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Abstract—Automatic bird detection represents one of the most
critical technical challenges in ornithological monitoring systems,
which are relevant for scientific wildlife observation, biodiversity
assessment, and practical applications in agriculture and en-
vironmental management. Modern monitoring systems require
high accuracy under real-world imaging conditions; however,
automatic detection of birds is complicated by the presence of
small and low-contrast objects embedded in complex and highly
detailed natural scenes. An additional challenge is the high intra-
class variability, which arises from the diversity of bird species,
varying viewpoints, and differences in object size, both due to
species-specific morphology and varying distances to the camera.

This study is dedicated to the development of an effective
method for detecting small and low-contrast objects in individual
frames of a video stream. The proposed solution is based on a
modified SSD-ADSAR architecture enhanced with a dual-stream
attention mechanism. On the test dataset, the model achieved
mAP@0.5 = 0.876 and mAP@0.5:0.95 = 0.645. The use of
synthetically augmented data helped to mitigate the background-
type imbalance and improved the model’s robustness under
complex visual conditions. The practical significance of this work
lies in its applicability to real-time ornithological video mon-
itoring systems, as well as to nature conservation, agricultural
automation, and scientific ornithological research. The developed
method is tailored to typical conditions of ornithological moni-
toring (such as small, fast-moving objects and cluttered natural
backgrounds), and it outperforms existing solutions designed
primarily for detecting artificial airborne objects in terms of
detection accuracy.

I. INTRODUCTION

In recent years, the task of moving object automatic de-
tection in video streams has received increasing attention.
This has been facilitated by the development of high-quality
imaging equipment and the emergence of computing systems
capable of processing visual data in real time. These techno-
logical advancements have enabled the practical application
of more computationally intensive computer vision methods.
Nevertheless, the problem of detecting small objects in com-
plex scenes with high background variability and significant
intra-class dispersion remains unresolved and highly relevant.
Within-class variability is primarily driven by differences in
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object scale, appearance, and viewing angle, all of which
significantly complicate the training of robust detectors.

The development of video analytics systems for ornitholog-
ical monitoring faces several challenges, including heteroge-
neous and cluttered natural backgrounds, dynamically chang-
ing lighting conditions, partial occlusions, and the presence
of naturally moving elements in the scene. In recent years,
interest in automated bird monitoring in natural habitats has
grown substantially. To support algorithm development and
evaluation, several specialized datasets have been proposed,
such as AirBirds [1] and FBD-SV-2024 [2], which include
video sequences captured in diverse environmental conditions.
In addition, several studies [3]-[5] have presented integrated
surveillance systems that combine infrared cameras and radar
modules for continuous monitoring, along with adaptations
of YOLOv8-based models tailored to bird detection in open
natural environments.

In this work, we address the problem of automatic detection
of objects of interest under conditions typical for ornitho-
logical monitoring in open environments—such as highly
variable backgrounds, dynamic illumination, partial occlusion,
and pronounced target class variability due to species diversity,
object size, and perspective changes.

In real-world bird monitoring scenarios, observation dis-
tances typically range from several hundred meters to several
kilometers. For instance, technical guidance [6] reports that
optical and infrared systems are commonly used for reliable
bird detection at distances of 300—-600 meters under both
daylight and nighttime conditions. More advanced setups
employing long-range optical zoom and multi-sensor config-
urations have demonstrated the ability to detect medium and
large birds at significantly greater distances. In particular, a
study [7] reports successful detections at up to 2000 meters,
and another work [8] using stereo imaging and radar tracking
describes detections of large raptors at distances of up to 2800
meters. Similar performance levels are reported in the context
of radar-based migration monitoring, where effective detection
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ranges reach approximately 1000 meters [9].

