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Abstract—Machine learning methods, including both deep
learning and traditional approaches, have achieved signifi-
cant advancements in medical image analysis, particularly in
histopathology. Histopathological images play a vital role in
disease diagnosis and prognosis, driving the growing interest
in automating histological image analysis using machine learn-
ing. This paper provides a comprehensive overview of recent
developments in machine learning-based techniques for ana-
lyzing immunohistochemistry images, with a focus on studies
published in recent years. The review categorizes the research
from two perspectives: 1) the training approach and model
design, including supervised deep learning, unsupervised, and
hybrid methods, and 2) the application type, such as tissue
grading and positive cell quantification. The study aims to guide
future research by offering a structured analysis of current
methodologies and highlighting the potential of machine learning,
including both deep learning and traditional algorithms, to
enhance the efficiency and accuracy of histopathological analysis

I. INTRODUCTION

Histological staining techniques are indispensable in clinical
practice for the visualization and differentiation of cellular and
tissue structures, enabling accurate diagnosis and prognosis.
While a variety of specialized stains are employed to detect
specific components or abnormalities within tissues, immuno-
histochemistry (IHC) stands as a powerful technique using
antibodies to detect specific antigens. This approach is widely
utilized in clinical pathology to provide crucial information
for diagnosing cancers, infectious diseases, and autoimmune
disorders. IHC can also be used to assess the expression
of tumor markers such as human epidermal growth factor
receptor 2 (HER2) in breast cancer [1]. The interpretation
of THC results, however, is inherently subjective and prone
to significant inter-pathologist variability. This can lead to
inconsistent diagnostic and prognostic results, especially given
that manual scoring generally lacks the precision required for
accurate quantification of antigen expression levels [2]. This
subjectivity represents a significant limitation in the diagnostic
workflow, highlighting a clear and pressing need for objective,
automated solutions. Significant advances in machine learning
(ML), particularly in deep learning (DL), coupled with the
increasing volume of digitized whole-slide images (WSIs),
have created a unique opportunity to address these challenges.
Several studies have explored the application of computer
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vision and ML to support and automate histological analysis
[31-[11].

The objective of automating IHC scoring is not only to
reduce the workload of pathologists but also to improve
consistency, provide precise quantification, and enable large-
scale analysis that is currently not feasible. Understanding the
state-of-the-art methods for IHC quantification is particularly
important as these techniques can also be leveraged to tackle
related research problems, such as the prediction of THC
biomarker values from hematoxylin-eosin (H&E) stained im-
ages. A major obstacle in this area is the lack of high-quality,
expertly annotated datasets. This forces researchers to develop
their own annotation solutions. Therefore, a comprehensive
overview of current automated methods, which can be adapted
for dataset generation, is essential. Automating the evaluation
of IHC images has the potential to substantially enhance the
efficiency and reliability of research in this field. In this paper,
we present a comprehensive overview of the most recent and
relevant ML and DL approaches developed for THC score
estimation. We systematically reviewed articles from leading
databases, with the methodology detailed in the following sec-
tion. This survey distinguishes itself by focusing specifically
on the period from 2020 up to June 2025, providing a current
and highly relevant snapshot of the field. The rest of this paper
is organized to provide a structured analysis: Section 2 details
a systematic approach to conducting the literature review. In
Section 3, a basic overview of ML approaches in the context of
computational histopathology is presented. Section 4 discusses
in detail methods and approaches used in digital pathology for
IHC assessment. In Section 5, we discuss the histopathological
point of view by classifying the methods according to their
area of application. In Section 6, we conclude the paper.

II. METHODOLOGY

The literature review was carried out by systematically
searching two key scientific databases, PubMed and arXiv, for
articles published between January 2020 and June 2025. The
search strategy combined terms related to the subject matter
and the analytical methods. The following search terms were
used to identify relevant papers:

o Subject Keywords: "THC”, “immunohistochemistry”
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o Methodology Keywords: “automated scoring”, “au-
tomated labeling”, “automated annotating”, “automatic

quantification”, “automatic calculation”

The search queries were constructed by combining keywords
to ensure a targeted and comprehensive retrieval of relevant
literature (e.g., ("IHC” OR “immunohistochemistry”’) AND
(Pautomated scoring” OR “automated labeling” OR “automatic
calculation”)). Papers were initially screened by title and ab-
stract to assess their relevance to the review’s scope. For final
inclusion, a stringent set of criteria was applied. We selected
only articles that addressed the problem of IHC quantification
using a novel research method, specifically excluding studies
that relied solely on existing medical software solutions. Fur-
thermore, the review was limited to studies focused on human
tissue sections and those that utilized patch-level annotations,
as opposed to weak annotations applied at the whole-slide
image (WSI) level. We also excluded articles that worked
with multiple or mixture antibody stainings, focusing only on
studies with a single antibody stain. This structured approach
ensures the review is both thorough and reproducible.

