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Abstract—Automatic bird detection represents one of the most
critical technical challenges in ornithological monitoring systems,
which are relevant for scientific wildlife observation, biodiversity
assessment, and practical applications in agriculture and en-
vironmental management. Modern monitoring systems require
high accuracy under real-world imaging conditions; however,
automatic detection of birds is complicated by the presence of
small and low-contrast objects embedded in complex and highly
detailed natural scenes. An additional challenge is the high intra-
class variability, which arises from the diversity of bird species,
varying viewpoints, and differences in object size, both due to
species-specific morphology and varying distances to the camera.

This study is dedicated to the development of an effective
method for detecting small and low-contrast objects in individual
frames of a video stream. The proposed solution is based on a
modified SSD-ADSAR architecture enhanced with a dual-stream
attention mechanism. On the test dataset, the model achieved
mAP@0.5 = 0.876 and mAP@0.5:0.95 = 0.645. The use of
synthetically augmented data helped to mitigate the background-
type imbalance and improved the model’s robustness under
complex visual conditions. The practical significance of this work
lies in its applicability to real-time ornithological video mon-
itoring systems, as well as to nature conservation, agricultural
automation, and scientific ornithological research. The developed
method is tailored to typical conditions of ornithological moni-
toring (such as small, fast-moving objects and cluttered natural
backgrounds), and it outperforms existing solutions designed
primarily for detecting artificial airborne objects in terms of
detection accuracy.

I. INTRODUCTION

In recent years, the task of moving object automatic de-

tection in video streams has received increasing attention.

This has been facilitated by the development of high-quality

imaging equipment and the emergence of computing systems

capable of processing visual data in real time. These techno-

logical advancements have enabled the practical application

of more computationally intensive computer vision methods.

Nevertheless, the problem of detecting small objects in com-

plex scenes with high background variability and significant

intra-class dispersion remains unresolved and highly relevant.

Within-class variability is primarily driven by differences in

object scale, appearance, and viewing angle, all of which

significantly complicate the training of robust detectors.

The development of video analytics systems for ornitholog-

ical monitoring faces several challenges, including heteroge-

neous and cluttered natural backgrounds, dynamically chang-

ing lighting conditions, partial occlusions, and the presence

of naturally moving elements in the scene. In recent years,

interest in automated bird monitoring in natural habitats has

grown substantially. To support algorithm development and

evaluation, several specialized datasets have been proposed,

such as AirBirds [1] and FBD-SV-2024 [2], which include

video sequences captured in diverse environmental conditions.

In addition, several studies [3]–[5] have presented integrated

surveillance systems that combine infrared cameras and radar

modules for continuous monitoring, along with adaptations

of YOLOv8-based models tailored to bird detection in open

natural environments.

In this work, we address the problem of automatic detection

of objects of interest under conditions typical for ornitho-

logical monitoring in open environments—such as highly

variable backgrounds, dynamic illumination, partial occlusion,

and pronounced target class variability due to species diversity,

object size, and perspective changes.

In real-world bird monitoring scenarios, observation dis-

tances typically range from several hundred meters to several

kilometers. For instance, technical guidance [6] reports that

optical and infrared systems are commonly used for reliable

bird detection at distances of 300–600 meters under both

daylight and nighttime conditions. More advanced setups

employing long-range optical zoom and multi-sensor config-

urations have demonstrated the ability to detect medium and

large birds at significantly greater distances. In particular, a

study [7] reports successful detections at up to 2000 meters,

and another work [8] using stereo imaging and radar tracking

describes detections of large raptors at distances of up to 2800

meters. Similar performance levels are reported in the context

of radar-based migration monitoring, where effective detection
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ranges reach approximately 1000 meters [9].