The method proposed in this study is specifically tailored
for small object detection, where the term “small” denotes
targets with a projection size of approximately 15x15 to 20x20
pixels in a Full HD image frame. Under typical viewing
angles, this corresponds to the projected size of an average-
sized bird at distances of about 800 to 1500 meters—a range
typical for ornithological monitoring systems. Notably, this
size regime encompasses several of the most operationally
significant species, including pigeons and crows, which are
both relatively large and widely distributed, thus representing
prevalent targets in such applications. Objects of this scale
present a significant challenge for most standard detection
algorithms, necessitating architectural and training adaptations
to maintain high accuracy. Further complicating the problem
are computational resource constraints, especially in applica-
tions requiring near real-time performance and deployment on
mobile or power-limited monitoring platforms.

II. RELATED WORK

Historically, the task of automatic object detection in images
and videos began with methods based on predefined feature
extraction filters. Early widespread solutions included cascade
classifiers such as Viola—Jones [10] and handcrafted features
like Haar and LBP [11], primarily used for face detection.
Later, more advanced descriptors were introduced, such as
SIFT [12], SURF [13], and HOG (Histograms of Oriented
Gradients), which proved effective when combined with sup-
port vector machines (SVM) in the classical “HOG + SVM”
pipeline [14]. However, these approaches suffer from limited
generalization capabilities in challenging visual conditions, are
sensitive to scale and geometric transformations, and typically
demonstrate poor robustness to occlusions and background
variations.

Modern video analytics largely relies on deep learning
techniques for object detection, segmentation, tracking, and
classification in video streams. Some of the first deep learning-
based object detectors were two-stage architectures, such as R-
CNN, Fast R-CNN, and Faster R-CNN, which achieved high
accuracy but exhibited relatively low inference speed.

A major leap in real-time object detection was made
possible by one-stage detectors such as SSD (Single Shot
Detector) [15]. Introduced in 2015, SSD generates predictions
at multiple feature levels in a single forward pass. While
it is computationally efficient and effectively utilizes multi-
scale features, its performance on complex datasets (e.g.,
COCO [16]) remains relatively modest.

EfficientDet [17], introduced in 2019, represented a further
evolution of one-stage CNN-based detectors, aiming to balance
detection accuracy and computational efficiency. It employs
the EfficientNet backbone for feature extraction and introduces
a Bidirectional Feature Pyramid Network (BiFPN) to better
fuse multi-scale features. The smaller variants (D0-D2) enable
near real-time inference with moderate mAP, while the larger
ones (D6-D7) achieve higher accuracy (around 50-52% mAP
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on COCO) at the cost of reduced speed, processing only a few
frames per second.

Among single-stage convolutional detectors, the YOLO
(You Only Look Once) family continues to stand out. Modern
versions (YOLOv8-YOLOvV11) achieve high detection accu-
racy with real-time inference speeds. For instance, YOLOV7,
released in 2022, achieved 56.8% mAP on the COCO dataset
with a throughput exceeding 30 FPS, surpassing earlier detec-
tors in terms of the accuracy—speed trade-off [18]. However,
the structural limitations of YOLO-based architectures have
led to a plateau in performance gains in subsequent versions.

In 2020, transformer-based object detectors emerged, be-
ginning with DETR (DEtection TRansformer) [19]. DETR
combines a CNN-based feature extractor (e.g., ResNet) with
a transformer encoder—decoder architecture, which models
global object relationships. While DETR achieves high ac-
curacy, it requires long training times, performs suboptimally
on datasets with high within-class variability, and suffers from
limited spatial resolution in feature representations.

To address these limitations, Deformable DETR [20] was
introduced. It replaces standard attention with deformable at-
tention, focusing computation on a sparse set of key sampling
points around reference locations, and employs multi-scale
feature maps (via FPN). This approach significantly improves
performance on small objects and achieves comparable accu-
racy to DETR (43-45% AP) while reducing training time (e.g.,
50 epochs).

