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Abstract—Learning to defer enables machine learning mod-
els to selectively pass uncertain decisions to a human expert,
improving reliability in critical settings. Existing approaches
typically base deferral policies on the model’s final layer, which
is optimized for classification rather than calibrated deferral.
In this work, we introduce a framework for learning deferral
policies using intermediate representations from deep convolu-
tional networks. We evaluate this approach on two benchmark
datasets, Galaxy-Zoo and CIFAR-10H, across both learning-
based and confidence-based deferral strategies. Our results show
that hidden-layer features, particularly from deeper residual
blocks, enable more effective deferral decisions and improve
the accuracy-coverage trade-off. These findings highlight the
value of internal features for selective deferral and motivate
future architectures that disentangle classification and deferral
components.

I. INTRODUCTION

In high-stakes decision-making domains such as healthcare,

finance, and autonomous systems, it is increasingly desirable

for machine learning (ML) models to collaborate with human

experts rather than operate autonomously. To this end, learning
to defer (L2D) has emerged as a principled framework that

enables models to selectively defer predictions to humans

when their own confidence is low or uncertainty is high [1].
Most existing L2D methods derive deferral policies from

the final layer of a neural network, typically relying on logits

or softmax probabilities as signals of uncertainty [2], [3].

However, these final-layer representations are trained primarily

for classification accuracy, not for calibrated deferral.
In contrast, intermediate representations within deep net-

works capture progressively abstract and hierarchical features

of the input [4]. These hidden-layer features may encode

information that is more general, diverse, or robust to noise,

and thus better suited for supporting deferral decisions. Despite

this, their use in L2D has been largely unexplored.
In this work, we investigate whether deferral policies trained

on internal features extracted from hidden layers can improve

deferral quality over those relying solely on final outputs. Our

hypothesis is that leveraging richer internal representations

allows for more accurate discrimination between instances that

can be confidently handled by the model and those that should

be passed to a human expert.
We evaluate this hypothesis empirically using deep convolu-

tional networks trained on two benchmark datasets with human

annotations: Galaxy-Zoo and CIFAR-10H. Using a ResNet-

18 and ResNet-56 backbone, respectively, we extract features

from multiple depths within each network, such as average

pooling outputs and residual block activations, and train defer

models.

Our experiments show that internal features, particularly

from deeper residual layers, consistently lead to better

accuracy-coverage trade-offs. Notably, models trained with

such features outperform those using only final-layer logits

across multiple deferral objectives.

The main contributions of this paper are:

• We introduce a framework for learning deferral policies

based on hidden-layer features of deep neural networks.

• We systematically evaluate the impact of different repre-

sentation depths on deferral performance across two real-

world datasets with human labels.

• We demonstrate that intermediate features improve

accuracy-coverage metrics in deferral settings.

These findings underscore the importance of feature selec-

tion for human-AI collaboration and motivate the development

of future architectures that explicitly disentangle classification

and deferral components.

II. RELATED WORK

A. Task Allocation in Human-AI Collaboration

Research on human-AI collaboration has extensively ex-

plored methods for dynamic task allocation between auto-

mated models and human experts. A large body of work

focuses on confidence-based and heuristic deferral strategies,

which rely on model uncertainty to decide whether to defer a

given prediction.

Early approaches use the model’s softmax output as a

proxy for confidence [5], [6], deferring predictions when the

maximum softmax probability falls below a fixed threshold.

More sophisticated uncertainty estimation techniques include

Monte Carlo Dropout (MC-Dropout) [7], [8], which performs

multiple stochastic forward passes, and model ensembles [9],

which rely on disagreement across independently trained mod-

els.

Madras et al. [1] proposed a practical framework using dual

thresholds (t0, t1) to assign predictions to the model or to

the human expert. More recent work extends this idea by

incorporating human behavior modeling. For example, Raghu

et al. [10] train a proxy model to estimate expert disagreement

using internal embeddings, while Popat et al. [11] apply
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Bayesian modeling to improve deferral robustness and sample

efficiency. These methods highlight a key trade-off: heuristic

deferral is computationally simple and data-efficient, but less

effective when expert behavior varies or is imperfect [12].

