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Abstract—In ornithological video monitoring tasks aimed at
studying bird behavior, estimating population size, and tracking
migration routes, a major challenge is the robust tracking of
targets under global camera motion. Such motion, often caused
by pan-tilt or mobile platforms, introduces significant distortions
in the optical flow. At the same time, the tracked objects
are typically small, low-contrast, and highly dynamic, which
considerably reduces the robustness of conventional tracking
methods. This study aims to develop and experimentally validate
a tracking method that can operate in video sequences affected
by global motion, while maintaining high accuracy and real-
time performance. The proposed approach integrates a neural
network-based tracker and trajectory prediction using a Kalman
filter. The method was evaluated on a dataset simulating real
ornithological monitoring scenarios, including highly detailed and
dynamic backgrounds, moving cameras, variable lighting, and
complex object trajectories. Experimental results showed that the
tracking failure rate did not exceed 5 x 10~*, while the average
processing speed reached 21 frames per second. Compared to a
conventional tracking method based on HOG+KCF and Kalman
filtering, the proposed method achieved a 4-fold reduction in
tracking failure rate and a 2.5-fold reduction in tracking failures
under occlusion conditions. The developed method is designed
for use in bird monitoring systems operating in natural and
agricultural landscapes, where reliable object tracking is required
in visually complex environments. The results demonstrate the
potential of the proposed solution for both scientific and ornitho-
logical research, as well as applied environmental monitoring
tasks.

I. INTRODUCTION

The task of automatic bird tracking in video sequences
is one of the important areas in computer vision, lying
at the intersection of applied ecology, biomonitoring, and
environmental observation. Modern video surveillance sys-
tems increasingly operate in real-world conditions that differ
significantly from laboratory settings, characterized by high
scene dynamics, changing backgrounds, camera motion, and
numerous low-contrast objects of interest. In the context of
ornithological applications, this creates a need for robust
algorithms capable of reliably tracking birds in visually com-
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plex environments, including forested, coastal, and agricultural
landscapes.

The issue of stable tracking of objects of interest in video
sequences is becoming increasingly relevant across a range of
applications. At the same time, the development of current-
generation video monitoring systems faces several critical
challenges, primarily related to the following factors:

o highly detailed and dynamic backgrounds;

« significant variation in object properties, in particular,
rapid changes in the projection size of the object on the
image plane;

o occurrence of occlusion events due to overlapping with
the background or other objects;

o the need for high-speed video processing (close to real
time) under limited computational resources.

Several studies [1]-[3] have proposed integrated systems
that combine infrared cameras and radar for continuous
monitoring, as well as modified YOLOv8-based architectures
adapted for bird detection near protected areas. The system
described in this study implements an ornithological mon-
itoring scenario that is close in purpose to the approaches
discussed in [1]-[3]. Its fundamental difference, however, lies
in its ability to perform tracking under camera motion — a
factor not addressed in the aforementioned publications.

This paper presents a method for automatic tracking of
target objects in an optoelectronic ornithological monitoring
system under global motion, heterogeneous and textured back-
grounds, occlusions, and low-contrast targets. A key feature
of the problem setting is the presence of multiple objects of
interest that are small in size and exhibit significantly different
trajectories and speeds.

The monitoring system consists of a pan-tilt camera and
a computing unit equipped with an NVIDIA RTX 3090
GPU, enabling real-time neural network execution. The optical
layout of the system is designed so that the projection of a
medium-sized bird (e.g., a pigeon or crow), approximately
35 centimeters in length, occupies about 20 pixels on the
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image when observed from a distance of 1500 meters. Such
distances correspond to typical conditions for ornithological
monitoring in field and security contexts. According to the
specifications of modern radar and optical systems, reliable
detection and tracking of medium-sized birds is achievable at
distances ranging from 1000 to 2000 meters [4], [5]. Compact
radars and combined sensor modules integrated with optical
cameras are capable of reliably detecting and tracking birds
even under poor visibility conditions [6], which confirms the
applicability of this distance range to practical ornithological
monitoring tasks. Furthermore, both larger birds at greater
distances and smaller birds at closer ranges may be of interest
for monitoring.