To ensure the transparency and reproducibility of our sys-
tematic review, we have included a PRISMA flow diagram in
Fig. 1 . This diagram visually summarizes the entire search
and selection process, from the initial identification of records
to the final set of studies included in the review. It details the
number of articles found, screened, and ultimately deemed
eligible, along with the specific reasons for exclusion at each
stage. The PRISMA flow diagram was generated using [12].

III. OVERVIEW OF LEARNING SCHEMAS

This section provides an overview of different learning
approaches within the context of ML as applied to computa-
tional pathology. The problem of evaluating IHC images can
be approached in both ways by supervised learning (SL) as
well as unsupervised learning, or by a combination of both
approaches.

A. Supervised learning

SL is a fundamental ML paradigm in which an algorithm is
trained on labeled data, where the input data is paired with the
correct output. The goal is for the model to learn the mapping
between inputs and outputs, allowing it to make predictions
or classifications on unseen data [13]. Among the supervised
learning techniques, we identify three major canonical deep
learning models based on the nature of tasks that are solved
in digital histopathology: classification, detection and segmen-
tation based models.

Key models for segmentation include U-Net, which uses
an encoder-decoder architecture to capture both local and
global features, and Mask R-CNN, which extends Faster R-
CNN by adding a segmentation mask prediction to the object
detection framework. For object detection, popular models
include Faster R-CNN, which uses a Region Proposal Network
(RPN) to generate proposals for bounding boxes, and YOLO
(You Only Look Once), which performs detection in a single
step and is known for its speed [14].
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B. Unsupervised learning

Unsupervised learning is a ML paradigm where models
are trained on data without labeled outputs. The goal of
unsupervised learning is to identify hidden patterns or in-
trinsic structures in the input data, such as grouping similar
data points together or reducing the dimensionality of the
data. Clustering techniques, such as K-means or hierarchical
clustering, group pixels or image regions into clusters based
on similarity in color, texture, or intensity. These methods
are useful in segmenting different tissue structures or iden-
tifying specific features in a tissue sample without requiring
labeled data [13]. Thresholding, on the other hand, involves
segmenting the image based on pixel intensity values, typically
applying a fixed or adaptive threshold to separate foreground
objects from the background. In histopathology, DAB (3,3’-
Diaminobenzidine) color deconvolution is frequently used to
separate overlapping color channels in THC images. This
technique allows for the isolation of individual stain intensities
(e.g., DAB for detecting specific antigens) from complex color
mixtures, enabling clearer analysis of cellular structures [15].

IV. THC ESTIMATION

This section provides a general overview of recent pub-
lications using DL, ML and image analysis methods for the
problem of automated IHC quantification or scoring. The focus
of this work is solely on studies that address the estimation
of biomarkers from IHC images using a custom approach
without the use of available histological image processing
software. We also included papers that did not explicitly aim
at THC estimation, but solved this problem as part of some
other problem, e.g. prediction of IHC values directly from
another type of staining. This section is divided according to
the type of algorithms used into three subsections: supervised
DL, unsupervised methods and combined (hybrid) approach.

A. Supervised Deep Learning

One of the primary advantages of DL and SL as well
is that it provides high accuracy when sufficient labeled
data is available. However, it can be limited by the need
for large, annotated datasets, which needs to be created by
experts [16]. Papers using this approach are summarized in
Table I. For an explanation of staining proteins or result
accuracy metrics, please see the original article. Researchers
of [3] combined segmentation and detection task to evaluate
proliferation index of brain tumor. First they segmented cells
from background using U-Net. Then modified YOLOv3 was
employed to detect and classify cells. For YOLOv3 model
they replaced original backbone DarkNet-53 network with
the SqueezeNet to reduce computational requirements. In
[17], authors addressed the problem of detection three IHC
expression categories: nuclear, cytoplasmic and membranous.
Separate Mask-R-CNN and YOLOVS5 models were developed
for each category scoring tumor tissue of several organs.
Detection networks were utilized also in [18], where authors
compared dedicated model PathoNet with generic models such
as Faster R-CNN and others. In [19] scholars utilized Faster
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Fig. 1. PRISMA flow diagram of our review, generated via [12]

R-CNN and HoLy-Net for segmentation and detection of IHC
positive and negative cells on three different biomarkers in
IHC images and classification of tumor and non-tumor cells
in HE images.