B. Learning-Based and Cost-Aware Deferral

Beyond heuristics, recent approaches formulate deferral as

a learnable, cost-sensitive decision problem. Mozannar and

Sontag [2] introduce a differentiable surrogate loss that in-

cludes an explicit “defer-to-expert” class, enabling end-to-end

optimization. Verma et al. [3] address limitations in softmax

calibration by proposing a one-vs-all (OvA) formulation that

yields better uncertainty estimates.

Extensions to multi-expert deferral settings have also been

studied, where the model learns not only whether to defer, but

to which expert [13], [14].

C. Evaluation of Hybrid Systems

Evaluating human-AI collaboration introduces challenges

beyond conventional accuracy metrics. In settings where every

instance is reviewed by both model and human (e.g., sequential

decision-making), system performance is typically measured

using overall accuracy [12], [13], [15]–[17]. However, in

selective deferral settings, additional metrics are necessary.

The most common metrics include coverage (the propor-

tion of instances for which the model itself produces pre-

dictions) and system accuracy (the overall accuracy of the

human–model team, where instances outside the coverage are

handled by the human). Trade-off curves between coverage

and accuracy are widely used to assess deferral strategies and

threshold sensitivity [3], [18]–[21].

Despite extensive exploration of model outputs and confi-

dence measures, relatively few works investigate the impact

of internal representations (e.g., hidden-layer activations) on

deferral performance. In this work, we build on the above

foundations by evaluating how internal features can improve

both learned and heuristic deferral strategies, particularly in

hybrid decision systems involving real human labels.

III. PROBLEM STATEMENT

We consider the problem of learning a model that can

either predict a label or defer the decision to a human expert.

Formally, let D = {(xi,mi, yi)}Ni=1 be a dataset, where

xi ∈ X is an input instance (e.g., an image), mi ∈ Y is

the label provided by a human (or aggregated human vote),

and yi ∈ Y is the ground-truth class label. In practice, mi

may be noisy or uncertain, reflecting the variability in human

decision-making.

A typical L2D model consists of two components:

• a classifier f : X → R
|Y| that outputs scores (logits) over

classes,

• a deferral policy π : X → {0, 1} that decides whether to

predict (π(x) = 0) or defer to the human expert (π(x) =
1).

Let ŷi = argmax f(xi) be the model’s prediction. The final

system prediction is defined as:

ỹi =

{
ŷi, if π(xi) = 0

mi, if π(xi) = 1

The goal is to train f and π such that the overall accuracy of

ỹi on the dataset D is maximized, possibly under constraints

on the coverage (i.e., the fraction of examples handled by the

model) or the cost of querying human labels.

Most existing approaches design the deferral policy π(x)
based on the final output logits of f(x), using confidence

scores or post-hoc estimates of uncertainty. In this work, we

hypothesize that features extracted from intermediate layers of

deep networks contain richer information for estimating defer-

ral decisions. Our objective is to study whether policies that

leverage deep features beyond the output layer can improve

deferral accuracy and better balance between automation and

human input.

IV. PROPOSED APPROACH

We propose a L2D framework that integrates intermediate

features from the backbone classifier to inform deferral de-

cisions more effectively. Unlike traditional methods that rely

solely on the final output logits, our model leverages internal

feature representations to estimate whether to defer to a human

expert. This design is illustrated in Fig. 1.

A. Feature Connectors

To access information from the classifier’s internal process-

ing, we tap into activations from intermediate layers, specif-

ically, those immediately following ReLU non-linearities.

ReLU activations are chosen because they preserve sparsity

and eliminate negative values, which can amplify the in-

terpretability and relevance of active feature patterns. These

layers often retain high-level spatial semantics that may be

suppressed in deeper fully-connected layers.

Each selected intermediate layer is passed through a Con-
nector module that aggregates the spatial information using

global pooling strategies. We apply global average pooling

(GAP) and global max pooling (GMP) to summarize the acti-

vation maps, capturing both general trends and prominent local

features. The outputs from GAP and GMP are concatenated

to form compact, yet expressive feature vectors representing

each layer’s state.

B. Deferral Model

The connector outputs from multiple intermediate layers

are concatenated into a single feature vector. Additionally, we

include the output of the final average pooling layer before

classification, ensuring that the defer model has access to both

low-level and high-level features.

