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Abstract—Machine learning methods, including both deep
learning and traditional approaches, have achieved signifi-
cant advancements in medical image analysis, particularly in
histopathology. Histopathological images play a vital role in
disease diagnosis and prognosis, driving the growing interest
in automating histological image analysis using machine learn-
ing. This paper provides a comprehensive overview of recent
developments in machine learning-based techniques for ana-
lyzing immunohistochemistry images, with a focus on studies
published in recent years. The review categorizes the research
from two perspectives: 1) the training approach and model
design, including supervised deep learning, unsupervised, and
hybrid methods, and 2) the application type, such as tissue
grading and positive cell quantification. The study aims to guide
future research by offering a structured analysis of current
methodologies and highlighting the potential of machine learning,
including both deep learning and traditional algorithms, to
enhance the efficiency and accuracy of histopathological analysis

I. INTRODUCTION

Histological staining techniques are indispensable in clinical

practice for the visualization and differentiation of cellular and

tissue structures, enabling accurate diagnosis and prognosis.

While a variety of specialized stains are employed to detect

specific components or abnormalities within tissues, immuno-

histochemistry (IHC) stands as a powerful technique using

antibodies to detect specific antigens. This approach is widely

utilized in clinical pathology to provide crucial information

for diagnosing cancers, infectious diseases, and autoimmune

disorders. IHC can also be used to assess the expression

of tumor markers such as human epidermal growth factor

receptor 2 (HER2) in breast cancer [1]. The interpretation

of IHC results, however, is inherently subjective and prone

to significant inter-pathologist variability. This can lead to

inconsistent diagnostic and prognostic results, especially given

that manual scoring generally lacks the precision required for

accurate quantification of antigen expression levels [2]. This

subjectivity represents a significant limitation in the diagnostic

workflow, highlighting a clear and pressing need for objective,

automated solutions. Significant advances in machine learning

(ML), particularly in deep learning (DL), coupled with the

increasing volume of digitized whole-slide images (WSIs),

have created a unique opportunity to address these challenges.

Several studies have explored the application of computer

vision and ML to support and automate histological analysis

[3]–[11].

The objective of automating IHC scoring is not only to

reduce the workload of pathologists but also to improve

consistency, provide precise quantification, and enable large-

scale analysis that is currently not feasible. Understanding the

state-of-the-art methods for IHC quantification is particularly

important as these techniques can also be leveraged to tackle

related research problems, such as the prediction of IHC

biomarker values from hematoxylin-eosin (H&E) stained im-

ages. A major obstacle in this area is the lack of high-quality,

expertly annotated datasets. This forces researchers to develop

their own annotation solutions. Therefore, a comprehensive

overview of current automated methods, which can be adapted

for dataset generation, is essential. Automating the evaluation

of IHC images has the potential to substantially enhance the

efficiency and reliability of research in this field. In this paper,

we present a comprehensive overview of the most recent and

relevant ML and DL approaches developed for IHC score

estimation. We systematically reviewed articles from leading

databases, with the methodology detailed in the following sec-

tion. This survey distinguishes itself by focusing specifically

on the period from 2020 up to June 2025, providing a current

and highly relevant snapshot of the field. The rest of this paper

is organized to provide a structured analysis: Section 2 details

a systematic approach to conducting the literature review. In

Section 3, a basic overview of ML approaches in the context of

computational histopathology is presented. Section 4 discusses

in detail methods and approaches used in digital pathology for

IHC assessment. In Section 5, we discuss the histopathological

point of view by classifying the methods according to their

area of application. In Section 6, we conclude the paper.

II. METHODOLOGY

The literature review was carried out by systematically

searching two key scientific databases, PubMed and arXiv, for

articles published between January 2020 and June 2025. The

search strategy combined terms related to the subject matter

and the analytical methods. The following search terms were

used to identify relevant papers:

• Subject Keywords: ”IHC”, ”immunohistochemistry”
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• Methodology Keywords: ”automated scoring”, ”au-

tomated labeling”, ”automated annotating”, ”automatic

quantification”, ”automatic calculation”

The search queries were constructed by combining keywords

to ensure a targeted and comprehensive retrieval of relevant

literature (e.g., (”IHC” OR ”immunohistochemistry”) AND

(”automated scoring” OR ”automated labeling” OR ”automatic

calculation”)). Papers were initially screened by title and ab-

stract to assess their relevance to the review’s scope. For final

inclusion, a stringent set of criteria was applied. We selected

only articles that addressed the problem of IHC quantification

using a novel research method, specifically excluding studies

that relied solely on existing medical software solutions. Fur-

thermore, the review was limited to studies focused on human

tissue sections and those that utilized patch-level annotations,

as opposed to weak annotations applied at the whole-slide

image (WSI) level. We also excluded articles that worked

with multiple or mixture antibody stainings, focusing only on

studies with a single antibody stain. This structured approach

ensures the review is both thorough and reproducible.