Modified U-Net model was employed in [20] for nerve
detection in thyroid tissue samples. Model output may contain
predicted positive instances that are too small, or a cluster of
predicted positive instances that are separated from each other.
Therefore, post-processing method such as binary morphology
was applied to combine prediction results for nerve quantifica-
tion. U-Net model was also employed in [21] for rheumatoid
arthritis tissue images. Trained model is available for use or
further fine-tuning. Instance based segmentation model was
used in [22]. Authors trained SOLOv2 segmentation model
using transfer learning to quantify and grade four type of
biomarkers used in breast cancer treatment process. They also
compared their model performance to Mask-R-CNN on all
IHC biomarkers.

In [4] authors introduced LYSTO, the Lymphocyte Assess-
ment Hackathon, where participants had to assess the number
of lymphocytes in histopathological images of colon, breast,
and prostate cancer stained with CD3 (cluster of differen-
tiation) and CD8 immunohistochemistry. They summarized
methods used by all five teams attending the hackathon. All
teams used model based on DL neural networks. Problem
of melanoma classification and grading was addressed in
[23]. They used weak annotations approach to train ResNet
classifier. Weak annotations approach means all patches from
the same slide has the same label of the slide. Predictions
for all patches, were then averaged into final prediction for
each slide. For classification into 4 grades, authors in [24]
devised a pyramid sampling strategy to capture the multiscale
nature of tissue morphology and HER2 expression patterns.
This approach involved systematically extracting small patches
from original high-resolution tissue images. These patches

257

were then fed into DenseNet. The study [25] follows a two-
stage approach for automating the analysis of PD-L1 in
histopathology images. First, the framework segments tumor
areas into “’positive” and “negative” regions using a modified
version of the UNet or DeepLabV3+ neural network. In the
second stage, the method uses a specialized neural network
StarDist to detect individual cell nuclei within the previously
segmented regions. Based on the nuclei’s location (within a
positive or negative region), the cells are classified, and a final
score is calculated.

B. Unsupervised Machine Learning

Acquiring high-quality datasets for training deep learning
models is often a labor-intensive and time-consuming process.
In many cases, the challenges associated with data acquisition
are further exacerbated by the specific nature of the problem
being addressed, particularly when the data is scarce or diffi-
cult to obtain. This scarcity of labeled data can significantly
hinder the development and effectiveness of machine learning
models, as large, diverse, and well-annotated datasets are
typically required for robust model training. In these situations,
it is necessary to use unsupervised learning methods that
do not require annotated data. Table II summarizes studies
analyzing IHC images with unsupervised methods. Authors of
[29] developed method to predict the image scores on a 5-point
scale. The proposed method first converts the RGB (red, green,
blue) images into optical density using the Beer—Lambert law.
After this, the following three stages are carried out: stain
separation, feature extraction, and prediction of the scores.
The images are scored using a k-means clustering algorithm
equipped with beta divergences with each centroid represent-
ing one score. In [7], researchers presented an unsupervised
four-stage pipeline for detecting protein markers of human
epidermal keratinocyte differentiation on IHC images. The
pipeline consisted of these steps: color normalization, color
deconvolution to acquire color channels of the stains used,
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TABLE 1. SUMMARY OF PAPERS USING

SUPERVISED DL

[ Ref Method | Cancer type | Staining | Dataset [ Result | Application

[17] Mask-R-CNN, Colon, breast, prostate Ki67, PMS2, | in house Acc 0,91 grading
YOLOVS PTEN

[3] U-Net, YOLOvV3 Brain Ki67 in house mAP 0,87 counting

[18] multiple detection Breast Ki67 SHIDC-B-Ki-67, X counting

LSOC-Ki-67

[24] DenseNet Breast HER2 in house Acc 0.84 grading

[19] Faster-R-CNN, HoLy- | B Lymphocytes Ki67, CD3, ERG LyNSeC F1 0,84 counting
Net

[20] U-Net Thyroid PGP9.5 ref in article Precision 0.75 counting

[22] SOLOv2 Breast ER, PR, HER2, | in house mAP 0,77 counting

Ki67
[4] multiple DL Breast, colon, prostate CD3, CD8 available at zenodo X counting
[21] U-Net Rheumatoid arthritis CD20, CD68, | in house Dice score 0.863 segmentation
CD138

[23] ResNet Melanoma MART1 in house AUROC 0.92 grading

[26] AlexNet Breast Ki67 AIDPATH F1 0,47 grading

[27] cycle consistent GAN, | Pancreas Ki67 in house F1 0,813 grading
U-Net

[28] ResNet101 Prostate PTEN in house AUC 0,964 counting

[25] UNet, StarDist Lung PD-L1 in house F1 0.93 counting

morphological operations and k-means clustering using DAB
stain intensity.