In practical scenarios, the projection size of an object may
vary from approximately 15x15 pixels (at the capturing stage)
to around 200x200 pixels (at close range), given a frame
resolution of 1920x1080. Therefore, the tracking method must
account not only for background variability and camera mo-
tion, but also for substantial changes in the visual properties of
the tracked objects. An additional challenge is achieving high-
speed video processing under constrained resources, which
imposes strict requirements on the efficiency and robustness
of the tracking algorithm. The main feature of the described
tracking task is the very complex trajectory of the object,
because it is of natural, not artificial origin. This leads to
the fact that classical algorithms and approaches used for
such tasks encounter significant difficulties, and their accuracy
characteristics are reduced.

II. RELATED WORK

The task of object tracking in video streams is complicated
by a variety of factors, including challenging environmental
and motion-related conditions. Furthermore, tracking must be
synchronized with the algorithms controlling the camera’s
position. These constraints place specific requirements on the
choice and architecture of the tracking method.

Today, deep learning methods and neural networks are
widely used in computer vision for a broad range of tasks.
With the advent of high-performance computing resources,
it has become feasible to employ deep neural networks for
near-real-time object tracking. A promising direction in object
tracking involves segmenting the object in each video frame,
even when only a bounding box overlay is required. Generat-
ing a segmentation mask of the object of interest enables more
precise estimation of its boundaries and position, significantly
improving tracking robustness under complex backgrounds
and partial occlusions [7].

Recent works on tracking small objects have proposed meth-
ods that incorporate both spatial and temporal features, such as
ST-Motion TinyDet [8]. Among the single-frame algorithms,
DN-FPN+Trans-R-CNN, DCFL-TinyDet [9], TAD (Tiny Air-
borne Detection) [10] and hybrid architectures combining
transformers with YOLO (STF-YOLO) [11] are notable.

Despite the progress of transformer-based, diffusion-based,
spatiotemporal, and hybrid trackers, their practical application
in real-time video analytics under limited computing resources
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remains a challenge. Transformers and hybrid models with
heavy transformer components demand substantial computa-
tional power during both training and inference. Diffusion
models offer flexibility but still fall short in processing speed
for real-time streaming data.

When computing resources are limited, classical (non-
neural) tracking methods are often applied, trading accu-
racy for speed. Among them, discriminative correlation filter
(DCF)-based trackers such as KCF [12], CSRT [13], and
DLT [14] are particularly popular due to their high speed
and low hardware requirements. Several improved KCF vari-
ants demonstrating competitive performance on benchmark
datasets while maintaining speed are discussed in [15]-[17].
The authors of [18] propose a lightweight neural modification
of DCF (DCFNet), also suitable for real-time applications. A
comprehensive review of classical trackers and their deploy-
ment under resource constraints is presented in [19].

To ensure stable and robust object tracking in various sce-
narios, it is often necessary to combine multiple approaches.
Each works best under specific conditions, and the system
must include logic to switch between them. For example, [20]
describes a combination of a HOG-based detector [21] and a
correlation tracker along with a Kalman filter. The drawback
of such methods lies in the need to fine-tune thresholds
and frequent reinitializations, which reduce tracking efficiency
under complex conditions.

In general, the choice of tracking method depends on both
available hardware resources and task-specific requirements.
For monitoring high-contrast objects (e.g., self-illuminated or
with simple trajectories), classical low-cost approaches may
suffice. In contrast, neural network-based methods may be
preferable in more challenging cases.

This study proposes a tracking method for an ornithological
monitoring system based on neural segmentation tracking and
Kalman filtering. As a baseline for comparison, a classical al-
gorithm using HOG descriptors, a KCF tracker, and a Kalman
filter is used, as described in [20]. An important feature of
the study is the specificity of the task - tracking natural
objects (birds) with complex, poorly predictable trajectories.
This contrasts with the traditional formulation of the problem -
tracking artificial objects, which is the focus of most classical
approaches.

III. PROPOSED SOLUTION

The proposed tracking method employs the Segment Any-
thing Model 2 (SAM?2) [22] as the core segmentation module,
combines it with a third-order Kalman filter in the image plane
for motion estimation and trajectory prediction, leverages a
neural network-based detector to locate target objects, and
integrates a control module for a pan-tilt camera that uses
the predicted motion to maintain continuous alignment with
the target.