This combined feature vector is passed to a multi-layer

perceptron (MLP), which produces a vector of logits. The first

|Y| components correspond to class predictions (mimicking

the main classifier), while the final component represents the
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Fig. 1. Overview of the proposed approach. Intermediate features from the classifier are aggregated and passed to a deferral model that decides whether to
predict or defer

deferral logit, that is, the model’s tendency to defer rather than

predict.

The defer decision is then made by thresholding the deferral

logit. During training, we optimize both components jointly to

maximize the accuracy of the final prediction system, which

may defer or classify based on this learned policy.

V. EXPERIMENT SETUP

A. Datasets

We evaluate our approach on two datasets that provide hu-

man annotations and enable studying deferral policies: CIFAR-

10H and Galaxy Zoo.
1) CIFAR-10H: CIFAR-10H [22] is an extension of the

CIFAR-10 [23] test set, providing soft labels that reflect human

perceptual uncertainty in image classification. The dataset

includes annotations for the 10,000 images in the CIFAR-10

test set, with 1,000 images for each of the 10 categories.

A total of 511,400 human classifications were collected via

Amazon Mechanical Turk, involving 2,571 participants. Work-

ers were asked to categorize each image into one of 10 labels,

with the label positions randomized for each trial. They were

instructed to classify the images as quickly and accurately

as possible, though there was no time limit. After an initial

training phase, each participant classified 200 images (20 from

each category). To ensure data quality, every 20 images, an

easy-to-classify image was presented as an attention check,

and participants who scored below 75% on these checks (14

total) were excluded from the final analysis. On average, 51

judgments were collected per image (range: 47–63).
2) Galaxy Zoo: The Galaxy Zoo dataset [24] consists of

images of galaxies labeled by citizen scientists through a

crowdsourcing platform. Each image is annotated by multiple

volunteers who answer a series of morphological questions

(e.g., regarding smoothness, presence of features or disks,

spiral arms, etc.). The resulting labels form a probability

distribution over possible answers, capturing inter-observer

uncertainty.

In this work, we used the first 10,000 images from the

Galaxy Zoo dataset. We focused on a binary classification task

using only the first question: “Is the object a smooth galaxy, a
galaxy with features/disk, or a star?” Specifically, we selected

the following two classes: smooth galaxy; galaxy with features

or disk.

B. Classifiers

To perform selective classification and deferral experiments,

we first trained baseline classifiers without any built-in mech-

anism for abstention.

For binary classification on Galaxy-Zoo, we used a ResNet-

18 model pretrained on ImageNet. The final fully connected

layer was modified to output two logits. Images were pro-

cessed using standard ImageNet-style transformations, includ-

ing resizing to 256× 256, center cropping to 224× 224, and

normalization with ImageNet mean and standard deviation.

The dataset was limited to the first 10,000 examples (7000 for

training and 3000 for testing). The model was trained using the

Cross-Entropy loss, Adam optimizer with learning rate 10−3,

weight decay 10−2, batch size of 250, and early stopping with

a patience of 10 epochs. Training was capped at 100 epochs.

The resulting classifier achieved 82.77% accuracy on the test

subset.

For the CIFAR-10H dataset, we used a pretrained ResNet-

56 model from an open-source repository. The model achieved

94.37% test accuracy without additional fine-tuning. Images

were normalized using dataset-specific mean and standard

deviation values. This model was used as-is for further deferral

experiments.
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C. Deferral Approaches
We implemented deferral models using three different ap-

proaches:

• MaxSoftmax: A simple post-hoc baseline that relies only

on the classifier’s logits. The maximum softmax proba-

bility is used as a confidence score, with low-confidence

predictions deferred to the human.

• L-CE: A method introduced by Mozannar and Sontag [2],

which jointly learns classification and deferral via a

combined loss. It treats deferral as an explicit action

and optimizes for both accuracy and appropriate rejec-

tion, offering better trade-offs than heuristic confidence

thresholds.

• OvA (One-vs-All): A method introduced by Verma et

al. [3], using a one-vs-all surrogate formulation with a

single shared deferral logit. This design encourages the

model to defer when the expert is more reliable, while

producing a unified K+1-way output for inference and

often improves both coverage and accuracy.

D. Feature Sources for Deferral Models
Unlike standard deferral models that operate solely on final

logits, we investigate whether internal network representations

can provide richer features for making deferral decisions.
1) Galaxy-Zoo (ResNet-18): We evaluate the following

feature sources:

• Logits: Output of the final linear classification layer.