To solve the problem of predicting mismatch repair (MMR)
status from HE images in [5], researchers needed to extract
MMR score from IHC images and create annotation for HE
patches. To address the problem of IHC estimation they imple-
mented unsupervised approach consisting of color deconvolu-
tion into H and DAB channels with following thresholding.
Similarly also in [6] the researchers needed to create a label
based on the quantification of the IHC images. Estimated
labels were then used to train deep neural networks for
melanocytic cell segmentation from HE, obtaining labels for
HE patches from adjacent THC tissue sections. To quantify
IHC patches, they applied color deconvolution, histograms
thresholding and binary morphology.

C. Hybrid approach

Even in situations where annotations are available, it may
be advantageous to use a combination of DL and unsupervised
methods for pre- or post-processing the image. These papers
are organized in Table III. In [30], authors have developed
a hybrid model that effectively calculates and grades the
proliferation index on Ki-67 images of neuroendocrine tu-
mors. The proposed system first performs preprocessing using
Gaussian function. Then segmentation is performed using the
U-Net architecture to separate nuclei from background. The
identified nuclei are then evaluated as Ki67 positive or negative
employing mathematical morphology and color and shape in-
formation extracted from RGB or HSV (hue, saturation, value)
image. Researches in [31] used a two-step approach based
on segmentation and classification. Unlike the previous study,
they used simple methods such as watershed and highpass
for segmentation and SVM (support vector machine), KNN
(K-nearest neighbor) and random forest (RF) as the posterior
classifier. A DL-based decision support system for IHC scoring
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of invasive ductal carcinoma was presented in [32]. Authors
modified U-Net model to segment regions of interest (ROIs) of
four different IHC biomarkers. On segmented ROIs, Mask-R-
CNN model was employed to detect nuclei and CMYK color
space with combination of value thresholding to classify cells.

V. DISCUSSION

From a histological standpoint, the IHC assessment methods
described in the literature can be broadly categorized into two
primary types: grading or scoring (semi-quantification) and
counting (fully quantification).

The studies reviewed in the previous chapter highlight
several effective approaches for applying automated image
processing techniques and ML to the task of IHC estimation
in histology, across various cancer types. DL has been most
frequently applied to breast cancer, which remains a leading
cause of cancer-related mortality in women worldwide [39].
From a histological standpoint, the THC assessment methods
described in the literature can be broadly categorized into two
primary types: grading or scoring (semi-quantification) and
counting (fully quantification).

1) Fully Quantitative Methods: By a fully quantitative
approach, we refer to methods that provide precise, numerical
values to measure the extent and intensity of antigen expres-
sion in tissue samples. These approaches utilize advanced
image analysis and computational methods to objectively
measure specific parameters, such as staining intensity or the
percentage of positively stained cells. One of the biomarkers
for which fully quantified estimation is often applied is the
Ki67 protein, a proliferation marker commonly used in breast
cancer assessment. The estimation of the Ki67 positive cells
ratio has been addressed in many studies including [22], [33],
[37].

2) Semi-Quantitative Methods: A semi-quantitative tech-
nique in IHC estimation refers to methods that provide an
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TABLE II. SUMMARY OF PAPER USING UNSUPERVISED

