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Abstract—Background/Motivation: Breast cancer is the most
common type of cancer among women. Integrating machine
learning models with mammography holds the potential to
improve breast cancer screening and diagnostics by making
them more accurate, efficient, and accessible, for example by
assessing whether a whole mammogram contains suspicious
clusters of microcalcifications. Methods: This study addresses
the classification of mammogram patches into two categories:
those with suspicious clusters of microcalcifications and those
without. Subsequent processing of whole mammograms by sliding
window will provide the assessment of the whole mammogram.
Using high-resolution patches (674 x 674 pixels) was crucial to
preserve the detail necessary for detecting microcalcifications.
Dataset: Data were sourced from the CBIS-DDSM and OMI-DB
databases, each presenting unique challenges in pre-processing.
The study highlighted the importance of manual evaluation to
ensure the accuracy of patches, particularly when generating
patches without suspicious clusters. Proposed Model: For model
training, the ResNet101 convolutional architecture was employed,
leveraging transfer learning with pre-trained weights on Ima-
geNet to achieve faster convergence and better performance. Var-
ious hyperparameters, including learning rate and weight decay,
were optimized. Results: The best model achieved a validation
accuracy of 98.2% (F1 score - 0.955, MCC - 0.944, specificity
- 99.1%, and sensitivity - 94.6%). Conclusion: The achieved
performance and model interpretation demonstrate a strong
capability in identifying important radiological features and
handling visually challenging microcalcifications. The model has
been made publicly available. Despite some incorrect predictions,
the model reliably located clusters, suggesting practical utility in
clinical settings where high-resolution imaging is essential.

I. INTRODUCTION

Breast cancer has an incidence rate of 46.8 per 100,000
people (age-standardized) [1]. It’s the most common type of
cancer. Early diagnosis can lead to almost complete recovery,
with a 99% S5-year relative survival rate if detected at a local
stage [2]. Because of this, many countries have implemented
mammography screening programs. Mammography is an ef-
fective method for detecting cancer before any symptoms
appear. Common abnormalities detectable by mammography
include masses, calcifications, architectural distortions, and
asymmetries. The presence of these abnormalities may indicate
cancer.

This work focuses on the microcalcification findings. The
other type of calcifications is macrocalcifications, which are
larger and typically benign compared to microcalcifications.
Isolated microcalcifications are very common benign abnor-
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malities in the breast. Suspicion of malignancy increases when
microcalcifications form a cluster. Classifying these clusters is
challenging due to the high variability in their shape, density,
size, number, and distribution. Correct classification can lead
to the detection of ductal carcinoma in situ (DCIS), a pre-
invasive type of cancer that can progress into a more dangerous
invasive type if left untreated. Clusters of calcifications are not
palpable during a physical breast examination, making regular
screening important. DCIS accounts for about 20% to 30%
of all breast cancer cases [3], with mammography diagnosing
about 80% to 90% of these cases [4].

A screening mammography must be evaluated indepen-
dently by two radiologists [5]. If both classify the finding as
suspicious, a biopsy is recommended. Only a biopsy can pro-
vide the most relevant information about the lesion’s dignity.
Only 15% to 45% of biopsies confirm malignancy [6]. These
specifics, along with the volume of examinations involved in
screening, highlight the difficulties associated with accurate
classification.

Introducing artificial intelligence (AI) models into the exam-
ination process could shorten the evaluation time and improve
radiologists’ accuracy. Currently, convolutional neural net-
works (CNNss) are one of the best choices for tasks that involve
image data. They are suitable for classification, detection,
and segmentation tasks. This work focuses on the binary
classification of mammogram patches, determining whether
a patch contains a suspicious cluster of microcalcifications.
Considering that the first step of any examination is the
localization of suspicious abnormalities, emphasis will be
placed on interpreting incorrect predictions with the Grad-
CAM method during model validation [7].