The method proposed in this study is specifically tailored

for small object detection, where the term “small” denotes

targets with a projection size of approximately 15×15 to 20×20

pixels in a Full HD image frame. Under typical viewing

angles, this corresponds to the projected size of an average-

sized bird at distances of about 800 to 1500 meters—a range

typical for ornithological monitoring systems. Notably, this

size regime encompasses several of the most operationally

significant species, including pigeons and crows, which are

both relatively large and widely distributed, thus representing

prevalent targets in such applications. Objects of this scale

present a significant challenge for most standard detection

algorithms, necessitating architectural and training adaptations

to maintain high accuracy. Further complicating the problem

are computational resource constraints, especially in applica-

tions requiring near real-time performance and deployment on

mobile or power-limited monitoring platforms.

II. RELATED WORK

Historically, the task of automatic object detection in images

and videos began with methods based on predefined feature

extraction filters. Early widespread solutions included cascade

classifiers such as Viola–Jones [10] and handcrafted features

like Haar and LBP [11], primarily used for face detection.

Later, more advanced descriptors were introduced, such as

SIFT [12], SURF [13], and HOG (Histograms of Oriented

Gradients), which proved effective when combined with sup-

port vector machines (SVM) in the classical “HOG + SVM”

pipeline [14]. However, these approaches suffer from limited

generalization capabilities in challenging visual conditions, are

sensitive to scale and geometric transformations, and typically

demonstrate poor robustness to occlusions and background

variations.

Modern video analytics largely relies on deep learning

techniques for object detection, segmentation, tracking, and

classification in video streams. Some of the first deep learning-

based object detectors were two-stage architectures, such as R-

CNN, Fast R-CNN, and Faster R-CNN, which achieved high

accuracy but exhibited relatively low inference speed.

A major leap in real-time object detection was made

possible by one-stage detectors such as SSD (Single Shot

Detector) [15]. Introduced in 2015, SSD generates predictions

at multiple feature levels in a single forward pass. While

it is computationally efficient and effectively utilizes multi-

scale features, its performance on complex datasets (e.g.,

COCO [16]) remains relatively modest.

EfficientDet [17], introduced in 2019, represented a further

evolution of one-stage CNN-based detectors, aiming to balance

detection accuracy and computational efficiency. It employs

the EfficientNet backbone for feature extraction and introduces

a Bidirectional Feature Pyramid Network (BiFPN) to better

fuse multi-scale features. The smaller variants (D0–D2) enable

near real-time inference with moderate mAP, while the larger

ones (D6–D7) achieve higher accuracy (around 50–52% mAP

on COCO) at the cost of reduced speed, processing only a few

frames per second.

Among single-stage convolutional detectors, the YOLO

(You Only Look Once) family continues to stand out. Modern

versions (YOLOv8–YOLOv11) achieve high detection accu-

racy with real-time inference speeds. For instance, YOLOv7,

released in 2022, achieved 56.8% mAP on the COCO dataset

with a throughput exceeding 30 FPS, surpassing earlier detec-

tors in terms of the accuracy–speed trade-off [18]. However,

the structural limitations of YOLO-based architectures have

led to a plateau in performance gains in subsequent versions.

In 2020, transformer-based object detectors emerged, be-

ginning with DETR (DEtection TRansformer) [19]. DETR

combines a CNN-based feature extractor (e.g., ResNet) with

a transformer encoder–decoder architecture, which models

global object relationships. While DETR achieves high ac-

curacy, it requires long training times, performs suboptimally

on datasets with high within-class variability, and suffers from

limited spatial resolution in feature representations.

To address these limitations, Deformable DETR [20] was

introduced. It replaces standard attention with deformable at-

tention, focusing computation on a sparse set of key sampling

points around reference locations, and employs multi-scale

feature maps (via FPN). This approach significantly improves

performance on small objects and achieves comparable accu-

racy to DETR (43–45% AP) while reducing training time (e.g.,

50 epochs).

In 2022, the DINO detector [21] was proposed, currently

considered one of the most accurate and efficient DETR-based

models. It incorporates several key innovations, such as robust-

ness to slight misalignments in annotations, improved anchor

box initialization, and a two-stage bounding box prediction

module. DINO achieves 49.4% AP on COCO with a ResNet-

50 backbone after 12 training epochs and up to 51.3% AP

after 24 epochs.