The third-order Kalman model is particularly suitable for
natural targets (e.g., birds) exhibiting irregular trajectories and
abrupt speed changes, where a simpler second-order model
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would be insufficiently responsive. In this formulation, the
state vector at time step k

T
5k = [Tk Ukas Qs Yks Vky Qhey)

encodes the target center coordinates (2, y) along with the pro-
jections of its velocity v and acceleration a on the respective
axes. Observations are derived from the center of the detectors
or the tracker’s bounding box, with the discretization step
equal to the inter-frame interval of the video stream. Initializa-
tion is performed upon the first reliable detection, setting the
position to the observation and both velocity and acceleration
to zero. The use of acceleration in the kinematic model enables
rapid convergence after initial corrections, precise short-term
prediction, robustness to brief dropouts, and jitter suppression
under global camera motion. SAM2 utilizes the concept of
promptable segmentation, enabling the extraction of a mask
for any object based on a specific prompt (point or bounding
box).

The model demonstrates strong generalization ability, re-
quires no fine-tuning for a specific object class, and performs
robustly under various conditions. The operation pipeline is
illustrated in Algorithm 1.

The system operates in the following stages:

1) Imitialization. Primary object detection is performed on
the full frame. Our implementation is based on the SSD-
ADSAR detector. A target is selected (in case of several
objects were detected), captured, and both the Kalman
filter and the region of interest (ROI) are initialized.

2) Prediction. For each incoming frame, the Kalman filter
predicts the new target position. This prediction is used
both to constrain the search area and to generate a
control command for the pan-tilt camera, compensating
for system latency and minimizing the risk of losing the
target.

3) Local Processing. Within the predicted ROI:

« SAM2 segmentation is executed, producing a mask
and bounding box (Rects).

o Local detection is performed using SSD-ADSAR,
yielding another bounding box (Recty).

4) Confirmation. Confirmation is implemented based on
the ToU (Intersection over Union) metric calculated for
the above-formed bounding boxes. If the confirmation
is successful. The Kalman filter is updated, and all
counters are reset. If only the SAM2 mask is available, a
partial update is performed. If neither mask nor detection
is present, the Kalman prediction is used, and failure
counters are incremented.

5) Tracking interruption. If the number of consecutive
frames without a mask exceeds N, or the number of
frames without detector confirmation exceeds Ncqnf, the
object is considered lost.

The algorithm’s parameters are selected based on the hard-
ware platform used in deployment.
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Algorithm 1 Target tracking algorithm
1: Input: 77,y (IoU threshold), N;,ss (no-mask limit),
Neony (no-confirmation limit)
2: State: KF (Kalman filter), ROI (region of interest),
loss_cnt < 0, conf_wait_cnt < 0
3: Initialization: Run global SSD-ADSAR on full frame to
obtain Rect (target acquisition).
4: Initialize K F' using Recty; set ROI < Rect.
5. while new frame available do
6:  Predict target position using K F'; update ROI around
prediction.
7: Run SAM2 on ROI to get Mask (primary); run SSD-
ADSAR on ROI to get Rect; (may be absent).
8: if Mask exists then

9: Derive Recty from Mask.
10: if Rect; exists and IoU(Recty, Recty) > Trou
then

11: Update KF wusing Recty; loss_cnt <+ 0
conf_wait_cnt < 0.

12: else

13: Update K F' using Recty (possibly reduced-trust
update).

14: loss_cnt — 0; conf_wait_cnt —
conf_wait_cnt + 1.

15: if conf_wait_cnt > Nopn s then

16: break // terminate tracking: no detector

confirmation for too long

17: end if

18: end if

19:  else

20: loss_cnt < loss_cnt + 1.

21: if loss_cnt > Nj,ss then

22: break // terminate tracking: mask missing for too
long

23: end if

24: K F remains in predicted state.

25 end if

26:  Generate and send PTZ control command based on
current prediction of KF'.
27: end while

The proposed method integrates the segmentation precision
of SAM2 and the robustness of Kalman filtering with the de-
tection capabilities of SSD-ADSAR. This combination enables
reliable object tracking even under challenging conditions such
as complex backgrounds, complex trajectories of movement,
significant changes in speed, camera motion, and significant
variations in target size and shape. The system operates near
real-time, making it well-suited for practical deployment in
automated monitoring and surveillance scenarios involving
dynamic and unpredictable environments.