The patch-based approach is designed to function as a
medical decision support system, helping the radiologist who
has already located a suspicious abnormality. The model
provides additional evidence specifically when the physician
is experiencing difficulty in binary classification—determining
if the localized finding is a suspicious cluster requiring further
investigation (such as a biopsy) or if it is a benign formation.
By focusing on this specific localized area, the model directly
supports the workflow where the radiologist needs a second
opinion on a specific finding.

Dense fibroglandular tissue, poor image quality, and over-
lapping structures can make identifying clusters difficult. Both
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microcalcifications and fibroglandular tissue appear white on
mammograms.

Normally, fibroglandular tissue undergoes a fatty trans-
formation with age. When it persists, it can obscure other
abnormalities, particularly masses, as well as microcalcifi-
cations. Therefore these patients are regularly referred for
ultrasound examination. However, ultrasound is not sensitive
enough for the detection and analysis of microcalcifications.
Fibroglandular tissue consists of the following:

o Fibrous tissue: Provides structural support to the breast,
giving it shape and firmness. It is made up of connective
tissue.

o Glandular tissue: Includes the lobules and ducts involved
in milk production and transport. The lobules are the
milk-producing glands, and the ducts are the channels
that carry milk to the nipple.

A. Related studies

The study [8] focused on solving two tasks using convo-
lutional neural networks (CNNs). The first task was similar
to the focus of this study: detecting microcalcifications in
mammogram patches. The second task aimed at classifying
patches with microcalcifications as either benign or malignant.
The authors compared metrics across three different architec-
tures: AlexNet, ResNet18, and ResNet34. They used their own
dataset for training and testing the models, consisting of 1986
mammograms from 1000 unique patients. All images were
collected from a single institute and annotated by three expert
radiologists. Key differences from our study include:

o They used patches of 112 x 112 pixels, whereas our study
uses patches of 674 x 674 pixels.

o Several 112 x 112 pixel patches were created from a
single cluster (our patches aim to cover the entire cluster
or multiple clusters).

e Patches without microcalcifications were taken from
mammograms with microcalcification annotations to
avoid overlap (we used mammograms from patients with-
out any history of microcalcifications, including patches
with other types of abnormalities).

On their test set, they achieved the best accuracy with the
AlexNet architecture, reaching 95% accuracy, 98% sensitivity,
and 89% specificity.

The second study [9] focused on classifying patches with
microcalcifications by developing a custom convolutional ar-
chitecture. They used the INbreast [10] database, which in-
dividually labels calcifications rather than marking a single
suspicious cluster. This results in the database having many
annotations that either cover too large an area with several
clusters or just isolated calcifications. Therefore, manual eval-
uation of patches by a radiologist was necessary for the created
dataset. In this study, smaller patches of 144 x 144 pixels
were used. Their custom architecture, with 8,301 parameters,
achieved an accuracy of 99.3%. For comparison, the authors
also trained a MobileNetV2 architecture with 67,797,505
parameters, which achieved a slightly higher accuracy of
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99.8%, but at the cost of significantly more parameters. The
authors noted that without augmentation, they obtained 1576
patches with findings. Given that the database only offers 308
mammograms with microcalcifications, it implies that multiple
patches were created from each mammogram.

The last study [11] on microcalcification detection used
the Categorized Digital Database for Low-Energy and Sub-
tracted Contrast-Enhanced Spectral Mammography (CDD-
CESM) [12]. This database includes mammograms from a new
imaging modality aimed at improving diagnostic accuracy over
standard digital mammography. However, the authors chose
to use 212 standard digital mammograms from the database.
The study used patches of 224 x 224 pixels and focused
on both isolated calcifications and suspicious clusters. All
created patches were visually evaluated by four radiologists
and categorized as either containing calcifications or not. The
study tested three architectures: ResNetl8, ResNet50, and
ResNet101. All architectures achieved very similar, compa-
rable results, with ResNet50 achieving the highest overall
accuracy of 96.4%.