DiffusionDet [22] extends object detection into the domain

of diffusion models. Instead of predicting bounding boxes

directly, it models the detection task as a denoising process,

similar to how generative diffusion models work. The model

learns to progressively refine noisy representations into accu-

rate object locations and categories through iterative inference

steps. On COCO with a ResNet-50 backbone, DiffusionDet

achieves approximately 45.8% mAP.

Despite significant advances in transformer-based,

diffusion-based, spatiotemporal, and hybrid detection

models, their practical use in resource-constrained real-time

video analytics systems remains limited. Transformer-

based and hybrid architectures typically require substantial

computational resources during both training and inference.

While diffusion models offer greater flexibility in modeling,

they still fail to meet the real-time throughput requirements

for streaming video input.

In scenarios with limited computing power and the need for

near real-time performance, lightweight single-stage convolu-

tional detectors—specifically adapted to the target deployment

conditions—remain the most practical and balanced solution.
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III. PROPOSED SOLUTION

For the task of small object detection, this work employs

a modified version of the SSD-ADSAR architecture [23],

specifically adapted to the problem’s unique challenges. We

extended the Multi-Head Dual Stream Attention block from

three to five heads, each configured to focus on either global

or local attention. Each head now processes tokens of different

resolutions, enabling robust detection of both small and large

objects, even against complex backgrounds. In addition, we

increased the network depth while proportionally reducing

the width of individual layers, keeping the overall parameter

count unchanged. This modification resulted in deeper feature

representations without increasing computational cost, and led

to improved prediction accuracy.

Therefore, the model was designed to be robust to back-

ground changes caused by camera motion and capable of

detecting low-contrast and small-scale objects. The overall

structure of the proposed solution is illustrated in Fig 1. The

key component of the model is the dual-stream self-attention

module, ADSAR.

Let us consider the ADSAR module in more detail. Let

X ∈ R
H×W×D be the input feature representation to the

ADSAR block after convolutional operations in the feature

extraction stage (where H , W , and D denote the spatial

dimensions and depth of the input tensor). The features are

projected into queries Q, keys K, and values V as follows:

Q = XWQ, K = XWK , V = XWV ,

where WQ,WK ,WV ∈ R
D×D′

are learnable projection

matrices.

To separate global and local information, two attention

masks Ml (local) and Mg (global) are introduced:

Ml(i, j) =

{
0, if j ∈ N(i),

−∞, otherwise

Mg(i, j) =

{
0, if j /∈ N(i),

−∞, otherwise

where N(i) denotes a fixed-size neighborhood around position

i. Using these masks, separate attention weights are computed

for the local and global streams:

Al = softmax

(
QKT

√
D′

+Ml

)
,

Ag = softmax

(
QKT

√
D′

+Mg

)
.

The attention responses for the local and global streams are

then calculated as:

Rl = AlV, Rg = AgV,

and their difference is computed as:

Res = Rl −Rg,

which serves to enhance relevant features of small objects.

Finally, the resulting representation is integrated back with

the original features as follows:

X ′ = X + Res · F,
where F ∈ R

D′×D is a learnable projection matrix that maps

the result back to the original dimensional space.

Thanks to this architecture, SSD-ADSAR achieves superior

mAP metrics for small object detection and better localiza-

tion accuracy compared to other solutions such as RetinaNet

and YOLOv11. A detailed comparison of SSD-ADSAR per-

formance with competing architectures, including YOLOv8,

SSD, and DETR, is provided in [23]. In particular, experi-

mental results show that SSD-ADSAR outperforms YOLOv8

by more than 5% in key metrics such as AP and IoU.