In 2022, the DINO detector [21] was proposed, currently
considered one of the most accurate and efficient DETR-based
models. It incorporates several key innovations, such as robust-
ness to slight misalignments in annotations, improved anchor
box initialization, and a two-stage bounding box prediction
module. DINO achieves 49.4% AP on COCO with a ResNet-
50 backbone after 12 training epochs and up to 51.3% AP
after 24 epochs.

DiffusionDet [22] extends object detection into the domain
of diffusion models. Instead of predicting bounding boxes
directly, it models the detection task as a denoising process,
similar to how generative diffusion models work. The model
learns to progressively refine noisy representations into accu-
rate object locations and categories through iterative inference
steps. On COCO with a ResNet-50 backbone, DiffusionDet
achieves approximately 45.8% mAP.

Despite  significant advances in transformer-based,
diffusion-based, spatiotemporal, and hybrid detection
models, their practical use in resource-constrained real-time
video analytics systems remains limited. Transformer-
based and hybrid architectures typically require substantial
computational resources during both training and inference.
While diffusion models offer greater flexibility in modeling,
they still fail to meet the real-time throughput requirements
for streaming video input.

In scenarios with limited computing power and the need for
near real-time performance, lightweight single-stage convolu-
tional detectors—specifically adapted to the target deployment
conditions—remain the most practical and balanced solution.
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III. PROPOSED SOLUTION

For the task of small object detection, this work employs
a modified version of the SSD-ADSAR architecture [23],
specifically adapted to the problem’s unique challenges. We
extended the Multi-Head Dual Stream Attention block from
three to five heads, each configured to focus on either global
or local attention. Each head now processes tokens of different
resolutions, enabling robust detection of both small and large
objects, even against complex backgrounds. In addition, we
increased the network depth while proportionally reducing
the width of individual layers, keeping the overall parameter
count unchanged. This modification resulted in deeper feature
representations without increasing computational cost, and led
to improved prediction accuracy.

Therefore, the model was designed to be robust to back-
ground changes caused by camera motion and capable of
detecting low-contrast and small-scale objects. The overall
structure of the proposed solution is illustrated in Fig 1. The
key component of the model is the dual-stream self-attention
module, ADSAR.

Let us consider the ADSAR module in more detail. Let
X € RHXWXD pe the input feature representation to the
ADSAR block after convolutional operations in the feature
extraction stage (where H, W, and D denote the spatial
dimensions and depth of the input tensor). The features are
projected into queries (), keys K, and values V' as follows:

Q=XW?e K=xwkK, v=xw",

where WQ WE WV e RP*P" are learnable projection
matrices.

To separate global and local information, two attention
masks M, (local) and M, (global) are introduced:

MiGi, j) = 0, if j € N(7),
Wed) = —o0, otherwise
. 0, ifj¢N(),
M,(i,j) =
a(i:) {—oo7 otherwise

where N (i) denotes a fixed-size neighborhood around position
1. Using these masks, separate attention weights are computed
for the local and global streams:
_ QKT
A; = softmax (\/ﬁ + M; |,
KT
9y,
VD’
The attention responses for the local and global streams are
then calculated as:

A, = softmax (

R =AYV, R;,=A4,V,
and their difference is computed as:

Res = ) — Ry,
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which serves to enhance relevant features of small objects.
Finally, the resulting representation is integrated back with
the original features as follows:

X' =X +Res- F,

where F € RP'*D ig a learnable projection matrix that maps
the result back to the original dimensional space.

Thanks to this architecture, SSD-ADSAR achieves superior
mAP metrics for small object detection and better localiza-
tion accuracy compared to other solutions such as RetinaNet
and YOLOvVI11. A detailed comparison of SSD-ADSAR per-
formance with competing architectures, including YOLOVS,
SSD, and DETR, is provided in [23]. In particular, experi-
mental results show that SSD-ADSAR outperforms YOLOvVS8
by more than 5% in key metrics such as AP and IoU.