The innovation and contribution of this work stem primarily
from our advanced data handling methodology and the scale
of input resolution, specifically designed to overcome limita-
tions observed in existing microcalcification detection studies.
We present a significant advancement over previous works
by leveraging high-resolution image patches and combining
diverse clinical data.

The first significant difference in our study is the use of large
patches (674 x 674 pixels) that cover entire clusters or multiple
clusters. This high resolution is a key methodological contri-
bution, as our previous research confirmed that reducing the
resolution significantly decreased the classification accuracy,
a critical factor when dealing with tiny microcalcifications.

The second difference is the significantly larger number
of mammograms from which the patches were created. Our
study worked with thousands of unique mammograms from
different patients. By combining CBIS-DDSM (SFM) and
OMI-DB (FFDM), we ensured that the model was trained on
a wider variety of realistic clinical cases, enhancing reliability
compared to models trained on single, smaller databases such
as INBreast or CDD-CESM.

A third key contribution is the meticulous and transparent
data curation required, especially for generating the negative
class. This rigorous process involved manual visual evaluation
and the deliberate removal of approximately 550 ambiguous
patches, which is often overlooked but crucial for preventing
“trash-in, trash-out” issues.

B. Overview

In Section II we describe two databases of mammography
images with insightful details and also we provide the pre-
processing steps such as mask adjustments, image inverting,
and patch filtering, that were performed in order to prepare
the datasets for the training. Section III presents the results of
numerous experiments. The best Al model is made publicly
available in Supplementary section. For interpretation, the
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Grad-CAM method is used to identify which areas in the
image were important for the selected class (suspicious cluster
or no suspicious cluster). We provide explanations for incorrect
predictions, which were consulted with radiologists. Finally, in
Section V, we conclude with several remarks.

II. MATERIALS AND METHODS
A. Mammography Data

For training and validation purposes, the Curated Breast
Imaging Subset of the Digital Database for Screening Mam-
mography (CBIS-DDSM) [13] and the Optimam Database
(OMI-DB) were used [14].

CBIS-DDSM is a newer, standardized version of the Digital
Database for Screening Mammography (DDSM). It is freely
accessible to anyone and can be downloaded using specialized
software called NBIA Data Retriever. The database provides
mammograms in DICOM format, a standard for transmitting
medical images. The images were originally created using
screen-film mammography (SFM), a now older technology
where the breast image is captured on a special physical film.
Later they were digitized to create a database. Information
on individual findings is available in CSV (comma-separated
value) files, and cases include histopathological results. The
position and size of each finding are determined using binary
masks, which are also stored in DICOM format. These masks
are the same size as the corresponding mammogram, with the
finding area marked in white and the background (other) area
marked in black. The advantage of these masks is the precise
delineation of the finding’s boundaries, which could allow
the use of convolutional networks for segmentation/detection
tasks. The database contains two types of findings: masses and
calcifications, including both microcalcifications and macro-
calcifications. For suspicious microcalcifications, the masks do
not mark individual microcalcifications but the boundaries of
the cluster. An advantage is the official distribution of data to
the training and test set.

Unlike CBIS-DDSM, OMI-DB is not fully open-access.
Access is granted to groups with relevant experience affiliated
with commercial, non-commercial, or educational organiza-
tions. Until 2020, new exams were added annually from
several cancer centers across the UK. There are no updates
on the number of new exams post-2020. Access is granted
to a subset of the exams based on an agreement with the
provider. A major advantage of OMI-DB is that the images
are created using modern Full-Field Digital Mammography
(FFDM), which is the current standard for screening. FFDM
produces direct digital images in DICOM format, generally
capturing details better than SFM. However, OMI-DB is
more complex, and findings are not simply described in CSV
files like CBIS-DDSM. Instead, the official Python library
“omidb” [15] must be used for data processing. It includes all
common types of abnormalities, with masses and suspicious
calcifications being the most frequent. The size and position
of findings are defined using bounding boxes (two coordinates
— bottom left corner and top right corner). A bounding box
can contain a combination of multiple types of findings
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(e.g., calcifications + mass + architectural distortion). The
database also includes mammograms of healthy patients with
no suspicious abnormalities requiring biopsy. Another unique
feature is the inclusion of images from previous exams of the
patient before any suspicious abnormality was detected.

