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Abstract—In ornithological video monitoring tasks aimed at
studying bird behavior, estimating population size, and tracking
migration routes, a major challenge is the robust tracking of
targets under global camera motion. Such motion, often caused
by pan-tilt or mobile platforms, introduces significant distortions
in the optical flow. At the same time, the tracked objects
are typically small, low-contrast, and highly dynamic, which
considerably reduces the robustness of conventional tracking
methods. This study aims to develop and experimentally validate
a tracking method that can operate in video sequences affected
by global motion, while maintaining high accuracy and real-
time performance. The proposed approach integrates a neural
network-based tracker and trajectory prediction using a Kalman
filter. The method was evaluated on a dataset simulating real
ornithological monitoring scenarios, including highly detailed and
dynamic backgrounds, moving cameras, variable lighting, and
complex object trajectories. Experimental results showed that the
tracking failure rate did not exceed 5× 10−4, while the average
processing speed reached 21 frames per second. Compared to a
conventional tracking method based on HOG+KCF and Kalman
filtering, the proposed method achieved a 4-fold reduction in
tracking failure rate and a 2.5-fold reduction in tracking failures
under occlusion conditions. The developed method is designed
for use in bird monitoring systems operating in natural and
agricultural landscapes, where reliable object tracking is required
in visually complex environments. The results demonstrate the
potential of the proposed solution for both scientific and ornitho-
logical research, as well as applied environmental monitoring
tasks.

I. INTRODUCTION

The task of automatic bird tracking in video sequences

is one of the important areas in computer vision, lying

at the intersection of applied ecology, biomonitoring, and

environmental observation. Modern video surveillance sys-

tems increasingly operate in real-world conditions that differ

significantly from laboratory settings, characterized by high

scene dynamics, changing backgrounds, camera motion, and

numerous low-contrast objects of interest. In the context of

ornithological applications, this creates a need for robust

algorithms capable of reliably tracking birds in visually com-

plex environments, including forested, coastal, and agricultural

landscapes.
The issue of stable tracking of objects of interest in video

sequences is becoming increasingly relevant across a range of

applications. At the same time, the development of current-

generation video monitoring systems faces several critical

challenges, primarily related to the following factors:

• highly detailed and dynamic backgrounds;

• significant variation in object properties, in particular,

rapid changes in the projection size of the object on the

image plane;

• occurrence of occlusion events due to overlapping with

the background or other objects;

• the need for high-speed video processing (close to real

time) under limited computational resources.

Several studies [1]–[3] have proposed integrated systems

that combine infrared cameras and radar for continuous

monitoring, as well as modified YOLOv8-based architectures

adapted for bird detection near protected areas. The system

described in this study implements an ornithological mon-

itoring scenario that is close in purpose to the approaches

discussed in [1]–[3]. Its fundamental difference, however, lies

in its ability to perform tracking under camera motion — a

factor not addressed in the aforementioned publications.
This paper presents a method for automatic tracking of

target objects in an optoelectronic ornithological monitoring

system under global motion, heterogeneous and textured back-

grounds, occlusions, and low-contrast targets. A key feature

of the problem setting is the presence of multiple objects of

interest that are small in size and exhibit significantly different

trajectories and speeds.
The monitoring system consists of a pan-tilt camera and

a computing unit equipped with an NVIDIA RTX 3090

GPU, enabling real-time neural network execution. The optical

layout of the system is designed so that the projection of a

medium-sized bird (e.g., a pigeon or crow), approximately

35 centimeters in length, occupies about 20 pixels on the
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image when observed from a distance of 1500 meters. Such

distances correspond to typical conditions for ornithological

monitoring in field and security contexts. According to the

specifications of modern radar and optical systems, reliable

detection and tracking of medium-sized birds is achievable at

distances ranging from 1000 to 2000 meters [4], [5]. Compact

radars and combined sensor modules integrated with optical

cameras are capable of reliably detecting and tracking birds

even under poor visibility conditions [6], which confirms the

applicability of this distance range to practical ornithological

monitoring tasks. Furthermore, both larger birds at greater

distances and smaller birds at closer ranges may be of interest

for monitoring.

In practical scenarios, the projection size of an object may

vary from approximately 15×15 pixels (at the capturing stage)

to around 200×200 pixels (at close range), given a frame

resolution of 1920×1080. Therefore, the tracking method must

account not only for background variability and camera mo-

tion, but also for substantial changes in the visual properties of

the tracked objects. An additional challenge is achieving high-

speed video processing under constrained resources, which

imposes strict requirements on the efficiency and robustness

of the tracking algorithm. The main feature of the described

tracking task is the very complex trajectory of the object,

because it is of natural, not artificial origin. This leads to

the fact that classical algorithms and approaches used for

such tasks encounter significant difficulties, and their accuracy

characteristics are reduced.