To ensure the transparency and reproducibility of our sys-

tematic review, we have included a PRISMA flow diagram in

Fig. 1 . This diagram visually summarizes the entire search

and selection process, from the initial identification of records

to the final set of studies included in the review. It details the

number of articles found, screened, and ultimately deemed

eligible, along with the specific reasons for exclusion at each

stage. The PRISMA flow diagram was generated using [12].

III. OVERVIEW OF LEARNING SCHEMAS

This section provides an overview of different learning

approaches within the context of ML as applied to computa-

tional pathology. The problem of evaluating IHC images can

be approached in both ways by supervised learning (SL) as

well as unsupervised learning, or by a combination of both

approaches.

A. Supervised learning

SL is a fundamental ML paradigm in which an algorithm is

trained on labeled data, where the input data is paired with the

correct output. The goal is for the model to learn the mapping

between inputs and outputs, allowing it to make predictions

or classifications on unseen data [13]. Among the supervised

learning techniques, we identify three major canonical deep

learning models based on the nature of tasks that are solved

in digital histopathology: classification, detection and segmen-

tation based models.

Key models for segmentation include U-Net, which uses

an encoder-decoder architecture to capture both local and

global features, and Mask R-CNN, which extends Faster R-

CNN by adding a segmentation mask prediction to the object

detection framework. For object detection, popular models

include Faster R-CNN, which uses a Region Proposal Network

(RPN) to generate proposals for bounding boxes, and YOLO

(You Only Look Once), which performs detection in a single

step and is known for its speed [14].

B. Unsupervised learning

Unsupervised learning is a ML paradigm where models

are trained on data without labeled outputs. The goal of

unsupervised learning is to identify hidden patterns or in-

trinsic structures in the input data, such as grouping similar

data points together or reducing the dimensionality of the

data. Clustering techniques, such as K-means or hierarchical

clustering, group pixels or image regions into clusters based

on similarity in color, texture, or intensity. These methods

are useful in segmenting different tissue structures or iden-

tifying specific features in a tissue sample without requiring

labeled data [13]. Thresholding, on the other hand, involves

segmenting the image based on pixel intensity values, typically

applying a fixed or adaptive threshold to separate foreground

objects from the background. In histopathology, DAB (3,3’-

Diaminobenzidine) color deconvolution is frequently used to

separate overlapping color channels in IHC images. This

technique allows for the isolation of individual stain intensities

(e.g., DAB for detecting specific antigens) from complex color

mixtures, enabling clearer analysis of cellular structures [15].

IV. IHC ESTIMATION

This section provides a general overview of recent pub-

lications using DL, ML and image analysis methods for the

problem of automated IHC quantification or scoring. The focus

of this work is solely on studies that address the estimation

of biomarkers from IHC images using a custom approach

without the use of available histological image processing

software. We also included papers that did not explicitly aim

at IHC estimation, but solved this problem as part of some

other problem, e.g. prediction of IHC values directly from

another type of staining. This section is divided according to

the type of algorithms used into three subsections: supervised

DL, unsupervised methods and combined (hybrid) approach.

A. Supervised Deep Learning

One of the primary advantages of DL and SL as well

is that it provides high accuracy when sufficient labeled

data is available. However, it can be limited by the need

for large, annotated datasets, which needs to be created by

experts [16]. Papers using this approach are summarized in

Table I. For an explanation of staining proteins or result

accuracy metrics, please see the original article. Researchers

of [3] combined segmentation and detection task to evaluate

proliferation index of brain tumor. First they segmented cells

from background using U-Net. Then modified YOLOv3 was

employed to detect and classify cells. For YOLOv3 model

they replaced original backbone DarkNet-53 network with

the SqueezeNet to reduce computational requirements. In

[17], authors addressed the problem of detection three IHC

expression categories: nuclear, cytoplasmic and membranous.

Separate Mask-R-CNN and YOLOv5 models were developed

for each category scoring tumor tissue of several organs.