Combining these two databases, which use different tech-
nologies (FFDM and SFM), proved effective in our previous
research [16] focused on the binary classification of patches
with microcalcifications into benign or malignant classes. The
combination significantly improved classification accuracy and
model interpretability. The research showed that a model
trained on a single database could not effectively transfer its
knowledge to the other, highlighting the benefit of a combined
dataset. This improvement is also due to the larger number of
training patches and better class balance. CBIS-DDSM pro-
vides more benign microcalcifications, while OMI-DB offers
more malignant ones. However, a potential drawback of CBIS-
DDSM is the number of findings with microcalcifications that
form small groups rather than clusters. Generally, a small
group of calcifications is not considered suspicious. Specialists
debate how many calcifications are needed to be classified as
a cluster, usually at least five close together. In comparison,
OMI-DB contains more benign clusters that are challenging
for radiologists to classify correctly as they closely resemble
malignant clusters.

B. Data Pre-processing and Dataset Creation

The goal of this study is to accurately classify image patches
into one of two categories: patches with suspicious clusters
of microcalcifications and patches without suspicious clusters
(see Figure 1). All patches were 674 x 674 pixels in size. High
resolution was necessary because microcalcifications are very
small, and reducing the resolution could result in the loss of
important details. Previous studies [17] have also discussed
the importance of not reducing mammogram resolution. Our
previous research [18] confirmed that reducing patches to a
standard resolution of 224 x 224 pixels decreased classification
accuracy. We also observed that patches from FFDM images
performed better after resizing compared to those from SFM
images. Before creating all patches, the mammograms were
normalized to values between 0 and 1.

Fig. 1. The upper row displays patches containing suspicious clusters
of microcalcifications. In contrast, the lower row presents patches without
microcalcification clusters, possibly featuring other types of findings.
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Patches with Suspicious Clusters

Creating patches with suspicious clusters of microcalcifica-
tions was relatively straightforward. Clusters larger than 674 x
674 pixels were excluded. For smaller clusters, the surrounding
area of the mammogram was included, centering the cluster in
the patch. If this wasn’t possible (e.g., clusters near the edges
of the mammogram), the patch was shifted toward the center
of the mammogram.

For CBIS-DDSM, around 30 additional adjustments were
made. Some masks had different resolutions compared to
the original mammogram and were re-scaled. When multiple
findings were close together, masks were unified. Some masks
were slightly adjusted to cover the finding accurately. If a mask
couldn’t be linked to a visible finding, it was excluded. Find-
ings with small groups of microcalcifications were retained
despite their lesser interest compared to clusters.

In OMI-DB, some inverted mammograms were found (nor-
mally, the background is black, but these had a white back-
ground). This inversion was likely done by radiologists to
better classify abnormalities. The problem was fixed by re-
inverting the images. A few images had lower quality with less
sharpness and unexpected gray backgrounds. These findings
were also retained. Given the database’s complexity, suitable
findings were filtered using the following criteria:

« Bounding boxes only with suspicious calcifications (no

other marked abnormalities).

o Findings clearly linked to histopathological results.

o Histopathology results had to be either malignant or

benign.

o Bounding boxes had to have valid coordinates and non-

empty content.

Patches without Suspicious Clusters

Creating patches without suspicious clusters was more
challenging and brought several non-intuitive obstacles. No
public database directly offers such data. The main idea was
to include as much variety as possible (other abnormalities
+ healthy tissue) that the model might encounter on a full
mammogram.

From CBIS-DDSM and OMI-DB, patches with masses
were manually reviewed, as many contained suspicious micro-
calcifications. Especially malignant masses typically include
other features like microcalcifications, and such cases were
excluded. Despite OMI-DB’s ability to indicate combinations
of findings in one bounding box, many cases did not specify
them.