II. RELATED WORK

The task of object tracking in video streams is complicated

by a variety of factors, including challenging environmental

and motion-related conditions. Furthermore, tracking must be

synchronized with the algorithms controlling the camera’s

position. These constraints place specific requirements on the

choice and architecture of the tracking method.

Today, deep learning methods and neural networks are

widely used in computer vision for a broad range of tasks.

With the advent of high-performance computing resources,

it has become feasible to employ deep neural networks for

near-real-time object tracking. A promising direction in object

tracking involves segmenting the object in each video frame,

even when only a bounding box overlay is required. Generat-

ing a segmentation mask of the object of interest enables more

precise estimation of its boundaries and position, significantly

improving tracking robustness under complex backgrounds

and partial occlusions [7].

Recent works on tracking small objects have proposed meth-

ods that incorporate both spatial and temporal features, such as

ST-Motion TinyDet [8]. Among the single-frame algorithms,

DN-FPN+Trans-R-CNN, DCFL-TinyDet [9], TAD (Tiny Air-

borne Detection) [10] and hybrid architectures combining

transformers with YOLO (STF-YOLO) [11] are notable.

Despite the progress of transformer-based, diffusion-based,

spatiotemporal, and hybrid trackers, their practical application

in real-time video analytics under limited computing resources

remains a challenge. Transformers and hybrid models with

heavy transformer components demand substantial computa-

tional power during both training and inference. Diffusion

models offer flexibility but still fall short in processing speed

for real-time streaming data.

When computing resources are limited, classical (non-

neural) tracking methods are often applied, trading accu-

racy for speed. Among them, discriminative correlation filter

(DCF)-based trackers such as KCF [12], CSRT [13], and

DLT [14] are particularly popular due to their high speed

and low hardware requirements. Several improved KCF vari-

ants demonstrating competitive performance on benchmark

datasets while maintaining speed are discussed in [15]–[17].

The authors of [18] propose a lightweight neural modification

of DCF (DCFNet), also suitable for real-time applications. A

comprehensive review of classical trackers and their deploy-

ment under resource constraints is presented in [19].

To ensure stable and robust object tracking in various sce-

narios, it is often necessary to combine multiple approaches.

Each works best under specific conditions, and the system

must include logic to switch between them. For example, [20]

describes a combination of a HOG-based detector [21] and a

correlation tracker along with a Kalman filter. The drawback

of such methods lies in the need to fine-tune thresholds

and frequent reinitializations, which reduce tracking efficiency

under complex conditions.

In general, the choice of tracking method depends on both

available hardware resources and task-specific requirements.

For monitoring high-contrast objects (e.g., self-illuminated or

with simple trajectories), classical low-cost approaches may

suffice. In contrast, neural network-based methods may be

preferable in more challenging cases.

This study proposes a tracking method for an ornithological

monitoring system based on neural segmentation tracking and

Kalman filtering. As a baseline for comparison, a classical al-

gorithm using HOG descriptors, a KCF tracker, and a Kalman

filter is used, as described in [20]. An important feature of

the study is the specificity of the task - tracking natural

objects (birds) with complex, poorly predictable trajectories.

This contrasts with the traditional formulation of the problem -

tracking artificial objects, which is the focus of most classical

approaches.

III. PROPOSED SOLUTION

The proposed tracking method employs the Segment Any-

thing Model 2 (SAM2) [22] as the core segmentation module,

combines it with a third-order Kalman filter in the image plane

for motion estimation and trajectory prediction, leverages a

neural network-based detector to locate target objects, and

integrates a control module for a pan-tilt camera that uses

the predicted motion to maintain continuous alignment with

the target.

The third-order Kalman model is particularly suitable for

natural targets (e.g., birds) exhibiting irregular trajectories and

abrupt speed changes, where a simpler second-order model
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would be insufficiently responsive. In this formulation, the

state vector at time step k

sk = [xk, vkx, akx, yk, vky, aky]
T

encodes the target center coordinates (x, y) along with the pro-

jections of its velocity v and acceleration a on the respective

axes. Observations are derived from the center of the detectors

or the tracker’s bounding box, with the discretization step

equal to the inter-frame interval of the video stream. Initializa-

tion is performed upon the first reliable detection, setting the

position to the observation and both velocity and acceleration

to zero. The use of acceleration in the kinematic model enables

rapid convergence after initial corrections, precise short-term

prediction, robustness to brief dropouts, and jitter suppression

under global camera motion. SAM2 utilizes the concept of

promptable segmentation, enabling the extraction of a mask

for any object based on a specific prompt (point or bounding

box).