To provide a comparative perspective, the workflow of the
competing tracking approach described in [20] is summarized
below. Both trackers implement tracking with confirmation
from a detector, are designed for similar operating conditions,
including global motion and complex backgrounds, and use
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Kalman-based motion prediction. The proposed method em-
ploys segmentation-based localization using a neural network
model (SAM2), whereas the competing approach is based
on feature-based tracking with HOG descriptors and KCF,
supplemented by correlation analysis. The key distinction is
that our method is specifically adapted for tracking natural,
living targets with complex and irregular trajectories (e.g.,
birds), while the competing method has demonstrated strong
performance primarily for man-made objects with more regu-
lar trajectories and predictable motion patterns.

In the competing approach, after the initial detection using a
neural network model, the object in the current frame is identi-
fied via an HOG+KCF tracker, supplemented by a correlation-
based detector and motion prediction generated by Kalman
filtering. This combination improves tracking robustness under
scale variation and global scene motion. For each frame, three
sources of information (HOG+KCEF, the correlation detector,
and the Kalman filter) are analyzed, and their outputs are
compared using the IoU metric. Depending on the degree
of consistency between sources, different modules are re-
initialized: when all sources agree, the reference image is
updated; when there is disagreement with the Kalman filter,
its parameters are re-estimated; and when a significant scale
change occurs, only the correlation output is temporarily used.
This fallback mode is activated based on a threshold on the
correlation response area to balance stability and accuracy.
Tracking is terminated if no agreement between sources is ob-
served for N consecutive frames. A more detailed description
of the algorithm is provided in [20].

IV. EXPERIMENTS AND RESULTS

The objective of the experimental study is to quantitatively
assess the tracking performance and compare it with alter-
native approaches. Two tracking methods were evaluated: a
“classical” one based on the combination of HOG descriptors,
KCF tracker, and Kalman filter, as described in [20], here-
inafter referred to as HOG+KCF, and the proposed approach
based on SAM?2 segmentation and Kalman filtering.

To evaluate the tracking quality, a set of Full HD
(1920 1080) videos was collected and used. The main metric
was the number of tracking failures — instances where the
tracker lost the target and required reacquisition via the
detector.

Additionally, the processing speed (FPS, frames per second)
was measured on the hardware platform used in the monitoring
system (equipped with an Nvidia GTX 3090 GPU). The results
are summarized in Table I.

As described in the dataset documentation, the tracking
conditions are challenging. The bird often undergoes signif-
icant scale changes, hovers motionless, or blends into the
background (e.g., a white bird against clouds or a black
one against buildings and vegetation), crosses regions with
varying backgrounds, or sharply changes its motion trajectory,
sometimes accompanied by global scene shifts. Such scenar-
ios reflect real-world conditions and significantly complicate
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tracking. Examples of substantial scale changes and strong
background fusion are shown in Fig. 1 and Fig. 2.

Fig. 1. The example of an object with scale variation

From Table I, the failure rate (tracking dropout frequency)

can be computed as follows [23]:
F

F= N
where F} is the number of tracking failures, and /N is the total
number of frames. The calculation includes videos No.1-7,
which are representative of the monitoring system. Video
No.8, a synthetic composition of ten 3-second clips containing
occlusions (ranging from 0.4 to 1.0 seconds), was evaluated
separately.

According to the experiments, the proposed method
achieved a failure rate of 5 - 10~%, whereas the HOG+KCF
tracker yielded 2 - 1073,

The performance of the HOG+KCF tracker depends on the
object’s size; hence, the FPS values reported in Table I vary.
In general, HOG+KCF demonstrates higher speed compared
to the proposed method; however, the achieved frame rate of
21 FPS is sufficient for practical deployment.