Additional patches came from macrocalcifications in CBIS-
DDSM. Macrocalcifications rarely form clusters and are easy
for doctors to classify as typically benign. The largest category
of added patches was from healthy tissue in OMI-DB. These
were from patients without any histopathological records or
bounding boxes (no abnormalities noted). One patch was
generated from a random location on each mammogram, with
at least 70% of the patch overlapping the breast. A total of
9,699 patches were manually reviewed, and approximately
550 patches with groups or clusters of microcalcifications
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were removed. Due to the frequent presence of unannotated
groups/clusters of microcalcifications, the study focused on
classifying patches rather than detecting them on full mam-
mograms. Object detection training and validation would be
complicated due to insufficient annotations.

Moreover, mammograms would need to be resized to a
smaller resolution due to GPU memory constraints. Patches
with individually scattered calcifications were retained (Figure
2), as were patches with vascular calcifications (Figure 3),
which, while similar to malignant calcifications, are easy for
radiologists to diagnose due to their obvious placement along
vessels.

Fig. 2. Examples of diffuse calcifications, individual calcifications are marked
with a red circle.

Fig. 3. Examples of vascular calcifications marked with a red circle.

Summary of Created Dataset

For CBIS-DDSM patches, the official distribution into train-
ing/validation sets was used. OMI-DB does not provide such
a distribution, so the data was split approximately 80:20 into
training and validation sets. Care was taken to ensure data
independence between sets, which means that patches from
a specific patient are never in both sets. All training set
patches, except healthy tissue patches, were augmented with
three rotations of 90 degrees (90, 180, and 270 degrees). The
total number of patches (with augmentation) is provided in
Table II-B.
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TABLE 1. NUMBER OF PATCHES FOR EACH CLASS INCLUDING 90

DEGREE ROTATIONS
Clusters Train  Validation | Total
Suspicious Clusters | 10752 654 11406
Without Clusters 19190 2596 21786
Total 29942 3250 33192

III. EXPERIMENTAL STUDY AND RESULTS

All models were trained using the PyTorch framework
[19], running on Ubuntu with an Nvidia GeForce RTX 4080
16GB GPU. The Grad-CAM library [20] was used for model
interpretation.

The chosen convolutional architecture was ResNet101 [21],
which in our previous research [18] focusing on mammog-
raphy patches was able to achieve the best results compared
to other architectures such as VGG [22], Inception-V3 [23],
DenseNet [24] and EfficientNet [25]. Although the other archi-
tectures produced comparable results, ResNet101 performed
slightly better. While smaller, lightweight architectures (such
as EfficientNet or MobileNet) might offer advantages in terms
of faster inference time and deployment feasibility, our selec-
tion prioritized maximizing classification accuracy by utilizing
the empirically superior ResNetl101 backbone in conjunction
with high-resolution patches (674 x 674 pixels). Transfer
learning was employed using pre-trained weights from the
ImageNet dataset [26]. Using pre-trained weights generally
leads to faster convergence and improved performance with
limited data [27]. The final classification layer was replaced
with two freshly initialized neurons. During each training
epoch, all layers’ weights were unlocked for training. Due
to the memory demands on the hardware, a mini-batch size of
8 was used in each experiment.

Augmentation of patches in the training set in the form of
90-, 180-, and 270-degree rotations of patches with micro-
calcification clusters was used in each experiment. Additional
weighting was needed for the cross-entropy loss function to
better balance the classes:

e 0.359 for the class without suspicious clusters
e 0.641 for the class with suspicious clusters

Each experiment was carried out for a maximum of 40
epochs, tracking the best validation accuracy achieved.

