
Semantic Metadata Extraction from Online News
Using a Modular Media Scraper

Richard Marko, Andrej Streicher
Slovak University of Technology in Bratislava

Bratislava, Slovakia

richard.marko@stuba.sk, andrej.streicher@stuba.sk

Abstract—The vast amount of unstructured information on the
internet presents significant challenges for data analysis. News
articles, in particular, are a valuable but heterogeneous source
of information. This paper presents a modular, self-hosted media
scraper capable of large-scale collection and semantic enrichment
of online news. Unlike open-source scrapers (limited scalability),
commercial APIs (costly and opaque), or academic NLP pipelines
(rarely deployed at scale), our system demonstrates the first
multilingual pipeline operating across hundreds of millions of
documents.

The architecture integrates a sitemap-based indexer, a fault-
tolerant scraper with deterministic partitioning, and a semantic
enrichment pipeline using multilingual named entity recognition
(NER), sentiment analysis, and keyword extraction. Implemented
as a hybrid of C# services and Python microservices, the system
achieved indexing of 411 million links and enrichment of 4.3
million articles, with throughput up to 5000 articles per minute.
Evaluation on an annotated multilingual sample yielded an
NER F1-score of 0.81, sentiment accuracy of 0.76, and keyword
extraction F1@10 of 0.68. Failure analysis showed that most of
the 27% unsuccessful attempts were caused by timeouts or HTTP
errors.

These results confirm that the system is scalable, robust, and
reproducible, providing a transparent alternative to commercial
solutions and a foundation for further research in media moni-
toring and trend analysis.

I. INTRODUCTION

Online media has become one of the dominant sources

of information about global and local events. Every day,

thousands of news articles are published across different plat-

forms, languages, and formats. For researchers, organizations,

and companies, these articles provide valuable insights into

political developments, public opinion, and societal trends [1].

However, the sheer volume and unstructured nature of online

content make automated collection and analysis a challenging

task.

Traditional keyword-based search engines provide limited

support for structured analysis of news data. They often

return noisy or irrelevant results and do not provide semantic

metadata such as identified people, organizations, or relation-

ships. As a result, analysts still rely on manual inspection or

costly third-party solutions to extract meaning from text. The

demand for tools that can transform unstructured news data

into structured, queryable datasets is therefore increasing.

Several factors complicate this task. First, websites differ

greatly in their structure and may block automated crawlers

through mechanisms such as paywalls [2] or scarcity-driven

monetization models [3]. Second, the absence of standard

metadata schemas across publishers results in inconsistencies

in dates, titles, and article bodies. Third, multilingual content

introduces the need for natural language processing methods

that can generalize across languages [4]. Fourth, many scrapers

depend on headless browsers or manual configuration, which

are brittle and computationally expensive when applied at

scale. Finally, scalability is crucial: a system must handle mil-

lions of documents while maintaining accuracy and reliability.

The legal and ethical context of web scraping is also rel-

evant. Courts have confirmed that scraping publicly available

data does not necessarily violate computer misuse laws [5],

although issues of copyright, redistribution, and privacy remain

debated [6]. The system described in this work is designed

for academic and research purposes, and it does not bypass

paywalls or technical protections.

This paper addresses these challenges by presenting a

modular media scraper developed as part of a bachelor thesis

project. To our knowledge, this is the first demonstration

of a fully self-hosted, multilingual scraping and enrichment

pipeline operating at the scale of hundreds of millions of links,

including deployment on non-x86 infrastructure. The system

is designed to be:

• Scalable: capable of running multiple scraper instances

in parallel and distributing workload deterministically;

• Resilient: tolerant of network errors, malformed feeds,

and temporary service unavailability;

• Extensible: modular architecture allowing new enrich-

ment models or components to be integrated with mini-

mal changes;

• Self-hosted: deployable without reliance on commercial

APIs or external services, ensuring transparency, repro-

ducibility, and cost control.

The core contributions of this work can be summarized as

follows:

1) A sitemap-driven indexer, implemented from scratch,

that discovered more than 411 million news article links

across multiple domains.

2) A scalable article scraper that successfully processed 4.3

million articles, with deterministic partitioning across

instances and detailed analysis of a 27% failure rate

including error categories.