The failure rate for HOG+KCF observed in this study differs
from that reported in [20]. This discrepancy is attributed to the
different target types: the referenced study dealt with synthetic,
predictable targets, while our work focused on real birds whose
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TABLE I. EXPERIMENTAL TRACKERS COMPARISON

RESULTS
Video D inti Frame Failures FPS Failures FPS
No. escription count | SAM2 + Kalman | SAM2 + Kalman | HOG + KCF | HOG + KCF
1 ‘White bird, complex background 1625 0 3 24
(ground, vegetation)
Black bird, complex background
2 (sky, high noise), global motion 675 0 3 37
3 Black b1.rd, comple{g backgrouqd 1495 0 5 30
(mountains, vegetation), occlusion
White bird, simple background
4 (sky with clouds), size variation 314 0 21 I 2
5 Black k.nrd (sky with cl(I)uds, o 1428 3 7 23
vegetation, houses), rapid variation
Black bird, simple background
6 (twilight, grey sky) 1660 0 ! 30
White bird, simple background
7 (sky with clouds), size variation 320 1 0 33
White and black birds, montage
8 with occlusions, urban background 900 2 5 2

Fig. 2. The examples of a scene with a complex background

motion is less regular. For such dynamic scenarios, Kalman fil-
tering alone proves less effective. Although HOG+KCF shows
satisfactory performance, the proposed method demonstrates
clear advantages. This includes a 2.5x reduction in tracking
failures under occlusion, which can be largely attributed to
the SAM2 model’s internal image memory (embedding), im-
proving robustness under partial visibility, deformation, and
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complex motion patterns.

An interesting point of discussion is the ability of the
SAM2-based tracker to handle extremely small objects, lo-
cated generally outside the target characteristics of the system
and corresponding, for example, to objects at very long
distances (relative to those typical for monitoring systems).
Figure 3 illustrates frame sequences and masks produced by
SAM?2 during tracking of an object with a minimal projected
size of approximately 5x5 pixels.

As seen in Figure 3, when the projection is that small, both
the image and the segmentation mask are blurry and poorly
aligned in shape. In such conditions, especially with a highly
detailed background, reliable tracking is unrealistic. Nonethe-
less, in some cases common to ornithological monitoring (e.g.,
high-contrast targets on low-textured backgrounds), successful
tracking can still be achieved. It should be noted that the object
size here is far below the target specification for the system,
and such tracking success is an additional advantage.

Experiments have shown that the proposed method performs
robustly under both simple and complex conditions. It delivers
sufficient processing speed and demonstrates high accuracy in
detection and tracking, even under difficult scenarios.

V. DISCUSSION AND CONCLUSION

This paper presents a method for automatic tracking of
objects of interest adapted to the specific challenges of ornitho-
logical monitoring, such as global motion in video data, high
object dynamics, occlusion, cluttered backgrounds, complex
trajectories, and the speed mode of a natural object. The
proposed approach integrates a segmentation-based tracker
built upon the SAM2 model, a hybrid detector powered by
neural networks used for initial object detection and trajectory
confirmation, and Kalman filter-driven motion estimation.

Utilizing motion estimation via the Kalman filter enabled
increased tracking stability by smoothing abrupt changes in the
visual scene caused by rapid camera movement. Additionally,
it allowed for reduced latency between object position estima-
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Fig. 3. Zoomed-in video frames of tracking a small object of interest and corresponding masks generated by the SAM2 tracker

tion and pan-tilt actuator response, ensuring reliable operation
in mobile camera systems.

Experimental evaluation confirmed the robustness of the
proposed method under challenging conditions: the tracking
failure rate did not exceed 5 x 10~%, while achieving a real-
time processing rate of 21 FPS on FullHD video. In contrast,
the failure rate of a traditional HOG+KCF tracker under
similar conditions was found to be approximately four times
higher.

The results support the following conclusions:

o the proposed method ensures stable tracking for birds
under global motion, changes in object appearance, and
partial occlusions;

o it demonstrates high performance, compatible with real-
time constraints;

o the system is well-suited for deployment in field scenarios
with limited computational resources;

o the observed improvement (a 4-fold reduction in tracking
failure rate) over the baseline method is explained by the
ability of the proposed approach to handle complex and
non-linear object trajectories, which are typical in bird
tracking scenarios and where classical methods tend to
be less effective.