IV. EXPERIMENTAL EVALUATION
A. Motivation and Model Selection

Inference speed is a critical factor when selecting a neural
network architecture for real-time or near-real-time computer
vision tasks. It is commonly believed that models based on
the EfficientDet architecture offer performance comparable to
SSD in terms of inference speed, while YOLOVS and newer
architectures tend to outperform SSD in this regard. However,
in practical engineering applications, the choice of architecture
depends on a variety of factors. A recent comprehensive
survey [24] convincingly demonstrates that inference speed
is largely determined by system-level parameters.

When comparing performance across models, it is essen-
tial to specify the exact configurations under comparison,
including model variants (particularly their size), hardware
specifications (e.g., CPU architecture, memory bandwidth,
GPU availability and type), and runtime conditions (such as
parallelization strategies, buffering techniques, and inference
frameworks).

Thus, the inference speed of a given architecture must
be evaluated in the context of the specific requirements and
constraints of the target vision system. In our case, the
SSD-ADSAR-based model, when executed with a parallelized
inference mechanism (processing independently the image
fragments into which the original frame is divided), achieves
a throughput exceeding 40 frames per second for an input
resolution of 1920x1080 on an NVIDIA RTX 3090 GPU.
This performance is sufficient from a systems perspective,
especially considering the standard input rate of 30 FPS from
typical camera hardware.

B. Data Description and Preprocessing

Video streams obtained from ornithological monitoring sys-
tems are typically captured at high resolutions, such as Full
HD (1920x1080) or 4K (3840x2160), enabling the preserva-
tion of fine details in the scene. However, using full-resolution
images during model training introduces several limitations,
including increased memory consumption, reduced processing
speed, and a substantial growth in final model size. A common
solution to these issues is image downscaling. Nevertheless,
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Fig. 1. The scheme of a convolutional neural network SSD-ADSAR

in small object detection tasks, such preprocessing is often
counterproductive, as it leads to the loss of critical fine-grained
visual features necessary for accurate localization.

To train the detection model, a dataset of 10000 original
images was collected from various imaging devices. These
images were preprocessed by splitting them into fixed-size
patches of 640x640 pixels, a format commonly used in SSD-
based architectures. During the cropping process, care was
taken to avoid partial inclusion of objects of interest at patch
boundaries. The annotation data served as a guide, and patches
were generated in a way that centered around target objects.
As a result of this preprocessing, the dataset was expanded to
23061 training images.

C. Dataset Challenges and Augmentation

Analysis of the initial training dataset revealed two key
challenges. First, there was a pronounced imbalance in back-
ground contexts: the majority of frames depicted uniform
scenes (e.g., low-detail skies or homogeneous forest areas),
whereas scenes containing urban environments, man-made
structures, or mixed landscapes were significantly underrepre-
sented. Second, the target objects (birds) exhibited high within-
class variability in terms of shape, spatial positioning, and
especially size — ranging from just a few pixels to several
dozen pixels in projected length. These factors reduced the
model’s generalization capability and necessitated additional
measures in constructing the training dataset.

Another challenge was the limited availability of high-
quality annotated datasets suitable for training models on
small object detection. For example, although the AirBirds
dataset [1] is widely used, it suffers from several common
issues seen in open-source corpora: inconsistent annotation
quality, inaccuracies in object boundary placement, and overly
large bounding boxes around targets — issues that are partic-
ularly critical when working with small objects. In scenarios
where precise annotation is essential, such limitations signifi-
cantly constrain the usability of existing public datasets.

To increase the representativeness of the training data
and improve model robustness, synthetic image generation
was employed. Synthetic samples were generated using the
Stable Diffusion XL model [25], fine-tuned via the LoRA
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method [26] (rank 128) on a small set of real bird images from
the original dataset. Fig. 2 shows an example of a generated
image with visually plausible content and an annotated region
of interest. To quantitatively assess the quality of the synthetic
data, the Frechet Inception Distance (FID) metric was com-
puted, resulting in a score of 19.44, which corresponds to a
good, near-realistic level of image generation.