3) A semantic enrichment pipeline applying multilingual

ISSN 2305-7254________________________________________PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 223 ----------------------------------------------------------------------------



NER, sentiment analysis, and keyword extraction, with

manual evaluation and preliminary precision/recall mea-

surements.

4) Experimental validation on a high-performance Pow-

erPC server, demonstrating throughput up to 5000

articles/minute, robustness to failures, and cost-

effectiveness compared to commercial alternatives.

The rest of this paper is structured as follows. Section II

reviews related work in news scraping and semantic enrich-

ment. Section III introduces the system architecture. Section

IV describes the implementation details and design trade-

offs. Section V outlines the methods and experimentation

setup. Section VI presents results and discussion. Section

VII concludes the paper and highlights directions for future

research.

II. RELATED WORK

The task of collecting and analyzing online news has been

studied extensively in both industry and academia. Existing

approaches can be broadly divided into three categories: open-

source scraping libraries, commercial aggregation platforms,

and academic methods for semantic enrichment. While each

category has strengths, none provides a complete solution for

scalable, transparent, and multilingual news analysis.

A. Open-source scraping frameworks

Libraries such as Scrapy [7], BeautifulSoup [8], and Feed-

parser [9] are widely used for extracting information from

websites. These frameworks provide low-level functional-

ity for parsing HTML and handling HTTP requests. While

flexible, they require site-specific configuration and frequent

maintenance as websites change their structure. Moreover,

they do not inherently support semantic enrichment, leaving

users responsible for integrating additional natural language

processing pipelines. As a result, they are effective for targeted

projects but unsuitable for web-scale analysis. To our knowl-

edge, no open-source library has demonstrated enrichment-

oriented scraping at the scale of hundreds of millions of links.

B. Commercial aggregation platforms

Commercial APIs and platforms such as Google News [10],

Diffbot, or NewsCatcher offer structured access to online me-

dia. These services provide article text, metadata, and in some

cases entity annotations. However, they suffer from several

limitations. First, they are often rate-limited or priced accord-

ing to request volume, making large-scale historical analysis

prohibitively expensive. Second, they are closed systems,

offering limited transparency into enrichment methods and

preventing adaptation to specific research needs. Finally, their

reliance on centralized infrastructure raises concerns about

long-term availability and reproducibility of experiments. Re-

ported benchmarks typically focus on coverage rather than

throughput or enrichment accuracy, making comparison dif-

ficult.

C. Academic approaches to semantic enrichment

Within the research community, a range of natural language

processing methods have been developed for metadata extrac-

tion. Keyword extraction techniques such as TextRank [11]

identify representative terms from documents, while surveys

in named entity recognition (NER) [12], [13] and sentiment

analysis highlight advances in evaluation methodology and

language models. More recently, multilingual transformer-

based models such as those provided by Hugging Face Trans-

formers [14] and spaCy [15] extend coverage across dozens

of languages [4]. However, most studies evaluate enrichment

quality on static benchmark corpora (e.g., CoNLL for NER),

without demonstrating deployment in large-scale, real-time

scraping systems. The use of large language models (LLMs)

for enrichment remains limited due to computational cost,

unpredictability, and the phenomenon of hallucination [16]–

[19].

D. Identified gaps

From the review above, several gaps become evident. Open-

source libraries lack built-in enrichment and proven scal-

ability to hundreds of millions of documents. Commercial

APIs impose high costs, rate limits, and lack transparency.

Academic methods excel in accuracy but are usually tested

on benchmarks rather than deployed in end-to-end scraping

pipelines. This leaves a gap for systems that are self-hosted,

reproducible, multilingual, and able to operate at web scale.

The system presented in this paper directly addresses this

need by integrating large-scale collection, resilient scraping,

and semantic enrichment in a modular architecture, and by

reporting both throughput and enrichment quality on millions

of real-world articles.

III. SYSTEM ARCHITECTURE

The system follows a microservice architecture [20], with

each component implemented as an independent container

and connected through a shared Elasticsearch backend [21].