The model demonstrates strong generalization ability, re-

quires no fine-tuning for a specific object class, and performs

robustly under various conditions. The operation pipeline is

illustrated in Algorithm 1.

The system operates in the following stages:

1) Initialization. Primary object detection is performed on

the full frame. Our implementation is based on the SSD-

ADSAR detector. A target is selected (in case of several

objects were detected), captured, and both the Kalman

filter and the region of interest (ROI) are initialized.

2) Prediction. For each incoming frame, the Kalman filter

predicts the new target position. This prediction is used

both to constrain the search area and to generate a

control command for the pan-tilt camera, compensating

for system latency and minimizing the risk of losing the

target.

3) Local Processing. Within the predicted ROI:

• SAM2 segmentation is executed, producing a mask

and bounding box (Rect2).

• Local detection is performed using SSD-ADSAR,

yielding another bounding box (Rect1).

4) Confirmation. Confirmation is implemented based on

the IoU (Intersection over Union) metric calculated for

the above-formed bounding boxes. If the confirmation

is successful. The Kalman filter is updated, and all

counters are reset. If only the SAM2 mask is available, a

partial update is performed. If neither mask nor detection

is present, the Kalman prediction is used, and failure

counters are incremented.

5) Tracking interruption. If the number of consecutive

frames without a mask exceeds Nloss, or the number of

frames without detector confirmation exceeds Nconf, the

object is considered lost.

The algorithm’s parameters are selected based on the hard-

ware platform used in deployment.

Algorithm 1 Target tracking algorithm

1: Input: TIoU (IoU threshold), Nloss (no-mask limit),

Nconf (no-confirmation limit)

2: State: KF (Kalman filter), ROI (region of interest),

loss cnt← 0, conf wait cnt← 0
3: Initialization: Run global SSD-ADSAR on full frame to

obtain Rect0 (target acquisition).

4: Initialize KF using Rect0; set ROI ← Rect0.

5: while new frame available do
6: Predict target position using KF ; update ROI around

prediction.

7: Run SAM2 on ROI to get Mask (primary); run SSD-

ADSAR on ROI to get Rect1 (may be absent).

8: if Mask exists then
9: Derive Rect2 from Mask.

10: if Rect1 exists and IoU(Rect1, Rect2) > TIoU

then
11: Update KF using Rect2; loss cnt ← 0;

conf wait cnt← 0.

12: else
13: Update KF using Rect2 (possibly reduced-trust

update).

14: loss cnt ← 0; conf wait cnt ←
conf wait cnt+ 1.

15: if conf wait cnt ≥ Nconf then
16: break // terminate tracking: no detector

confirmation for too long

17: end if
18: end if
19: else
20: loss cnt← loss cnt+ 1.

21: if loss cnt ≥ Nloss then
22: break // terminate tracking: mask missing for too

long

23: end if
24: KF remains in predicted state.

25: end if
26: Generate and send PTZ control command based on

current prediction of KF .

27: end while

The proposed method integrates the segmentation precision

of SAM2 and the robustness of Kalman filtering with the de-

tection capabilities of SSD-ADSAR. This combination enables

reliable object tracking even under challenging conditions such

as complex backgrounds, complex trajectories of movement,

significant changes in speed, camera motion, and significant

variations in target size and shape. The system operates near

real-time, making it well-suited for practical deployment in

automated monitoring and surveillance scenarios involving

dynamic and unpredictable environments.
To provide a comparative perspective, the workflow of the

competing tracking approach described in [20] is summarized

below. Both trackers implement tracking with confirmation

from a detector, are designed for similar operating conditions,

including global motion and complex backgrounds, and use
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Kalman-based motion prediction. The proposed method em-

ploys segmentation-based localization using a neural network

model (SAM2), whereas the competing approach is based

on feature-based tracking with HOG descriptors and KCF,

supplemented by correlation analysis. The key distinction is

that our method is specifically adapted for tracking natural,

living targets with complex and irregular trajectories (e.g.,

birds), while the competing method has demonstrated strong

performance primarily for man-made objects with more regu-

lar trajectories and predictable motion patterns.

In the competing approach, after the initial detection using a

neural network model, the object in the current frame is identi-

fied via an HOG+KCF tracker, supplemented by a correlation-

based detector and motion prediction generated by Kalman

filtering. This combination improves tracking robustness under

scale variation and global scene motion. For each frame, three

sources of information (HOG+KCF, the correlation detector,

and the Kalman filter) are analyzed, and their outputs are

compared using the IoU metric. Depending on the degree

of consistency between sources, different modules are re-

initialized: when all sources agree, the reference image is

updated; when there is disagreement with the Kalman filter,

its parameters are re-estimated; and when a significant scale

change occurs, only the correlation output is temporarily used.