A. Summary of the experiments

The first experiment focused on finding the optimal learning
rate for the Adam optimizer. The models performed best with
learning rates between le-4 and le-6, as shown in Table III-A.
The best model achieved 97.3% accuracy with a learning rate
of 5e-6.
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TABLE II. RESULTS OF EXPERIMENTS WITH DIFFERENT VALUES OF
LEARNING RATE

Learning Rate | Val. Acc. Train Acc.
le-4 97.2% 97.3%
5e-5 97.2% 98.5%
le-5 97.2% 98.9%
5e-6 97.3% 99.3%
le-6 97.0% 98.2%
AVG 97.2% 98.4%

Next, regularization was applied using the weight decay
hyperparameter to prevent over fitting by penalizing large
weights (smaller weights result in more stable training). The
goal of weight decay is to encourage the model to find simpler
and more robust solutions. Weight decay works similarly to
L2 regularization when used with the Adam optimizer. The
learning rate of Se-6 from the previous experiment was used.
The results are in Table III-A. Most values improved accuracy,
except for a value of le-1, which worsened accuracy, likely
due to overly aggressive weight decay. The best value was le-
3, achieving 97.6% validation accuracy and the best sensitivity
(the proportion of correct predictions of suspicious clusters out
of all suspicious clusters).

TABLE III. RESULTS OF EXPERIMENTS WITH DIFFERENT VALUES OF WEIGHT

DECAY
Weight Decay | Val. Acc. Train Acc.
le-1 97.1% 100.0%
le-2 97.4% 99.5%
le-3 97.6% 99.0%
le-4 97.6% 99.9%
le-5 97.6% 100.0%
AVG 97.5% 99.7%

ResNetl01 - Clusters Classification

Label
Without Clusters

Suspicious Clusters

Without Clusters Suspiciou's Clusters

Predicted

Fig. 4. Confusion matrix of the best model

The final experiment focused on better data augmentation
performed directly during training. Each epoch applied random
augmentation operations to each patch. Using PyTorch tensors,
each patch had a 50% chance of a horizontal flip and the same
chance for a vertical flip. Each patch could also be rotated
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by 0 to 89 degrees. This additional augmentation, combined
with the best-discovered hyperparameters, produced the best
model, achieving the following metrics on the validation set:
98.2% accuracy, F1 score of 0.955, MCC of 0.944, specificity
of 99.1%, and sensitivity of 94.6%. The confusion matrix is
shown in Figure 4.

Grad-CAM interpretation confirmed that the model made
decisions based on significant radiological features. Several
images will be presented in pairs. The left image of the
pair will be the original patch used as input for the model,
supplemented by a red circle indicating the area of interest.
The right image of the pair will be a Grad-CAM interpretation
of the left patch for the predicted class. One figure will contain
multiple pairs. The remaining images will be made up of
triplets of images. The left image will be input patch. The
middle image will show what contributed to the class with
suspicious clusters. The right image will show the contribution
to the class without suspicious clusters.

B. Grad-CAM Interpretation

From visual inspection, it was clear that all correct predic-
tions for patches with suspicious clusters were based on actual
suspicious microcalcifications. The model could accurately
locate visually challenging calcifications (Figure 5), handle
extensive clusters covering a large part of the patch (left pair
in Figure 6), and correctly detect multiple significant clusters
in one patch (right pair in Figure 6).

Fig. 5. Left pair: hard-to-distinguish cluster from CBIS-DDSM. Right pair:
hard-to-distinguish cluster from OMI-DB.

Fig. 6. Left pair: cluster covering large area of the patch. Right pair: correct
localization of multiple clusters

Correct predictions: Correct predictions for patches without
suspicious clusters were harder to interpret. In some cases,
the network made decisions based on the presence of other
abnormalities, such as macrocalcifications (left pair in Figure
7) or masses (right pair in Figure 7). In other cases, obvious
abnormalities were deemed irrelevant, and the decision was
based on a larger area of the patch without a localized focus
(left pair in Figure 8). For patches of healthy tissue, the
decision was based on a larger area of the patch (right pair
in Figure 8). However, it was not possible to define exactly
what the model was looking at. If macrocalcifications were
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present in a patch with a suspicious cluster, the model correctly
classified it as containing a suspicious cluster (Figure 9). Even
a larger number of macrocalcifications did not pose a problem
(Figure 10).