IV. EXPERIMENTAL EVALUATION

A. Motivation and Model Selection

Inference speed is a critical factor when selecting a neural

network architecture for real-time or near-real-time computer

vision tasks. It is commonly believed that models based on

the EfficientDet architecture offer performance comparable to

SSD in terms of inference speed, while YOLOv8 and newer

architectures tend to outperform SSD in this regard. However,

in practical engineering applications, the choice of architecture

depends on a variety of factors. A recent comprehensive

survey [24] convincingly demonstrates that inference speed

is largely determined by system-level parameters.

When comparing performance across models, it is essen-

tial to specify the exact configurations under comparison,

including model variants (particularly their size), hardware

specifications (e.g., CPU architecture, memory bandwidth,

GPU availability and type), and runtime conditions (such as

parallelization strategies, buffering techniques, and inference

frameworks).

Thus, the inference speed of a given architecture must

be evaluated in the context of the specific requirements and

constraints of the target vision system. In our case, the

SSD-ADSAR-based model, when executed with a parallelized

inference mechanism (processing independently the image

fragments into which the original frame is divided), achieves

a throughput exceeding 40 frames per second for an input

resolution of 1920×1080 on an NVIDIA RTX 3090 GPU.

This performance is sufficient from a systems perspective,

especially considering the standard input rate of 30 FPS from

typical camera hardware.

B. Data Description and Preprocessing

Video streams obtained from ornithological monitoring sys-

tems are typically captured at high resolutions, such as Full

HD (1920×1080) or 4K (3840×2160), enabling the preserva-

tion of fine details in the scene. However, using full-resolution

images during model training introduces several limitations,

including increased memory consumption, reduced processing

speed, and a substantial growth in final model size. A common

solution to these issues is image downscaling. Nevertheless,
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Fig. 1. The scheme of a convolutional neural network SSD-ADSAR

in small object detection tasks, such preprocessing is often

counterproductive, as it leads to the loss of critical fine-grained

visual features necessary for accurate localization.

To train the detection model, a dataset of 10000 original

images was collected from various imaging devices. These

images were preprocessed by splitting them into fixed-size

patches of 640×640 pixels, a format commonly used in SSD-

based architectures. During the cropping process, care was

taken to avoid partial inclusion of objects of interest at patch

boundaries. The annotation data served as a guide, and patches

were generated in a way that centered around target objects.

As a result of this preprocessing, the dataset was expanded to

23061 training images.

C. Dataset Challenges and Augmentation

Analysis of the initial training dataset revealed two key

challenges. First, there was a pronounced imbalance in back-

ground contexts: the majority of frames depicted uniform

scenes (e.g., low-detail skies or homogeneous forest areas),

whereas scenes containing urban environments, man-made

structures, or mixed landscapes were significantly underrepre-

sented. Second, the target objects (birds) exhibited high within-

class variability in terms of shape, spatial positioning, and

especially size — ranging from just a few pixels to several

dozen pixels in projected length. These factors reduced the

model’s generalization capability and necessitated additional

measures in constructing the training dataset.

Another challenge was the limited availability of high-

quality annotated datasets suitable for training models on

small object detection. For example, although the AirBirds

dataset [1] is widely used, it suffers from several common

issues seen in open-source corpora: inconsistent annotation

quality, inaccuracies in object boundary placement, and overly

large bounding boxes around targets — issues that are partic-

ularly critical when working with small objects. In scenarios

where precise annotation is essential, such limitations signifi-

cantly constrain the usability of existing public datasets.

To increase the representativeness of the training data

and improve model robustness, synthetic image generation

was employed. Synthetic samples were generated using the

Stable Diffusion XL model [25], fine-tuned via the LoRA

method [26] (rank 128) on a small set of real bird images from

the original dataset. Fig. 2 shows an example of a generated

image with visually plausible content and an annotated region

of interest. To quantitatively assess the quality of the synthetic

data, the Frechet Inception Distance (FID) metric was com-

puted, resulting in a score of 19.44, which corresponds to a

good, near-realistic level of image generation.