METHODS
[ Ref | Method | Cancer type | Staining | Dataset | Result | Application
[29] K-means Colon TEM/MET in house Acc 0,87 grading
[7] K-means Epidermis Ki67, fillagrin, ker- | in house Acc 0,87 counting
atin10, HSPA2
[5] Thresholding Colorectal MMR COMET X grading
[6] Thresholding Melanoma MART1 in house X grading
TABLE III. SUMMARY OF PAPERS COMBINING UNSUPERVISED METHODS WITH
SUPERVISED DL
[ Ref | Method | Cancer type | Staining | Dataset | Result | Application
[30] U-Net Neuroendocrine Ki67 in house F1 0,86 counting
[31] SVM, KNN, RF Breast ER, PR in house Acc 0,9 grading
[32] U-Net, Mask-R-CNN Breast ER, PR, HER2, | in house Acc 0,9 counting
Ki67
[33] UV-Net Breast Ki67 Deepslides, in | F1 0,833 counting
house
[34] MLP Breast Ki67 in house F1 0,767 grading
[35] Seg-Net Melanoma MARTI, Ki67 in house Acc 0,9 counting
[36] Inception VI, RF Breast ki67 in house Acc 0.9 counting
[37] CNN Melanoma Ki67 in house MAE ; 0.04 counting
[38] SVM Breast HER2 in house Acc 0,88 grading

approximate measure of antigen expression in tissue samples
based on visual assessment, typically using a subjective scale.
These techniques are not fully quantitative but instead catego-
rize the intensity of staining (e.g., weak, moderate, or strong)
[40]. This method is predominantly utilized for estimating
HER?2, ER (estrogen receptor), or PR (progesterone receptor)
in breast cancer image analysis [24], [31], [38]. Nevertheless,
it is also applicable to other biomarkers, including Ki67 [26],
[34].

Although instances of both primary tasks: counting and
grading are present across all method categories (Supervised,
Unsupervised, and Hybrid), a critical analysis necessitates
differentiating their inherent difficulties to understand method-
ological choices.

A. Task Complexity: Counting Versus Grading

It is crucial to emphasize that Counting (precise enu-
meration of individual cells) represents a significantly more
challenging task than Grading (overall tissue classification
based on THC properties). This complexity manifests in two
critical areas:

Data Annotation: Counting demands exceptionally inten-
sive and detailed dataset annotation, often requiring the precise
segmentation or explicit marking of every single cell. Con-
versely, Grading often relies on simpler annotations applied at
the patch or WSI level.

Model Architecture: While the Grading task can often be
successfully addressed using a simpler ML classifier, such as a
CNN, the Counting task mandates more complex architectures,
including image segmentation and object detection models.

B. Limitations in Comparative Evaluation

A critical limitation we identified when summarizing the
existing body of work is the inconsistency in evaluation
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metrics used across studies. Given that various papers utilize
and report different final metrics (e.g., Accuracy, AUC, F1-
score), direct, quantitative comparison of the performance
of individual approaches becomes ad hoc impossible. This
widespread lack of benchmark standardization presents a sig-
nificant hurdle for accurately determining the most effective
methods and severely complicates the interpretation of results
within the broader research context.

C. Data Requirements and Method Selection

The choice of estimation method is critically dependent on
the availability and quality of ground truth annotations.

From our analysis of the literature, it is evident that Su-
pervised DL methods are primarily applicable where large
volumes of densely annotated data are available. This typically
translates to hundreds of WSIs, which, when divided into
patches, yield tens of thousands of data points. This scale
reflects the high data demands inherent to Supervised DL.

In contrast, Unsupervised methods are typically deployed
in situations facing severe data limitations. Our review indi-
cated that datasets used for these methods consisted of only
around 10 data samples on average. While this assessment is
challenging to generalize given the lower volume of articles
in this category, it highlights their reliance on minimal data.

The Hybrid approach serves as a practical compromise.
By leveraging human intervention—for example, in expert-
driven feature extraction—the complexity of the task for the
subsequent Supervised algorithm is reduced. This allows for
the construction of a viable pipeline even with a smaller
data sample, as the model is not required to discover domain
features from scratch.

Our systematic review of literature published since 2020
revealed a notable absence of Transformer-based models and
Foundation Models being successfully applied to complex
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IHC quantification tasks. While Vision Transformers (ViT)
are currently revolutionizing general computer vision, their
specialized application in histopathology is still in its nascent
stages compared to established CNN models [41], [42]. ViT
and Foundation Models, pre-trained on massive datasets,
represent the next frontier, promising superior generalization
capabilities [43]. The observed deficit suggests that researchers
are still navigating the unique technical challenges of WSI
analysis—namely, the gigapixel-scale size of WSIs (often
exceeding 150,000 x 150,000 pixels), the inherent high di-
mensionality of the data, and the critical need for accurate
micro-level spatial localization across the entire slide [42],
[44], [45]. Successfully adapting these powerful, data-hungry
architectures to process WSI efficiently, without compromising
detailed cellular information, remains a significant computa-
tional hurdle that must be overcome before they can be adopted
as standard methodologies for practical IHC estimation.