While these findings highlight the technical strengths of the
system, several broader implications and practical considera-
tions should also be noted. From an ecological perspective,
reliable long-term bird tracking can provide critical data for
biodiversity assessment, habitat monitoring, and conservation
planning. Automated systems of this kind could reduce de-
pendence on manual field observations, enabling continuous,
large-scale monitoring of species populations and migration
dynamics. In agricultural and airport contexts, such monitor-
ing also holds applied value for mitigating bird strikes and
managing human—wildlife interactions.

At the same time, practical constraints may limit direct
deployment. While the RTX 3090 platform provides suffi-
cient throughput, many real-world scenarios rely on resource-
constrained edge devices. Although our method is optimized
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for efficiency, its performance on mobile GPUs or embedded
platforms remains to be tested. Approximate segmentation,
lightweight backbones, or model distillation techniques could
reduce computational demands, though this may come at some
cost to accuracy. Future experiments on Jetson-class devices or
FPGA-based accelerators will therefore be essential to evaluate
deployment feasibility in remote or autonomous stations.

Another important aspect concerns datasets and evaluation
metrics. In this work, we relied on a dataset simulating real
ornithological conditions; however, the diversity of species,
environments, and weather conditions in the field is far greater.
Expanding the dataset to cover more species, flight behaviors,
and seasonal variations, as well as including multimodal in-
puts (thermal, radar-assisted), would strengthen generalization.
Moreover, while failure rate and FPS were key evaluation
metrics, additional measures such as ID switches, trajectory
continuity, and long-term re-identification could provide a
more nuanced picture of system performance.

Finally, although our method outperformed the chosen
HOG+KCF baseline, further comparisons with state-of-the-art
lightweight trackers would improve the robustness of conclu-
sions. Explicit discussion of limitations (for example, reduced
accuracy on extremely small or distant targets and reliance
on clear optical conditions) helps delineate the boundaries
of applicability. These limitations define clear directions for
future research, including multimodal sensing, improved re-
silience under adverse weather, and integration into distributed
ecological monitoring networks.

In summary, the proposed method achieves stable, accurate,
and real-time bird tracking under global motion and complex
backgrounds, offering tangible benefits for ecological moni-
toring and conservation practice. Future work should focus
on testing the system on constrained hardware, expanding
datasets and metrics, and pursuing multimodal and distributed
approaches to ensure scalability and long-term impact.




ISSN 2305-7254

FUNDING

The work was carried out with the financial support of
the Ministry of Science and Higher Education of the Russian
Federation within the framework of realization of the complex
project on creation of high-tech production on the theme “Mul-
timodal complex of airport airspace control” (Agreement on
granting a subsidy from the federal budget for the development
of cooperation between a state scientific institution and an
organization belonging to real sector of the economy for the
purpose of realization of the complex project on creation of
high-tech manufacturing no. 075-11-2025-023 dated February
27, 2025) and within the framework of the Resolution of
the Government of the Russian Federation no. 218 dated
April 9, 2010 on the basis of the head executor: federal
state autonomous educational institution of higher education
the Saint Petersburg Electrotechnical University “LETI” (SPb
ETU “LETT”).

REFERENCES

[1] D. Dziak, D. Gradolewski, S. Witkowski, D. Kaniecki, A. Jaworski,
M. Skakuj, and W. J. Kulesza, “Airport wildlife hazard management
system,” Elektronika ir Elektrotechnika, vol. 28, no. 3, pp. 45-53, Jun.
2022. [Online]. Available: https://eejournal ktu.lt/index.php/elt/article/
view/31418

[2] Y. Zhang and Y. Shi, “Bird detection method for airport perimeters
based on an improved yolov8,” in Proceedings of the 5th International
Conference on Artificial Intelligence and Computer Engineering, ser.
ICAICE ’24. New York, NY, USA: Association for Computing
Machinery, 2025, p. 389-393. [Online]. Available: https://doi.org/10.
1145/3716895.3716964

[3] E. Sabziyan Varnousfaderani and S. A. Shihab, “Bird strikes in aviation:
A systematic review for informing future directions,” Aerospace Science
and Technology, vol. 163, p. 110303, 2025. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1270963825003748

[4] S. B. Radar, “Birdscan mrl radar system,” 2023, accessed:
2025-08-08. [Online]. Available: https://swiss-birdradar.com/systems/
radar-birdscan-mr1/