Fig. 2. Example of a synthetic bird image generated with Stable Diffusion
XL and LoRA, used to augment the training dataset and balance background

types

The integration of synthetic data helped to mitigate the
background distribution imbalance and improve the general-
ization ability of the model. As a result, the final training
dataset was expanded to 28061 images.

D. Training Setup and Evaluation Metrics

As in [23], training was performed using an NVIDIA RTX
3090 GPU throughout 100 epochs. The AdamW optimizer
was employed, a variant of the well-known Adam optimizer
featuring decoupled weight decay regularization, with the
following parameters: 5, = 0.9, So = 0.999, and a weight
decay factor of 0.05. The batch size was set to 16. The initial
learning rate was 10~%, and cosine annealing was applied
throughout training, gradually decreasing the learning rate to
Zero.
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Fig. 3. The precision-recall curve for the model performing the detection

Model evaluation was based on the precision—recall (PR)
curve, which accounts for both precision and recall. The
resulting area under the PR curve (AUC-PR) was 0.83. The
resulting precision—recall curve is shown in Fig. 3.

The achieved detection performance is considered high,
especially given that object detection in the context of this
study typically serves as an intermediate step rather than a final
goal. In monitoring systems, the output of the neural detector
is commonly used to initialize automatic object tracking, for
example, by generating a strobe region or defining a capture
zone for a tracking module.

It should be noted that the reported accuracy metrics were
calculated for objects in the training set with a maximum
projected size of 20 pixels or greater, which generally cor-
responds to target parameters for automated bird detection
systems. These objects accounted for 87% of the training
data, while objects with a maximum projected size of 10 to
20 pixels made up 9%, and those between 5 and 10 pixels
(with a minimum of 5x5 pixels) represented 4%. Accuracy
metrics were not computed for the latter two categories; these
samples were included to diversify the dataset and reflect the
real-world conditions in which smaller-than-target projections
may also be present and, in some cases, successfully detected.
In particular, the third category of objects (with minimal sizes)
included high-contrast targets on uniform backgrounds, which
enabled reliable detection within the proposed algorithm (see
Fig. 4).

E. Experimental Setup

The experimental study was conducted for two detectors: the
prototype model from [23] and the modified model proposed
in this work. Both models were trained on the same set of real
images; however, the second model additionally incorporated
synthetic data. As part of the adaptation of SSD-ADSAR to
the target task, the attention block was expanded and the layer
structure was optimized, while maintaining the total number
of parameters. The evaluation was carried out on a separate
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Fig. 4. Illustration of a minimum-size training object (5x5 pixels), represent-
ing the lower bound of detectable targets

test set of bird images not used during training. Examples of
such images are shown in Fig. 5.

Fig. 5. Sample test images demonstrating varied environmental conditions
for model evaluation

During the experiments, the position of each object in every
image was determined automatically. The accuracy of both
models was assessed using standard metrics: precision, recall,
Fl-score, as well as mean average precision at two thresholds,
mAP@0.5 and mAP@0.5:0.95. The evaluation results are
presented in Figs. 6, 7, and 8.

F. Results

The proposed detector model demonstrates a significant
improvement in recall, showing a 9.2% increase compared
to the prototype. This led to a 4.8% gain in the Fl-score.
The mAP values increased by 6.4% and 2.8%, respectively,
confirming the improved object detection performance of the
new model. Despite the gain in recall, precision remained
nearly unchanged; the proposed detector misses fewer objects
without compromising precision.
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Fig. 7. Precision, recall and Fl-score comparison between the prototype and
the proposed model

To further assess the proposed solution, a comparison
was conducted with the results of the standard pre-trained
YOLO11n model on the same validation dataset. This model
was selected as a baseline for comparative evaluation due to
the following reasons:

e YOLOIlIn is widely considered an informal industry
standard for object detection tasks, making it a suitable
benchmark for assessing the complexity of the specialized
detection problem addressed in this study;

o the model was originally trained on public datasets that
include the “bird” class, although under conditions not
specifically tailored to ornithological monitoring systems.
Nevertheless, the training data included scenes generally
similar to those encountered in bird monitoring systems
(see Fig. 9).