Fig. 7. Left pair: decision based on macrocalcification. Right pair: decision
based on mass

Fig. 8. Left pair: decision based on large area instead of focusing on the
mass. Right pair: patch with healthy tissue and decision based on large area.

Fig. 9. Input patch with red circle for important cluster and blue circle for
macrocalcification.

Fig. 10. Input patch with red circle for important cluster and blue circles for
multiple macrocalcifications.

Incorrect predictions: Incorrect predictions for patches with
clusters into the class without clusters are more difficult to
explain. One issue for misclassification is a small number (up
to three) of microcalcifications in a patch. It is objectively
questionable whether such a patch is rightfully labeled as
containing a cluster of microcalcifications. This issue is typical
in the CBIS-DDSM database, but may also be found in OMI-
DB (Figure 11). Another issue found on four patches is the
presence of rare types of calcifications (Figure 12). Solving
this problem is more challenging since databases do not offer
a large number of such rare types of calcifications. The last
issue is linked to patches with visually difficult-to-distinguish
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microcalcifications (Figure 13). Even for a trained radiologist,
it is challenging to locate such cases.

Nevertheless, the robustness of the model is demonstrated
by its ability to correctly locate suspicious microcalcifications
in most cases despite misclassification, see Figure 13. For
CBIS-DDSM patches, prediction difficulty might be due to
poorer detail capture from SFM technology or subsequent
mammogram digitization.
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Fig. 14. A macrocalcification with indistinct margins resembling multiple
microcalcifications was incorrectly categorized as a cluster of microcalcifica-
tions.

Fig. 11. Example of OMI-DB patch that had an incorrect prediction to a
class with no clusters.

Fig. 12. Two examples of calcification types with very little representation
in the databases used.

Fig. 13. A very difficult to distinguish cluster of microcalcifications classified
to class without clusters. Despite the models incorrect prediction, the Grad-
CAM method in the middle image correctly localized the cluster, proving the
robustness of the method.

Incorrect predictions of the class without clusters into the
class with clusters contain predictions based on macrocalci-
fications (Figure 14), predictions due to noise (Figure 15),
and predictions based on small, uninteresting groups of micro-
calcifications (Figure 16). Better cleaning of the training set,
particularly removing CBIS-DDSM patches containing small
benign microcalcification groups, could resolve this issue.
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Fig. 15. Example of two incorrect predictions of patches without clusters.
The model probably made a decision based on noise, but it is not possible for
the human eye to detect anything resembling a cluster of microcalcifications.

Fig. 16. Two small unimportant groups of microcalcifications categorized as
a suspicious cluster. In the left pair, two calcifications are part of the mass.

IV. DISCUSSION

The design choices implemented in this study reflect the
intended clinical role of the model as a supporting tool within
complex diagnostic workflows. The system is specifically
aimed at functioning as a medical decision support system,
assisting radiologists who have already identified and localized
a suspicious abnormality. In this scenario, the model provides
additional, interpretable evidence to help distinguish between
a suspicious cluster requiring invasive follow-up and a benign
formation.

This study is subject to several limitations. The model’s
final performance metrics were reported only on the validation
set. The absence of an independent, held-out test set is an
evaluation limitation that limits the immediate certainty of the
model’s generalizability.

Although the training incorporated diverse data from two
databases utilizing different technologies—screen-film mam-
mography (CBIS-DDSM) and Full-Field Digital Mammog-
raphy (OMI-DB)—its generalizability to entirely different
external datasets or new clinical environments remains un-
certain. External validation and prospective clinical trials will
be essential to confirm robustness across varied acquisition
protocols and annotation standards.

The dataset exhibits class imbalance, with ”Without Clus-
ters” patches (21,786 total) predominating over ~Suspicious
Clusters” patches (11,406 total). This was partially addressed
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using a weighted loss function (with a weight of 0.641 for the
suspicious cluster class). Future work should explore more
balanced sampling or augmentation strategies.