Detection networks were utilized also in [18], where authors

compared dedicated model PathoNet with generic models such

as Faster R-CNN and others. In [19] scholars utilized Faster
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Fig. 1. PRISMA flow diagram of our review, generated via [12]

R-CNN and HoLy-Net for segmentation and detection of IHC

positive and negative cells on three different biomarkers in

IHC images and classification of tumor and non-tumor cells

in HE images.

Modified U-Net model was employed in [20] for nerve

detection in thyroid tissue samples. Model output may contain

predicted positive instances that are too small, or a cluster of

predicted positive instances that are separated from each other.

Therefore, post-processing method such as binary morphology

was applied to combine prediction results for nerve quantifica-

tion. U-Net model was also employed in [21] for rheumatoid

arthritis tissue images. Trained model is available for use or

further fine-tuning. Instance based segmentation model was

used in [22]. Authors trained SOLOv2 segmentation model

using transfer learning to quantify and grade four type of

biomarkers used in breast cancer treatment process. They also

compared their model performance to Mask-R-CNN on all

IHC biomarkers.

In [4] authors introduced LYSTO, the Lymphocyte Assess-

ment Hackathon, where participants had to assess the number

of lymphocytes in histopathological images of colon, breast,

and prostate cancer stained with CD3 (cluster of differen-

tiation) and CD8 immunohistochemistry. They summarized

methods used by all five teams attending the hackathon. All

teams used model based on DL neural networks. Problem

of melanoma classification and grading was addressed in

[23]. They used weak annotations approach to train ResNet

classifier. Weak annotations approach means all patches from

the same slide has the same label of the slide. Predictions

for all patches, were then averaged into final prediction for

each slide. For classification into 4 grades, authors in [24]

devised a pyramid sampling strategy to capture the multiscale

nature of tissue morphology and HER2 expression patterns.

This approach involved systematically extracting small patches

from original high-resolution tissue images. These patches

were then fed into DenseNet. The study [25] follows a two-

stage approach for automating the analysis of PD-L1 in

histopathology images. First, the framework segments tumor

areas into ”positive” and ”negative” regions using a modified

version of the UNet or DeepLabV3+ neural network. In the

second stage, the method uses a specialized neural network

StarDist to detect individual cell nuclei within the previously

segmented regions. Based on the nuclei’s location (within a

positive or negative region), the cells are classified, and a final

score is calculated.

B. Unsupervised Machine Learning

Acquiring high-quality datasets for training deep learning

models is often a labor-intensive and time-consuming process.

In many cases, the challenges associated with data acquisition

are further exacerbated by the specific nature of the problem

being addressed, particularly when the data is scarce or diffi-

cult to obtain. This scarcity of labeled data can significantly

hinder the development and effectiveness of machine learning

models, as large, diverse, and well-annotated datasets are

typically required for robust model training. In these situations,

it is necessary to use unsupervised learning methods that

do not require annotated data. Table II summarizes studies

analyzing IHC images with unsupervised methods. Authors of

[29] developed method to predict the image scores on a 5-point

scale. The proposed method first converts the RGB (red, green,

blue) images into optical density using the Beer–Lambert law.

After this, the following three stages are carried out: stain

separation, feature extraction, and prediction of the scores.

The images are scored using a k-means clustering algorithm

equipped with beta divergences with each centroid represent-

ing one score. In [7], researchers presented an unsupervised

four-stage pipeline for detecting protein markers of human

epidermal keratinocyte differentiation on IHC images. The

pipeline consisted of these steps: color normalization, color

deconvolution to acquire color channels of the stains used,
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TABLE I. SUMMARY OF PAPERS USING 
SUPERVISED DL

Ref Method Cancer type Staining Dataset Result Application
[17] Mask-R-CNN,

YOLOv5
Colon, breast, prostate Ki67, PMS2,

PTEN
in house Acc 0,91 grading

[3] U-Net, YOLOv3 Brain Ki67 in house mAP 0,87 counting
[18] multiple detection Breast Ki67 SHIDC-B-Ki-67,

LSOC-Ki-67
x counting

[24] DenseNet Breast HER2 in house Acc 0.84 grading
[19] Faster-R-CNN, HoLy-

Net
B Lymphocytes Ki67, CD3, ERG LyNSeC F1 0,84 counting

[20] U-Net Thyroid PGP9.5 ref in article Precision 0.75 counting
[22] SOLOv2 Breast ER, PR, HER2,