This fallback mode is activated based on a threshold on the

correlation response area to balance stability and accuracy.

Tracking is terminated if no agreement between sources is ob-

served for N consecutive frames. A more detailed description

of the algorithm is provided in [20].

IV. EXPERIMENTS AND RESULTS

The objective of the experimental study is to quantitatively

assess the tracking performance and compare it with alter-

native approaches. Two tracking methods were evaluated: a

“classical” one based on the combination of HOG descriptors,

KCF tracker, and Kalman filter, as described in [20], here-

inafter referred to as HOG+KCF, and the proposed approach

based on SAM2 segmentation and Kalman filtering.

To evaluate the tracking quality, a set of Full HD

(1920×1080) videos was collected and used. The main metric

was the number of tracking failures – instances where the

tracker lost the target and required reacquisition via the

detector.

Additionally, the processing speed (FPS, frames per second)

was measured on the hardware platform used in the monitoring

system (equipped with an Nvidia GTX 3090 GPU). The results

are summarized in Table I.

As described in the dataset documentation, the tracking

conditions are challenging. The bird often undergoes signif-

icant scale changes, hovers motionless, or blends into the

background (e.g., a white bird against clouds or a black

one against buildings and vegetation), crosses regions with

varying backgrounds, or sharply changes its motion trajectory,

sometimes accompanied by global scene shifts. Such scenar-

ios reflect real-world conditions and significantly complicate

tracking. Examples of substantial scale changes and strong 
background fusion are shown in Fig. 1 and Fig. 2.

Fig. 1. The example of an object with scale variation

From Table I, the failure rate (tracking dropout frequency)

can be computed as follows [23]:

F =
Ft

N
,

where Ft is the number of tracking failures, and N is the total

number of frames. The calculation includes videos No.1–7,

which are representative of the monitoring system. Video

No.8, a synthetic composition of ten 3-second clips containing

occlusions (ranging from 0.4 to 1.0 seconds), was evaluated

separately.

According to the experiments, the proposed method

achieved a failure rate of 5 · 10−4, whereas the HOG+KCF

tracker yielded 2 · 10−3.

The performance of the HOG+KCF tracker depends on the

object’s size; hence, the FPS values reported in Table I vary.

In general, HOG+KCF demonstrates higher speed compared

to the proposed method; however, the achieved frame rate of

21 FPS is sufficient for practical deployment.

The failure rate for HOG+KCF observed in this study differs

from that reported in [20]. This discrepancy is attributed to the

different target types: the referenced study dealt with synthetic,

predictable targets, while our work focused on real birds whose
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TABLE I. EXPERIMENTAL TRACKERS COMPARISON 
RESULTS

Video
No. Description Frame

count
Failures

SAM2 + Kalman
FPS

SAM2 + Kalman
Failures

HOG + KCF
FPS

HOG + KCF

1
White bird, complex background
(ground, vegetation)

1625 0

21

3 24

2
Black bird, complex background
(sky, high noise), global motion

675 0 3 37

3
Black bird, complex background
(mountains, vegetation), occlusion

1495 0 2 30

4
White bird, simple background
(sky with clouds), size variation

314 0 1 24

5
Black bird (sky with clouds,
vegetation, houses), rapid variation

1428 3 7 23

6
Black bird, simple background
(twilight, grey sky)

1660 0 1 30

7
White bird, simple background
(sky with clouds), size variation

320 1 0 33

8
White and black birds, montage
with occlusions, urban background

900 2 5 24

Fig. 2. The examples of a scene with a complex background

motion is less regular. For such dynamic scenarios, Kalman fil-

tering alone proves less effective. Although HOG+KCF shows

satisfactory performance, the proposed method demonstrates

clear advantages. This includes a 2.5x reduction in tracking

failures under occlusion, which can be largely attributed to

the SAM2 model’s internal image memory (embedding), im-

proving robustness under partial visibility, deformation, and

complex motion patterns.

An interesting point of discussion is the ability of the

SAM2-based tracker to handle extremely small objects, lo-

cated generally outside the target characteristics of the system

and corresponding, for example, to objects at very long

distances (relative to those typical for monitoring systems).

Figure 3 illustrates frame sequences and masks produced by

SAM2 during tracking of an object with a minimal projected

size of approximately 5×5 pixels.