The creation of the high-quality dataset required manual
review of nearly 9,700 patches, including removing approxi-
mately 550 ambiguous findings and making decisions on small
microcalcification groups. This reliance on human review,
while necessary for clinical relevance, introduces a degree
of subjectivity into the preprocessing that could affect repro-
ducibility.

The necessity of using high-resolution patches (674 x 674
pixels) to preserve microcalcification detail combined with
the choice of the large ResNet101 architecture to maximize
accuracy demanded significant GPU resources, resulting in
a mini-batch size of 8 during training. This design choice
implies high computational costs. The study does not pro-
vide discussion or quantification of the inference speed or
deployment feasibility in high-throughput clinical workflows.
Although ResNetl01 was empirically superior, future work
should compare performance with smaller architectures (e.g.,
EfficientNet or MobileNet) to explore the trade-off between
accuracy and deployment practicability.

False positives remain a significant challenge for clinical
deployment. Incorrect positive predictions often stemmed from
benign findings such as macrocalcifications with indistinct
margins, image noise, or small, uninteresting groups of mi-
crocalcifications. While these cases are not indicative of ma-
lignancy, they can lead to unnecessary patient follow-ups and
increased radiologist workload.

To mitigate these limitations, future work should focus
on reducing false positives through contextual modeling and
incorporating radiologist feedback mechanisms to enhance
specificity, exploring alternative sampling techniques to further
reduce the effect of class imbalance, extending the method-
ology to clinically more relevant multi-class classification
(benign versus malignant) and quantifying the inference time
of the current model and investigating smaller, more efficient
architectures suitable for practical clinical deployment.

V. CONCLUSIONS

The study first analyzed the CBIS-DDSM and OMI-DB
mammography databases, highlighting their advantages and
disadvantages.

o CBIS-DDSM: The main drawbacks include the older
SFM technology used to capture the images and the
presence of many less significant findings with benign
microcalcifications forming small groups.

e OMI-DB: The primary disadvantages are the more com-
plex data processing and the challenging process of
gaining access to the database under specific conditions.

A detailed data preprocessing process was described, along
with solutions for various issues encountered in the databases,
such as masks with incorrect resolutions and inverted mammo-
grams. The reasons for avoiding lower-resolution patches and
the unsuitability of using convolutional networks for detection
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due to insufficient image annotations were also explained.
Emphasis was placed on proper cleaning of the dataset.

Important insights were provided for creating the class
without clusters. When generating random patches without
clusters, manual evaluation is necessary since many breasts
might contain groups/clusters of microcalcifications. Addition-
ally, for breasts with malignant clusters, there’s an increased
risk of other suspicious clusters, so it’s recommended to
generate healthy patches from patients without any recorded
abnormalities.

The experimental part focused on binary classification into
classes with and without suspicious clusters. Various learning
rate settings were explored, followed by the application of
regularization using weight decay and additional data augmen-
tation with random flips and rotations changing each epoch.

The best model achieved a very high validation accuracy
of 98.2%. Model interpretation confirmed that decisions for
the class with suspicious clusters were based on important
radiological features. A significant advantage of the model
was its ability to handle visually challenging microcalcifica-
tions. This capability could be useful in practice, as many
of these clusters might not be detectable without sufficient
image magnification (high-resolution monitors are used during
examinations for this reason, but it can still be challenging
to spot some clusters). The model has been made publicly
available, and details are provided as Supplementary material.

Even in incorrect predictions, the model was able to locate
the correct positions of clusters, even if the final decision
was wrong. The main reason for incorrect predictions was the
presence of small groups of microcalcifications in the patches.
These cases were more typical for the CBIS-DDSM database.
This issue could be mitigated by more thorough cleaning of
the dataset.

SUPPLEMENTARY MATERIALS

The supplementary data in the form of a published Al
model is available at the GitHub repository https://github.com/
icimrak/Microcalc-Detect accessed on 31 May 2024.
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