Ki67
in house mAP 0,77 counting

[4] multiple DL Breast, colon, prostate CD3, CD8 available at zenodo x counting
[21] U-Net Rheumatoid arthritis CD20, CD68,

CD138
in house Dice score 0.863 segmentation

[23] ResNet Melanoma MART1 in house AUROC 0.92 grading
[26] AlexNet Breast Ki67 AIDPATH F1 0,47 grading
[27] cycle consistent GAN,

U-Net
Pancreas Ki67 in house F1 0,813 grading

[28] ResNet101 Prostate PTEN in house AUC 0,964 counting
[25] UNet, StarDist Lung PD-L1 in house F1 0.93 counting

morphological operations and k-means clustering using DAB

stain intensity.

To solve the problem of predicting mismatch repair (MMR)

status from HE images in [5], researchers needed to extract

MMR score from IHC images and create annotation for HE

patches. To address the problem of IHC estimation they imple-

mented unsupervised approach consisting of color deconvolu-

tion into H and DAB channels with following thresholding.

Similarly also in [6] the researchers needed to create a label

based on the quantification of the IHC images. Estimated

labels were then used to train deep neural networks for

melanocytic cell segmentation from HE, obtaining labels for

HE patches from adjacent IHC tissue sections. To quantify

IHC patches, they applied color deconvolution, histograms

thresholding and binary morphology.

C. Hybrid approach

Even in situations where annotations are available, it may

be advantageous to use a combination of DL and unsupervised

methods for pre- or post-processing the image. These papers

are organized in Table III. In [30], authors have developed

a hybrid model that effectively calculates and grades the

proliferation index on Ki-67 images of neuroendocrine tu-

mors. The proposed system first performs preprocessing using

Gaussian function. Then segmentation is performed using the

U-Net architecture to separate nuclei from background. The

identified nuclei are then evaluated as Ki67 positive or negative

employing mathematical morphology and color and shape in-

formation extracted from RGB or HSV (hue, saturation, value)

image. Researches in [31] used a two-step approach based

on segmentation and classification. Unlike the previous study,

they used simple methods such as watershed and highpass

for segmentation and SVM (support vector machine), KNN

(K-nearest neighbor) and random forest (RF) as the posterior

classifier. A DL-based decision support system for IHC scoring

of invasive ductal carcinoma was presented in [32]. Authors

modified U-Net model to segment regions of interest (ROIs) of

four different IHC biomarkers. On segmented ROIs, Mask-R-

CNN model was employed to detect nuclei and CMYK color

space with combination of value thresholding to classify cells.

V. DISCUSSION

From a histological standpoint, the IHC assessment methods

described in the literature can be broadly categorized into two

primary types: grading or scoring (semi-quantification) and

counting (fully quantification).

The studies reviewed in the previous chapter highlight

several effective approaches for applying automated image

processing techniques and ML to the task of IHC estimation

in histology, across various cancer types. DL has been most

frequently applied to breast cancer, which remains a leading

cause of cancer-related mortality in women worldwide [39].

From a histological standpoint, the IHC assessment methods

described in the literature can be broadly categorized into two

primary types: grading or scoring (semi-quantification) and

counting (fully quantification).

1) Fully Quantitative Methods: By a fully quantitative

approach, we refer to methods that provide precise, numerical

values to measure the extent and intensity of antigen expres-

sion in tissue samples. These approaches utilize advanced

image analysis and computational methods to objectively

measure specific parameters, such as staining intensity or the

percentage of positively stained cells. One of the biomarkers

for which fully quantified estimation is often applied is the

Ki67 protein, a proliferation marker commonly used in breast

cancer assessment. The estimation of the Ki67 positive cells

ratio has been addressed in many studies including [22], [33],

[37].

2) Semi-Quantitative Methods: A semi-quantitative tech-

nique in IHC estimation refers to methods that provide an
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TABLE II. SUMMARY OF PAPER USING UNSUPERVISED 
METHODS

Ref Method Cancer type Staining Dataset Result Application
[29] K-means Colon TEM/MET in house Acc 0,87 grading
[7] K-means Epidermis Ki67, fillagrin, ker-

atin10, HSPA2
in house Acc 0,87 counting

[5] Thresholding Colorectal MMR COMET x grading
[6] Thresholding Melanoma MART1 in house x grading