Fig. 2. Example of a synthetic bird image generated with Stable Diffusion
XL and LoRA, used to augment the training dataset and balance background
types

The integration of synthetic data helped to mitigate the

background distribution imbalance and improve the general-

ization ability of the model. As a result, the final training

dataset was expanded to 28061 images.

D. Training Setup and Evaluation Metrics

As in [23], training was performed using an NVIDIA RTX

3090 GPU throughout 100 epochs. The AdamW optimizer

was employed, a variant of the well-known Adam optimizer

featuring decoupled weight decay regularization, with the

following parameters: β1 = 0.9, β2 = 0.999, and a weight

decay factor of 0.05. The batch size was set to 16. The initial

learning rate was 10−8, and cosine annealing was applied

throughout training, gradually decreasing the learning rate to

zero.
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Fig. 3. The precision-recall curve for the model performing the detection

Model evaluation was based on the precision–recall (PR)

curve, which accounts for both precision and recall. The

resulting area under the PR curve (AUC-PR) was 0.83. The

resulting precision–recall curve is shown in Fig. 3.

The achieved detection performance is considered high,

especially given that object detection in the context of this

study typically serves as an intermediate step rather than a final

goal. In monitoring systems, the output of the neural detector

is commonly used to initialize automatic object tracking, for

example, by generating a strobe region or defining a capture

zone for a tracking module.

It should be noted that the reported accuracy metrics were

calculated for objects in the training set with a maximum

projected size of 20 pixels or greater, which generally cor-

responds to target parameters for automated bird detection

systems. These objects accounted for 87% of the training

data, while objects with a maximum projected size of 10 to

20 pixels made up 9%, and those between 5 and 10 pixels

(with a minimum of 5×5 pixels) represented 4%. Accuracy

metrics were not computed for the latter two categories; these

samples were included to diversify the dataset and reflect the

real-world conditions in which smaller-than-target projections

may also be present and, in some cases, successfully detected.

In particular, the third category of objects (with minimal sizes)

included high-contrast targets on uniform backgrounds, which

enabled reliable detection within the proposed algorithm (see

Fig. 4).

E. Experimental Setup

The experimental study was conducted for two detectors: the

prototype model from [23] and the modified model proposed

in this work. Both models were trained on the same set of real

images; however, the second model additionally incorporated

synthetic data. As part of the adaptation of SSD-ADSAR to

the target task, the attention block was expanded and the layer

structure was optimized, while maintaining the total number

of parameters. The evaluation was carried out on a separate

Fig. 4. Illustration of a minimum-size training object (5×5 pixels), represent-
ing the lower bound of detectable targets

test set of bird images not used during training. Examples of

such images are shown in Fig. 5.

Fig. 5. Sample test images demonstrating varied environmental conditions
for model evaluation

During the experiments, the position of each object in every

image was determined automatically. The accuracy of both

models was assessed using standard metrics: precision, recall,

F1-score, as well as mean average precision at two thresholds,

mAP@0.5 and mAP@0.5:0.95. The evaluation results are

presented in Figs. 6, 7, and 8.

F. Results
The proposed detector model demonstrates a significant

improvement in recall, showing a 9.2% increase compared

to the prototype. This led to a 4.8% gain in the F1-score.

The mAP values increased by 6.4% and 2.8%, respectively,

confirming the improved object detection performance of the

new model. Despite the gain in recall, precision remained

nearly unchanged; the proposed detector misses fewer objects

without compromising precision.
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Fig. 6. mAP comparison between the prototype and the proposed model

Fig. 7. Precision, recall and F1-score comparison between the prototype and
the proposed model

To further assess the proposed solution, a comparison

was conducted with the results of the standard pre-trained

YOLO11n model on the same validation dataset. This model

was selected as a baseline for comparative evaluation due to

the following reasons:

• YOLO11n is widely considered an informal industry

standard for object detection tasks, making it a suitable

benchmark for assessing the complexity of the specialized

detection problem addressed in this study;

• the model was originally trained on public datasets that

include the “bird” class, although under conditions not

specifically tailored to ornithological monitoring systems.