As seen in Figure 3, when the projection is that small, both

the image and the segmentation mask are blurry and poorly

aligned in shape. In such conditions, especially with a highly

detailed background, reliable tracking is unrealistic. Nonethe-

less, in some cases common to ornithological monitoring (e.g.,

high-contrast targets on low-textured backgrounds), successful

tracking can still be achieved. It should be noted that the object

size here is far below the target specification for the system,

and such tracking success is an additional advantage.

Experiments have shown that the proposed method performs

robustly under both simple and complex conditions. It delivers

sufficient processing speed and demonstrates high accuracy in

detection and tracking, even under difficult scenarios.

V. DISCUSSION AND CONCLUSION

This paper presents a method for automatic tracking of

objects of interest adapted to the specific challenges of ornitho-

logical monitoring, such as global motion in video data, high

object dynamics, occlusion, cluttered backgrounds, complex

trajectories, and the speed mode of a natural object. The

proposed approach integrates a segmentation-based tracker

built upon the SAM2 model, a hybrid detector powered by

neural networks used for initial object detection and trajectory

confirmation, and Kalman filter-driven motion estimation.

Utilizing motion estimation via the Kalman filter enabled

increased tracking stability by smoothing abrupt changes in the

visual scene caused by rapid camera movement. Additionally,

it allowed for reduced latency between object position estima-
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Fig. 3. Zoomed-in video frames of tracking a small object of interest and corresponding masks generated by the SAM2 tracker

tion and pan-tilt actuator response, ensuring reliable operation

in mobile camera systems.

Experimental evaluation confirmed the robustness of the

proposed method under challenging conditions: the tracking

failure rate did not exceed 5 × 10−4, while achieving a real-

time processing rate of 21 FPS on FullHD video. In contrast,

the failure rate of a traditional HOG+KCF tracker under

similar conditions was found to be approximately four times

higher.

The results support the following conclusions:

• the proposed method ensures stable tracking for birds

under global motion, changes in object appearance, and

partial occlusions;

• it demonstrates high performance, compatible with real-

time constraints;

• the system is well-suited for deployment in field scenarios

with limited computational resources;

• the observed improvement (a 4-fold reduction in tracking

failure rate) over the baseline method is explained by the

ability of the proposed approach to handle complex and

non-linear object trajectories, which are typical in bird

tracking scenarios and where classical methods tend to

be less effective.

While these findings highlight the technical strengths of the

system, several broader implications and practical considera-

tions should also be noted. From an ecological perspective,

reliable long-term bird tracking can provide critical data for

biodiversity assessment, habitat monitoring, and conservation

planning. Automated systems of this kind could reduce de-

pendence on manual field observations, enabling continuous,

large-scale monitoring of species populations and migration

dynamics. In agricultural and airport contexts, such monitor-

ing also holds applied value for mitigating bird strikes and

managing human–wildlife interactions.

At the same time, practical constraints may limit direct

deployment. While the RTX 3090 platform provides suffi-

cient throughput, many real-world scenarios rely on resource-

constrained edge devices. Although our method is optimized

for efficiency, its performance on mobile GPUs or embedded

platforms remains to be tested. Approximate segmentation,

lightweight backbones, or model distillation techniques could

reduce computational demands, though this may come at some

cost to accuracy. Future experiments on Jetson-class devices or

FPGA-based accelerators will therefore be essential to evaluate

deployment feasibility in remote or autonomous stations.

Another important aspect concerns datasets and evaluation

metrics. In this work, we relied on a dataset simulating real

ornithological conditions; however, the diversity of species,

environments, and weather conditions in the field is far greater.

Expanding the dataset to cover more species, flight behaviors,

and seasonal variations, as well as including multimodal in-

puts (thermal, radar-assisted), would strengthen generalization.

Moreover, while failure rate and FPS were key evaluation

metrics, additional measures such as ID switches, trajectory

continuity, and long-term re-identification could provide a

more nuanced picture of system performance.

Finally, although our method outperformed the chosen

HOG+KCF baseline, further comparisons with state-of-the-art

lightweight trackers would improve the robustness of conclu-

sions. Explicit discussion of limitations (for example, reduced

accuracy on extremely small or distant targets and reliance

on clear optical conditions) helps delineate the boundaries

of applicability. These limitations define clear directions for

future research, including multimodal sensing, improved re-

silience under adverse weather, and integration into distributed

ecological monitoring networks.

In summary, the proposed method achieves stable, accurate,

and real-time bird tracking under global motion and complex

backgrounds, offering tangible benefits for ecological moni-

toring and conservation practice. Future work should focus

on testing the system on constrained hardware, expanding

datasets and metrics, and pursuing multimodal and distributed

approaches to ensure scalability and long-term impact.
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