TABLE III. SUMMARY OF PAPERS COMBINING UNSUPERVISED METHODS WITH 
SUPERVISED DL

Ref Method Cancer type Staining Dataset Result Application
[30] U-Net Neuroendocrine Ki67 in house F1 0,86 counting
[31] SVM, KNN, RF Breast ER, PR in house Acc 0,9 grading
[32] U-Net, Mask-R-CNN Breast ER, PR, HER2,

Ki67
in house Acc 0,9 counting

[33] UV-Net Breast Ki67 Deepslides, in
house

F1 0,833 counting

[34] MLP Breast Ki67 in house F1 0,767 grading
[35] Seg-Net Melanoma MART1, Ki67 in house Acc 0,9 counting
[36] Inception V1, RF Breast ki67 in house Acc 0.9 counting
[37] CNN Melanoma Ki67 in house MAE ¡ 0.04 counting
[38] SVM Breast HER2 in house Acc 0,88 grading

approximate measure of antigen expression in tissue samples

based on visual assessment, typically using a subjective scale.

These techniques are not fully quantitative but instead catego-

rize the intensity of staining (e.g., weak, moderate, or strong)

[40]. This method is predominantly utilized for estimating

HER2, ER (estrogen receptor), or PR (progesterone receptor)

in breast cancer image analysis [24], [31], [38]. Nevertheless,

it is also applicable to other biomarkers, including Ki67 [26],

[34].

Although instances of both primary tasks: counting and

grading are present across all method categories (Supervised,

Unsupervised, and Hybrid), a critical analysis necessitates

differentiating their inherent difficulties to understand method-

ological choices.

A. Task Complexity: Counting Versus Grading

It is crucial to emphasize that Counting (precise enu-

meration of individual cells) represents a significantly more

challenging task than Grading (overall tissue classification

based on IHC properties). This complexity manifests in two

critical areas:

Data Annotation: Counting demands exceptionally inten-

sive and detailed dataset annotation, often requiring the precise

segmentation or explicit marking of every single cell. Con-

versely, Grading often relies on simpler annotations applied at

the patch or WSI level.

Model Architecture: While the Grading task can often be

successfully addressed using a simpler ML classifier, such as a

CNN, the Counting task mandates more complex architectures,

including image segmentation and object detection models.

B. Limitations in Comparative Evaluation

A critical limitation we identified when summarizing the

existing body of work is the inconsistency in evaluation

metrics used across studies. Given that various papers utilize

and report different final metrics (e.g., Accuracy, AUC, F1-

score), direct, quantitative comparison of the performance

of individual approaches becomes ad hoc impossible. This

widespread lack of benchmark standardization presents a sig-

nificant hurdle for accurately determining the most effective

methods and severely complicates the interpretation of results

within the broader research context.

C. Data Requirements and Method Selection

The choice of estimation method is critically dependent on

the availability and quality of ground truth annotations.

From our analysis of the literature, it is evident that Su-

pervised DL methods are primarily applicable where large

volumes of densely annotated data are available. This typically

translates to hundreds of WSIs, which, when divided into

patches, yield tens of thousands of data points. This scale

reflects the high data demands inherent to Supervised DL.

In contrast, Unsupervised methods are typically deployed

in situations facing severe data limitations. Our review indi-

cated that datasets used for these methods consisted of only

around 10 data samples on average. While this assessment is

challenging to generalize given the lower volume of articles

in this category, it highlights their reliance on minimal data.

The Hybrid approach serves as a practical compromise.

By leveraging human intervention—for example, in expert-

driven feature extraction—the complexity of the task for the

subsequent Supervised algorithm is reduced. This allows for

the construction of a viable pipeline even with a smaller

data sample, as the model is not required to discover domain

features from scratch.

Our systematic review of literature published since 2020

revealed a notable absence of Transformer-based models and

Foundation Models being successfully applied to complex
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IHC quantification tasks. While Vision Transformers (ViT)

are currently revolutionizing general computer vision, their

specialized application in histopathology is still in its nascent

stages compared to established CNN models [41], [42]. ViT

and Foundation Models, pre-trained on massive datasets,

represent the next frontier, promising superior generalization

capabilities [43]. The observed deficit suggests that researchers

are still navigating the unique technical challenges of WSI

analysis—namely, the gigapixel-scale size of WSIs (often

exceeding 150,000 x 150,000 pixels), the inherent high di-

mensionality of the data, and the critical need for accurate

micro-level spatial localization across the entire slide [42],

[44], [45]. Successfully adapting these powerful, data-hungry

architectures to process WSI efficiently, without compromising

detailed cellular information, remains a significant computa-

tional hurdle that must be overcome before they can be adopted

as standard methodologies for practical IHC estimation.