Unlike scraper pipelines that rely on direct service-to-service

communication or centralized queues, all interactions occur

via Elasticsearch indices. This index-driven design eliminates

coordination overhead, simplifies scaling, and ensures fault

tolerance. Services can be restarted, scaled, or replaced in-

dependently without affecting the rest of the pipeline.

A. Overview

At a high level, the system consists of three major stages: in-
dexing, scraping, and enrichment, with supporting services for

RSS monitoring and API access. The high-level architecture

is shown in Fig. 1, while the data flow between components

is illustrated in Fig. 2.

B. NewsLinkIndexer

The NewsLinkIndexer is responsible for discovering poten-

tial news article URLs. It explores each site’s robots.txt
file to identify sitemap locations and recursively parses sitemap

ISSN 2305-7254________________________________________PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 224 ----------------------------------------------------------------------------



Fig. 1. High-level architecture of the modular media scraper

files, including nested ones. Links are deduplicated using hash-

based identifiers to avoid redundant processing. Results are

streamed into Elasticsearch in configurable batches, allowing

hundreds of millions of URLs to be stored efficiently. This

sitemap-first strategy is significantly more efficient than naive

crawling, since sitemaps expose canonical URLs and often

cover large archives. During experiments, this component dis-

covered more than 411 million links across multiple domains.

Algorithm 1 shows the recursive traversal process used by

the indexer.

Algorithm 1 Recursive Sitemap Traversal

1: Input: base url

2: queue ← {base url}
3: visited ← ∅
4: while queue not empty do
5: url ← dequeue(queue)

6: if url in visited then
7: continue
8: end if
9: visited ← visited ∪ {url}

10: sitemap ← download(url)

11: for each entry e in sitemap do
12: if e is a nested sitemap then
13: enqueue(queue, e)

14: else
15: store(e) {article link saved to index}
16: end if
17: end for
18: end while

C. NewsArticleScraper

The NewsArticleScraper retrieves the full content of articles

from indexed URLs. It employs the SmartReader readability

library to extract the main text and metadata while discarding

boilerplate content. Robustness mechanisms include retrying

failed downloads up to three times and discarding malformed

pages after a timeout. A deterministic hash-partitioning strat-

egy distributes workload across multiple scraper instances:

hash(id) mod INSTANCE COUNT = INSTANCE ID

This ensures that each article is processed exactly once,

without duplication or coordination overhead. Scaling requires

adjusting the configuration (e.g., updating the instance count

in the Docker Compose file). Up to eight scraper instances

were deployed in parallel during evaluation.

D. NewsArticleEnricher

The NewsArticleEnricher performs semantic enrichment of

successfully scraped articles. It applies multiple NLP and ML

techniques:

• Keyword extraction: based on TextRank [11].

• Named Entity Recognition (NER): provided by a

Python microservice running Hugging Face’s multilingual

model [14], [22].

• Sentiment analysis: provided by a separate service using

a multilingual transformer from Hugging Face [14].

• Additional metadata: including article length, language

detection, and enrichment status.

Each enrichment module runs independently, and partial re-

sults are preserved even if one stage fails, ensuring robustness.

E. RssSearcher

The RssSearcher monitors RSS feeds and identifies relevant

articles in near real-time. It supports both AND and OR logic

in keyword filtering, allowing queries such as “energy AND

policy” or “technology OR innovation.” In contrast to common

RSS readers that only provide short-term access to articles,

results here are stored in Elasticsearch, enabling long-term

historical analysis as well as real-time monitoring. Its design

was influenced by existing feed readers such as Newsboat [23]

and SimpleFeedReader [24].

F. APIs and Data Storage

A lightweight API service exposes the stored data for exter-

nal use. Two endpoints are supported: (i) an RSS-style feed of

recent articles filtered by keywords, and (ii) a Bing-compatible

search interface [25]–[27]. Both allow easy integration with

external dashboards or applications.

Elasticsearch hosts three primary indices:

• article-links: stores discovered URLs with status flags

(scraped/not scraped).

• articles: stores enriched article documents.

• scrape-failures: logs failed scraping attempts for later

inspection.