[5] “Detection of bird activity using
2025-08-08.  [Online].  Available:
detection-bird-activity-using-radar

[6] “Thermal imaging in ornithology,” 2023, accessed: 2025-08-08.
[Online]. Available: https://en.wikipedia.org/wiki/Thermal_imaging_in_
ornithology

[7]1 T. Stanczyk, “Masks and boxes: Combining the best of both worlds
for multi-object tracking,” arXiv preprint arXiv:2401.12345, 2024.
[Online]. Available: https://arxiv.org/abs/2401.12345

[8] X. Yang, G. Wang, W. Hu, J. Gao, S. Lin, L. Li, K. Gao, and Y. Wang,
“Video tiny-object detection guided by the spatial-temporal motion
information,” in Proceedings of the IEEE/CVF Conference on Computer

radar,” 2022, accessed:
https://skybrary.aero/articles/

254

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

Vision and Pattern Recognition Workshops (CVPRW), 2023, pp. 3054—
3063.

C. Xu, J. Ding, J. Wang, W. Yang, H. Yu, L. Yu, and G.-S. Xia,
“Dynamic coarse-to-fine learning for oriented tiny object detection,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2023, pp. 7318-7328.

Y. Lyu, Z. Liu, H. Li, D. Guo, and Y. Fu, “A real-time and lightweight
method for tiny airborne object detection,” in 2023 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops (CVPRW),
Vancouver, BC, Canada, 2023, pp. 3016-3025.

M. Shi, D. Zheng, T. Wu, W. Zhang, R. Fu, and K. Huang, “Small
object detection algorithm incorporating swin transformer for tea buds,”
PLOS ONE, vol. 19, no. 3, p. €0299902, 2024.

J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
tracking with kernelized correlation filters,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 583-596,
2015.

A. Lukezic, T. Vojir, L. Cehovin Zajc, J. Matas, and M. Kristan,
“Discriminative correlation filter with channel and spatial reliability,”
International Journal of Computer Vision, vol. 126, no. 7, pp. 671-688,
2018.

N. Wang and D.-Y. Yeung, “Learning a deep compact image representa-
tion for visual tracking,” in Advances in Neural Information Processing
Systems (NeurIPS), vol. 26. Curran Associates, Inc., 2013, pp. 809-817.

A. Bibi and B. Ghanem, “Multi-template scale-adaptive kernelized
correlation filters,” 2015.

S. Yadav and S. Payandeh, “Critical overview of visual tracking with
kernel correlation filter,” Technologies, vol. 9, no. 4, p. 93, 2021.

B. Uzkent and Y. Seo, “Enkcf: Ensemble of kernelized correlation filters
for high-speed object tracking,” arXiv preprint arXiv:1801.06729, 2018.

Q. Wang, J. Gao, J. Xing, M. Zhang, and W. Hu, “Dcfnet: Discrim-
inant correlation filters network for visual tracking,” arXiv preprint
arXiv:1704.04057, 2017.

S. Javed, M. Danelljan, F. S. Khan et al., “Visual object tracking with
discriminative filters and siamese networks: A survey and outlook,”
arXiv preprint arXiv:2112.02838, 2021.

N. A. Obukhova, A. A. Motyko, A. A. Pozdeev, and K. A. Smirnov,
“Automatic detection and tracking of objects in video data with global
motion,” in 2024 36th Conference of Open Innovations Association
(FRUCT), 2024, pp. 549-556.

N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proceedings of the 2005 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR’05), vol. 1.
IEEE, 2005, pp. 886-893.

A. Kirillov, E. Mintun, N. Ravi, H. Mao, L. Rolland, L. v. d. Gustafson,
A. Shamsian, 1. Alabdulmohsin, X. Chen, I. Misra, P. Dollar, and
R. Girshick, “Segment anything,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2023, pp. 3992—
4003.

A. E. Shchelkunov, V. V. Kovalev, K. I. Morev, and I. V. Sidko,
“Metrics for evaluating automatic tracking algorithms,” Izvestiya SFedU.
Engineering Sciences, no. 1, pp. 233-245, 2020, (In Russian).