• Avgpool: Output of the global average pooling layer.

• Layer4: All ReLU activations within the final residual

block (layer4).

• Layer3: All ReLU activations within the penultimate

residual block (layer3).

• Avgpool+Layer4: Concatenation of avgpool and the

ReLU outputs from layer4.

2) CIFAR-10H (ResNet-56): We evaluate four feature

sources:

• Logits: Output of the final linear classification layer.

• Avgpool: The global average pooled representation.

• Layer3: The set of ReLU activations from the third

residual group.

• Avgpool+Layer3: Concatenation of avgpool and the

ReLU outputs from layer3.

Here, the term “layer” refers to an entire residual block

(e.g., layer3, layer4), and specifically to the set of activations

produced by all ReLU operations within that block.

E. Deferral Model Architecture
All deferral models were implemented as multilayer percep-

trons (MLPs) with ReLU activations. The output layer always

consisted of k+1 logits, where k corresponds to the number of

classes and the additional logit represents the abstain (defer)

option.
The architecture of the MLP is adapted to the dimensionality

of each input feature source. Detailed configurations for the

Galaxy-Zoo (ResNet-18) and CIFAR-10H (ResNet-56) exper-

iments are provided in Tables I and II, respectively.

TABLE I. MLP CONFIGURATIONS FOR DIFFERENT FEATURE 
SOURCES ON GALAXY-ZOO (RESNET-18)

Feature Source MLP Architecture
Logits [2, 10, 3]

Avgpool [512, 128, 3]
Layer4 [2048, 512, 3]
Layer3 [1024, 256, 3]

Avgpool + Layer4 [2560, 512, 3]

TABLE II. MLP CONFIGURATIONS FOR DIFFERENT FEATURE 
SOURCES ON CIFAR-10H (RESNET-56)

Feature Source MLP Architecture
Logits [10, 20, 11]

Avgpool [64, 32, 11]
Layer3 [1152, 256, 11]

Avgpool + Layer3 [1216, 256, 11]

F. Training Procedure

The deferral models were trained using the Adam optimizer

with a learning rate of 10−3 and a weight decay of 10−2.

The batch size was set to 500. Training was performed for a

maximum of 500 iterations with early stopping (patience of

20).

1) Galaxy-Zoo: A 5-fold cross-validation setup was used,

with 8000 training examples and 2000 test examples in each

fold.

2) CIFAR-10H: A hold-out validation strategy was used,

with 7000 samples for training and 3000 for testing.

G. Simulating Human Annotations

To simulate noisy human labels for delegated samples, a

sampling-based annotation model was used. Given the ground-

truth probability distribution over classes, the simulated an-

notator generated a label by randomly sampling from the

distribution. This process captures the inherent stochasticity

and variability in human annotations.

H. Evaluation Metrics

To assess the quality of deferral models, we adopt three

complementary evaluation metrics: AC-AUC, Maximum Ac-
curacy, and Coverage at Maximum Accuracy. These metrics

are computed based on the model’s selective predictions—that

is, when it chooses to make a prediction itself or defer the

decision to a human.

1) Coverage-Accuracy Curve: Each deferral model outputs,

for each instance, a vector of logits with K+1 values, where K
corresponds to the number of target classes, and the last value

corresponds to the deferral option. From this, we compute a

scalar deferral score per instance, indicating how confident the

model is in its own prediction relative to deferral. Specifically,

we define the score as the difference between the maximum

softmax probability among the K classification logits and the

softmax probability assigned to the deferral logit.

Using this score, we sort the data points in ascending order,

simulating a selective classification process where the model
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defers more often for lower scores. At each step, we substitute

the model’s prediction with the human label and compute

the resulting accuracy and remaining model coverage (i.e.,

fraction of instances the model handles itself). This results

in a coverage-accuracy curve.

2) AC-AUC: The main evaluation metric is the Area under
the Coverage-Accuracy Curve (AC-AUC). This metric cap-

tures the overall performance of the defer system across the

full range of coverage values—from full automation to full

deferral. Formally, it is computed as a Riemann sum over the

sorted coverage-accuracy points:

AC-AUC =
1

2

N−1∑
i=1

(ci+1 − ci)(ai+1 + ai)

where ci and ai are the coverage and accuracy values at point

i, respectively.