Nevertheless, the training data included scenes generally

similar to those encountered in bird monitoring systems

(see Fig. 9).

YOLO11n achieved the following results on the target data:

F1-score = 0.33, mAP@0.5 = 0.346. These results are un-

derstandable, as the pre-trained YOLO11n model was trained

on datasets and designed for tasks with entirely different

characteristics. The purpose of reporting these results is not to

Fig. 8. Comparison of metrics for the prototype and the proposed model
using a radar chart

Fig. 9. Example from the COCO dataset [27], illustrating differences between
generic training data and ornithological scenes

criticize a well-known architecture, but to highlight the fact

that the task of detecting objects of interest in monitoring

systems has distinct data and scene-specific challenges. These

challenges make it impractical to rely solely on off-the-shelf

models for such applications.

Experiments showed that the proposed method performs re-

liably in both simple and complex scenes. It ensures sufficient

processing speed and delivers high detection accuracy across

a wide range of conditions, including challenging scenarios.

V. DISCUSSION AND CONCLUSION

This study presents a method for detecting objects of

interest, specifically designed for the analysis of video data in

ornithological monitoring tasks. To detect objects of interest, a

convolutional architecture, SSD-ADSAR, with a dual-stream

self-attention module, is proposed. To better adapt the detector

architecture to the specific task, we enhanced the attention

mechanism by increasing the number of attention heads and

adjusted the network depth-to-width ratio to deepen feature

representations while preserving the overall parameter count.

These structural improvements contributed to more accurate
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detection of both small and large objects in complex natural

scenes without increasing computational costs. The integration

of synthetic images into the training dataset, generated using

Stable Diffusion XL with LoRA fine-tuning, allowed for the

mitigation of dataset imbalance and enhanced the generaliza-

tion ability of the model.

The proposed model achieved an mAP@0.5 of 0.806, which

is 6.4% higher than the baseline, and an mAP@0.5:0.95 of

0.431, representing a 2.8% improvement. The overall F1 score

improved by 4.8%. A comparison with the industrial detector

YOLO11n, which achieved F1 = 0.33 and mAP@0.5 = 0.346

on the same validation data, confirms the relevance of devel-

oping an architecture adapted to the detection of small-sized

objects. The results of the experimental evaluation demonstrate

that the proposed method provides accurate detection of small

objects (mAP@0.5 = 0.876 and mAP@0.5:0.95 = 0.645) and

delivers high runtime performance, close to real-time (over

40 frames per second at a resolution of 1920×1080 using an

NVIDIA RTX 3090 GPU).

While the proposed model achieves real-time performance

on modern GPUs, its deployment on edge devices and low-

power platforms remains challenging. In resource-constrained

environments, there is an inherent trade-off between main-

taining high detection accuracy and reducing computational

load to meet strict latency and energy requirements. Future

work will therefore focus on model compression, pruning, and

quantization strategies to achieve a more favorable balance

between accuracy and efficiency.

Current experiments rely solely on visual input. However,

ornithological monitoring often requires robustness under poor

visibility, occlusion, or clutter. A promising direction is the

integration of complementary modalities, such as radar or

infrared sensors, which could enhance detection reliability in

low-light or dense habitats. Exploring multimodal architec-

tures will broaden the applicability of the approach across a

wider range of ecological scenarios.

In addition, the use of generative models to augment training

datasets offers benefits in terms of diversity and scale, but it

also introduces risks. Synthetic images may embed hidden bi-

ases, overrepresent certain visual patterns, or reduce ecological

validity compared to real-world observations. To mitigate these

risks, future efforts should emphasize rigorous evaluation of

synthetic data quality and ensure balanced integration with

real datasets. A combined strategy, leveraging both synthetic

and naturalistic data, appears essential for maintaining eco-

logical fidelity and avoiding systematic biases in monitoring

outcomes.
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