to-year change (from +1.90°C in
1975 to -0.87°C in 1976),
This shows that in Finland there was significantly
colder year in comparison with the previous year.
We tried to search for additional information on
the internet if there was a reason for this
temperature change, but there are none, this
means that the change might be caused by the
combination of global warming and also the fact
that the previous year was warmer.

2) Geographic Patterns:

Northern/Arctic regions (Finland, Canada,
Greenland, Denmark) dominate the list,
suggesting heightened volatility at higher
latitudes.

C. Countries with the all time highest average temperature
rise(1970 - 2021)

In the graph below we can see countries that had the
biggest average temperature rise for all the years. If there are
so many countries that have temperature higher, we shouldn’t
doubt global warming.

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 288 --

Fig. 15. Countries with the all-time highest average temperature rise (1970 -
2021)

To proof that this rise is not just random, we can take 25
countries with lowest temperature rise/highest down of the
temperature. We can see that there is only 1 country which
temperature went down by the years, all other countries have
higher temperature.

Fig. 16. Countries with all-time lowest average temperatures rise (1970 -
2021)

As we can see, hardly any countries have experienced a
decrease in temperature. Nearly every nation in the world is
facing the phenomenon known as global warming.

D. Observing highest deviations in temperatures
This subchapter focuses on looking for countries that have

the lowest stability of the temperature. Standard deviation is a
good statistical tool which can show us what we are looking
for.

The aggregational function STDDEV in oracle achieves
the required result.

Fig. 17. Getting top 25 countries with highest standard deviation of
temperature

The results are shown in graph below:

Fig. 18 Result graph showing top 25 countries with the highest standard
deviation of temperature

E. Global perspective on the issue of rising temperatures
Until now we focused on local changes, but in the

international context the results are way more accurate. In the
dataset are also already calculated data for the whole world
values for each year. In the graph below we can see how the
temperature was rising until 2022.

Fig. 19. Chart - global temperature rise

As we can see the temperature is overall rising. This
indicates that the global warming is true. In the chart we can
see that until years 1990 the temperature wasn’t rising that
much as in the later years. This is caused by the fact that the
baseline temperature was established from the average
temperature from years 1951 to 1980, so the temperature
around those years couldn’t rise as much as in the years later.

VIII. CONCLUSION
This study demonstrates how advanced database

optimization techniques can significantly enhance the
efficiency of data processing and analysis in climate change
research. By implementing indexing, materialized views, and
partitioning strategies in Oracle Database, we achieved
measurable improvements in query performance when
analysing large-scale global temperature datasets. Although
the initial dataset was relatively small, our experiments
confirmed that these optimization methods reduce query
execution times, enabling faster and more scalable data
analysis.

Future research directions could include applying these
techniques to even larger and more complex climate datasets,
integrating machine learning models for predictive climate
analysis, and incorporating real-time data streams to support
dynamic, up-to-date environmental monitoring. Such
advancements could further empower researchers to extract
actionable insights with greater speed and accuracy.

Our findings confirmed the ongoing trend of global
warming, with Arctic and Eastern European countries
experiencing the most significant temperature increases. The
study also identified extreme interannual variations and
highlighted the importance of database optimizations in
managing large datasets effectively.

ACKNOWLEDGMENT
This paper was also supported by the VEGA 1/0192/24

project - Developing and applying advanced techniques for

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 289 --

efficient processing of large-scale data in the intelligent
transport systems environment.

REFERENCES
[1] M. A. K, Lovru, “All Countries Temperature Statistics 1970 – 2021”:

https://www.kaggle.com/datasets/mdazizulkabirlovlu/all-countries-
temperature-statistics-1970-2021

[2] International Monetary Fund, Climate Change Data “Annual surface
temperature Change”: https://climatedata.imf.org/pages/climatechange-
data

[3] Geeksforgeeks.org “Indexing in Databases – Set 1”:
https://www.geeksforgeeks.org/indexing-in-databases-set-1/

[4] R. Elmasri and S. B. Navathe, “Fundamentals of Database Systems (7th
ed.)”. Pearson, 2016

[5] Sciencedirect.com,.”Range Partitioning”:
https://www.sciencedirect.com/topics/computer-science/range-
partitioning

[6] Dremio.com,.”Hash Partitioning”: https://www.dremio.com/wiki/hash-
partitioning/

[7] R. Greenwald, R. Stackowiak, and J. Stern, “Oracle Essentials: Oracle
Database 12c”, O'Reilly Media, 2013.

[8] D. Kuhn, and T. Kyte, “Expert Oracle Database Architecture:
Techniques and Solutions for High Performance and Productivity.”
Apress, 2021.

[9] M. Kvet, “Developing Robust Date and Time Oriented Applications in
Oracle Cloud: A comprehensive guide to efficient Date and time
management in Oracle Cloud”, Packt Publishing, 2023, ISBN: 978-
1804611869

[10] A. Nuijten, A. Barel, “Modern Oracle Database Programming: Level
Up Your Skill Set to Oracle's Latest and Most Powerful Features in SQL,
PL/SQL, and JSON“, Apress, 2023

[11] M. Malcher and D. Kuhn, "Pro Oracle Database 23c Administration:
Manage and Safeguard Your Organization’s Data." Berkeley, CA:
Apress, 2024, ISBN: 978-1-4842-9898-5.

[12] Erasmus+ project EverGreen dealing with the complex data analytics:
https://evergreen.uniza.sk/

[13] Docs.oracle.com,.”Composite Partitioning”:
https://docs.oracle.com/database/121/VLDBG/GUID-BE424ACC-F746-
4CA8-973C-F578CF98FF10.htm

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 290 --