3) Maximum Accuracy and Corresponding Coverage:
In addition to AC-AUC, we report the maximum accuracy

achieved along the curve and the corresponding coverage value

at which it occurs. This helps quantify the point at which

optimal overall accuracy is obtained by balancing deferral and

automation.

4) Implementation Details: Model predictions are extracted

by taking the argmax over the first K logits. Human an-

notations are sampled stochastically from human-provided

probability distributions using a fixed random seed. All metrics

are computed on held-out validation or test subsets and are

averaged across cross-validation folds (for Galaxy-Zoo) or

over a single hold-out split (for CIFAR-10H).

VI. RESULTS AND DISCUSSION

A. Galaxy-Zoo

We present the results of deferral models trained and

evaluated on the Galaxy-Zoo dataset. Fig. 2 displays boxplots

summarizing the distribution of three evaluation metrics, AC-

AUC, maximum accuracy, and coverage at maximum accu-

racy, across various feature sources and deferral strategies (L-

CE, OvA, MaxSoftmax).

Across all methods, logits prove to be the least informative

feature representation, consistently resulting in the lowest AC-

AUC scores. In contrast, deeper internal representations such

as avgpool and layer4 yield significantly higher AC-AUC

values, likely due to their richer feature encoding. layer3
underperforms, possibly due to its lower-level abstraction.

Combining avgpool and layer4 stabilizes performance

by reducing the variance of AC-AUC across folds, particu-

larly for L-CE. Among deferral strategies, L-CE consistently

outperforms OvA and MaxSoftmax in AC-AUC, indicating

better trade-offs between accuracy and coverage. However,

OvA often achieves the highest classification accuracy with

lower variance. Interestingly, avgpool features lead to the

highest coverage at peak performance.

These findings highlight the advantages of using deeper

internal features, particularly from avgpool and layer4,

for training deferral models. They also suggest that logits,

despite their common use, may be suboptimal as the sole input

to the deferral head.

B. CIFAR-10H

We further evaluate deferral performance on the CIFAR-

10H dataset, with a focus on coverage-accuracy trade-offs.

As shown in Fig. 3, the most effective configuration com-

bines avgpool and layer3 features, achieving the highest

accuracy and model coverage. Consistent with observations

on Galaxy-Zoo, MaxSoftmax again performs the worst across

both metrics.

C. General Observations

Across both Galaxy-Zoo and CIFAR-10H, several consistent

trends emerge. First, relying solely on final output logits yields

the weakest deferral performance, both in terms of accuracy

and deferral quality. In contrast, internal feature representa-

tions, particularly those extracted after ReLU activations in

deeper residual blocks, consistently lead to better results.

Features from the final average pooling layer (avgpool)

and the deepest residual block (e.g., layer4 in ResNet-18,

layer3 in ResNet-56) provide the most informative sig-

nals for learning effective deferral policies. Combining these

sources further improves robustness and stability, particularly

by reducing performance variance across folds.

Regarding deferral strategies, L-CE consistently achieves

the highest overall trade-off between accuracy and coverage

(as measured by AC-AUC), while OvA often obtains the best

peak accuracy. MaxSoftmax underperforms in all settings,

highlighting its limitations as a confidence-based heuristic.

These findings support the hypothesis that deferral policies

benefit from access to rich internal representations. Designing

deferral heads that leverage intermediate features can signifi-

cantly enhance performance over traditional approaches based

on output logits alone.

VII. CONCLUSION

In this work, we studied the impact of using interme-

diate hidden-layer representations for training deferral poli-

cies in human-AI collaboration settings. Although traditional

approaches rely on information from the final layer, we

demonstrated that deeper internal features, especially those

extracted from late stage residual blocks, offer richer and

more informative signals for deferral. Across two benchmark

datasets, our experiments showed that deferral models trained

on such features achieve higher AC-AUC scores, better max-

imum accuracy, and greater coverage.

Our findings emphasize the underutilized value of deep rep-

resentations in selective deferral tasks and suggest that future

deferral systems should explicitly incorporate such features.

Beyond improving performance, this direction encourages the

development of architectures that separate decision confidence

from final classification, enhancing the interpretability and

trustworthiness of human-AI decision pipelines.
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Fig. 2. Comparison of deferral strategies across feature sources on Galaxy-Zoo dataset

Fig. 3. Accuracy-Coverage curves on CIFAR-10H dataset
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