YOLOI11n achieved the following results on the target data:
Fl-score = 0.33, mAP@0.5 = 0.346. These results are un-
derstandable, as the pre-trained YOLOI11n model was trained
on datasets and designed for tasks with entirely different
characteristics. The purpose of reporting these results is not to
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Fig. 8. Comparison of metrics for the prototype and the proposed model
using a radar chart

Fig. 9. Example from the COCO dataset [27], illustrating differences between
generic training data and ornithological scenes

criticize a well-known architecture, but to highlight the fact
that the task of detecting objects of interest in monitoring
systems has distinct data and scene-specific challenges. These
challenges make it impractical to rely solely on off-the-shelf
models for such applications.

Experiments showed that the proposed method performs re-
liably in both simple and complex scenes. It ensures sufficient
processing speed and delivers high detection accuracy across
a wide range of conditions, including challenging scenarios.

V. DISCUSSION AND CONCLUSION

This study presents a method for detecting objects of
interest, specifically designed for the analysis of video data in
ornithological monitoring tasks. To detect objects of interest, a
convolutional architecture, SSD-ADSAR, with a dual-stream
self-attention module, is proposed. To better adapt the detector
architecture to the specific task, we enhanced the attention
mechanism by increasing the number of attention heads and
adjusted the network depth-to-width ratio to deepen feature
representations while preserving the overall parameter count.
These structural improvements contributed to more accurate
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detection of both small and large objects in complex natural
scenes without increasing computational costs. The integration
of synthetic images into the training dataset, generated using
Stable Diffusion XL with LoRA fine-tuning, allowed for the
mitigation of dataset imbalance and enhanced the generaliza-
tion ability of the model.

The proposed model achieved an mAP@0.5 of 0.806, which
is 6.4% higher than the baseline, and an mAP@0.5:0.95 of
0.431, representing a 2.8% improvement. The overall F1 score
improved by 4.8%. A comparison with the industrial detector
YOLOI11n, which achieved F1 = 0.33 and mAP@(Q.5 = 0.346
on the same validation data, confirms the relevance of devel-
oping an architecture adapted to the detection of small-sized
objects. The results of the experimental evaluation demonstrate
that the proposed method provides accurate detection of small
objects (MAP@0.5 = 0.876 and mAP@0.5:0.95 = 0.645) and
delivers high runtime performance, close to real-time (over
40 frames per second at a resolution of 1920x1080 using an
NVIDIA RTX 3090 GPU).

While the proposed model achieves real-time performance
on modern GPUs, its deployment on edge devices and low-
power platforms remains challenging. In resource-constrained
environments, there is an inherent trade-off between main-
taining high detection accuracy and reducing computational
load to meet strict latency and energy requirements. Future
work will therefore focus on model compression, pruning, and
quantization strategies to achieve a more favorable balance
between accuracy and efficiency.

Current experiments rely solely on visual input. However,
ornithological monitoring often requires robustness under poor
visibility, occlusion, or clutter. A promising direction is the
integration of complementary modalities, such as radar or
infrared sensors, which could enhance detection reliability in
low-light or dense habitats. Exploring multimodal architec-
tures will broaden the applicability of the approach across a
wider range of ecological scenarios.

In addition, the use of generative models to augment training
datasets offers benefits in terms of diversity and scale, but it
also introduces risks. Synthetic images may embed hidden bi-
ases, overrepresent certain visual patterns, or reduce ecological
validity compared to real-world observations. To mitigate these
risks, future efforts should emphasize rigorous evaluation of
synthetic data quality and ensure balanced integration with
real datasets. A combined strategy, leveraging both synthetic
and naturalistic data, appears essential for maintaining eco-
logical fidelity and avoiding systematic biases in monitoring
outcomes.
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