D. Allocation of Domain Expertise

A final critical factor distinguishing these methodologies is

the allocation of domain expertise required from the research

team.

Supervised DL: Domain knowledge is almost entirely

delegated to the algorithm. The model autonomously learns

and extracts relevant features from the image to solve the

specific task (counting/grading). This approach reduces the

burden on the scientist to explicitly specify color intensity

thresholds or geometric criteria.

Unsupervised / Traditional Methods: The scientist must

actively take on the domain expertise. They are required to

clearly specify the explicit criteria and features upon which

data classification will be based—such as defining precise

thresholds for color intensity or specific cellular morphology.

This requirement for deep medical or biological knowledge

can be extremely challenging for technical researchers lacking

clinical experience and poses a significant risk of method

failure if the defined criteria are imprecise or incomplete.

E. Addressing Data Scarcity and Privacy

The dependency on large, richly annotated datasets, particu-

larly for supervised deep learning methods, presents the single

largest bottleneck to the clinical adoption of AI in histopathol-

ogy. To overcome the scarcity of data and, more critically,

the privacy barriers associated with sharing patient records

across institutions, researchers are increasingly employing

sophisticated decentralized and augmentation strategies:

1) Federated Learning (FL): FL offers a privacy-preserving

solution that directly tackles the data silo problem. This

paradigm allows multiple institutions to collaboratively train

a single global model by only exchanging model parameters

(weights), rather than transferring sensitive raw WSI data [41],

[46]. Studies in computational pathology have demonstrated

that FL can achieve model quality comparable to centralized

training, thus improving model generalizability while adhering

to strict privacy regulations like HIPAA and GDPR [47], [48].

2) Self-Supervised Learning (SSL): When data is plentiful

but labels are scarce, SSL is utilized to leverage the vast

amount of unlabeled histopathology imagery. By generating

”pretext tasks” (e.g., predicting rotated image patches or

reconstructing masked sections), SSL models learn robust,

high-quality visual representations from the data itself. These

representations can then be effectively transferred and fine-

tuned using minimal labeled data for specific IHC counting or

grading tasks [45], [48].
3) Synthetic Data Generation: A third strategy involves

utilizing Generative Adversarial Networks or Latent Diffusion

Models to create new, synthetic image patches that possess re-

alistic tissue and staining variations [49]. This approach allows

researchers to effectively augment limited training datasets,

balance class imbalances, and expose models to a wider range

of domain shifts and visual variability, significantly enhancing

the robustness and generalization capabilities of DL classifiers

[50], [51].

VI. CONCLUSION

This article presents a comprehensive systematic review of

the latest automated methods based on deep learning and

machine learning for the analysis and quantification of IHC

biomarkers in histological images. The analysis of papers pub-

lished in the last five years demonstrates that automated IHC

processing has been applied to a wide range of tumor types to

inform treatment plans and advance research in computational

pathology. Our survey reveals several key conclusions:

• Application Areas: Automated IHC estimation has been

successfully applied to a variety of cancer types, in-

cluding breast, colon, brain, and melanoma, as well as

autoimmune diseases. The reviewed works have primar-

ily focused on two main tasks: tissue grading (semi-

quantification) and the precise counting (quantification)

of biomarker-positive cells.

• Deep Learning Dominance: The rapid growth of deep

learning and the development of advanced neural network

models have led to their widespread adoption in histology.

It is evident that supervised methods are currently a major

focus in research, despite their high demand for anno-

tated data. This approach has become the most prevalent

method for tackling complex visual tasks, owing to its

ability to efficiently process and analyze complex image

data. In this context, many researchers use available

medical software for IHC estimation, such as QuPath and

ImageJ, not only for analysis but also for generating the

datasets necessary for training these supervised models.

• Hybrid Approaches: Despite the significant success of

supervised deep learning, unsupervised methods remain

highly valuable. When used in conjunction with deep

learning techniques for tasks like preprocessing and post-

processing, these methods can substantially enhance the

overall performance and robustness of DL models.

In summary, the advancements in automated IHC image anal-

ysis are poised to significantly improve the efficiency and con-

sistency of diagnostic workflows. The continued development
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of hybrid DL/ML models and the creation of standardized,

high-quality datasets will be crucial for the further maturation

of this field. Our review provides a foundational overview

for researchers and practitioners, paving the way for more

objective and data-driven pathological assessment.
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