D. Allocation of Domain Expertise

A final critical factor distinguishing these methodologies is
the allocation of domain expertise required from the research
team.

Supervised DL: Domain knowledge is almost entirely
delegated to the algorithm. The model autonomously learns
and extracts relevant features from the image to solve the
specific task (counting/grading). This approach reduces the
burden on the scientist to explicitly specify color intensity
thresholds or geometric criteria.

Unsupervised / Traditional Methods: The scientist must
actively take on the domain expertise. They are required to
clearly specify the explicit criteria and features upon which
data classification will be based—such as defining precise
thresholds for color intensity or specific cellular morphology.
This requirement for deep medical or biological knowledge
can be extremely challenging for technical researchers lacking
clinical experience and poses a significant risk of method
failure if the defined criteria are imprecise or incomplete.

E. Addressing Data Scarcity and Privacy

The dependency on large, richly annotated datasets, particu-
larly for supervised deep learning methods, presents the single
largest bottleneck to the clinical adoption of Al in histopathol-
ogy. To overcome the scarcity of data and, more critically,
the privacy barriers associated with sharing patient records
across institutions, researchers are increasingly employing
sophisticated decentralized and augmentation strategies:

1) Federated Learning (FL): FL offers a privacy-preserving
solution that directly tackles the data silo problem. This
paradigm allows multiple institutions to collaboratively train
a single global model by only exchanging model parameters
(weights), rather than transferring sensitive raw WSI data [41],
[46]. Studies in computational pathology have demonstrated
that FL can achieve model quality comparable to centralized
training, thus improving model generalizability while adhering
to strict privacy regulations like HIPAA and GDPR [47], [48].
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2) Self-Supervised Learning (SSL): When data is plentiful
but labels are scarce, SSL is utilized to leverage the vast
amount of unlabeled histopathology imagery. By generating
“pretext tasks” (e.g., predicting rotated image patches or
reconstructing masked sections), SSL models learn robust,
high-quality visual representations from the data itself. These
representations can then be effectively transferred and fine-
tuned using minimal labeled data for specific IHC counting or
grading tasks [45], [48].

3) Synthetic Data Generation: A third strategy involves
utilizing Generative Adversarial Networks or Latent Diffusion
Models to create new, synthetic image patches that possess re-
alistic tissue and staining variations [49]. This approach allows
researchers to effectively augment limited training datasets,
balance class imbalances, and expose models to a wider range
of domain shifts and visual variability, significantly enhancing
the robustness and generalization capabilities of DL classifiers
[50], [51].

VI. CONCLUSION

This article presents a comprehensive systematic review of
the latest automated methods based on deep learning and
machine learning for the analysis and quantification of THC
biomarkers in histological images. The analysis of papers pub-
lished in the last five years demonstrates that automated IHC
processing has been applied to a wide range of tumor types to
inform treatment plans and advance research in computational
pathology. Our survey reveals several key conclusions:

o Application Areas: Automated THC estimation has been
successfully applied to a variety of cancer types, in-
cluding breast, colon, brain, and melanoma, as well as
autoimmune diseases. The reviewed works have primar-
ily focused on two main tasks: tissue grading (semi-
quantification) and the precise counting (quantification)
of biomarker-positive cells.

o Deep Learning Dominance: The rapid growth of deep
learning and the development of advanced neural network
models have led to their widespread adoption in histology.
It is evident that supervised methods are currently a major
focus in research, despite their high demand for anno-
tated data. This approach has become the most prevalent
method for tackling complex visual tasks, owing to its
ability to efficiently process and analyze complex image
data. In this context, many researchers use available
medical software for IHC estimation, such as QuPath and
ImagelJ, not only for analysis but also for generating the
datasets necessary for training these supervised models.

o Hybrid Approaches: Despite the significant success of
supervised deep learning, unsupervised methods remain
highly valuable. When used in conjunction with deep
learning techniques for tasks like preprocessing and post-
processing, these methods can substantially enhance the
overall performance and robustness of DL models.

In summary, the advancements in automated IHC image anal-
ysis are poised to significantly improve the efficiency and con-
sistency of diagnostic workflows. The continued development
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of hybrid DL/ML models and the creation of standardized,
high-quality datasets will be crucial for the further maturation
of this field. Our review provides a foundational overview
for researchers and practitioners, paving the way for more
objective and data-driven pathological assessment.
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