These indices enforce explicit schemas that are shared across

services via common C# model classes, ensuring consistency

ISSN 2305-7254________________________________________PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 225 ----------------------------------------------------------------------------



Fig. 2. Data flow between indexing, scraping, and enrichment components

and easing integration. This index-driven design decouples

services, enabling fault tolerance and simplified scaling.

IV. IMPLEMENTATION

The system was implemented as a hybrid solution com-

bining C# for high-performance core services with Python

microservices for advanced NLP tasks. This design decision

was motivated by the strength of the .NET ecosystem for

scalable and maintainable services [28], combined with the

availability of state-of-the-art NLP models in the Python

ecosystem [14], [15], [29].

A. Core Services in C#

Five main services were developed in C#:

• NewsLinkIndexer for sitemap exploration and link stor-

age.

• NewsArticleScraper for content extraction and fault-

tolerant downloading.

• NewsArticleEnricher for orchestrating enrichment calls

and storing metadata.

• RssSearcher for keyword-based feed monitoring.

• ElasticsearchWrapperAPI exposing REST endpoints

for queries.

These services share models and utilities through a common

library, ensuring consistent handling of articles and links

across the system. The decision to use SmartReader for content

extraction was based on its efficiency in removing boilerplate

text without the overhead of headless browser rendering, which

would have significantly reduced throughput on large datasets.

B. Data Models and Index Structures

The system defines explicit data models stored in Elastic-

search indices. These schemas are enforced through shared C#

classes, ensuring consistency and avoiding serialization errors.

• article-links: {id, url, site, scraped, keywordAnalyzed,

sentimentAnalyzed, discoveredAt}
• articles: {id, title, summary, content, entities[PER, ORG,

LOC], keywords, sentiment, articleLength, language,

publishedAt, enrichedAt}
• scrape-failures: {id, url, site, errorType, errorMessage,

attemptCount, attemptedAt}
This explicit design simplifies analysis and debugging. For

example, the scrape-failures index enables detailed reporting

of error categories, which later revealed that 27% of failures

were caused by a mix of timeouts, empty pages, and structural

incompatibilities.

C. Python Microservices

Certain NLP models, especially multilingual transformers,

are not natively supported in .NET. To integrate them, two

Python microservices were developed:

• ner_server.py: provides named entity recognition

using Davlan/xlm-roberta-base-ner-hrl [22].

• sentiment_server.py: pro-

vides sentiment classification using

cardiffnlp/twitter-xlm-roberta-base-sentiment
from Hugging Face.

Both services were implemented with FastAPI, exposing

REST endpoints returning JSON responses. To balance accu-

racy and performance, documents were processed individually

rather than in large batches, avoiding memory spikes while

maintaining reasonable throughput. The sentiment server used

a maximum sequence length of 256 tokens, while the NER

service used 512 tokens to preserve context.

D. Containerization and Deployment

All services were packaged as containers using Podman.

Podman was chosen over Docker due to stronger compatibility

with the PowerPC (ppc64le) architecture where official Docker

images were not always available [30]. Each service was built

with minimal base images to reduce memory overhead and

start-up time.

Environment variables configure runtime parameters such

as:

• Elasticsearch host and port.

• Batch sizes for bulk indexing (default 12,500 documents).

• Timeouts for HTTP requests (8 seconds).

• Maximum retry count (3 attempts with exponential back-

off).

• Instance count and partition IDs for distributed scraping.

• Model service endpoints.

This allows the system to be deployed in different environ-

ments without code modification.

ISSN 2305-7254________________________________________PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 226 ----------------------------------------------------------------------------



E. Partitioning Logic

A key requirement was distributing work across multiple

scraper instances. This was achieved using deterministic hash-

ing of article identifiers:

hash(id) mod INSTANCE COUNT = INSTANCE ID

This ensures that each article is processed exactly once,

without duplication. Scaling requires editing the configuration

(e.g., updating the instance count in the Docker Compose

file). Deterministic partitioning was chosen over queue-based

systems such as Kafka or RabbitMQ to avoid additional

infrastructure overhead and simplify debugging.

F. Error Handling and Logging

Failures during scraping or enrichment are inevitable due to

site restrictions, malformed feeds, or network timeouts. The

system implements:

• Retries: up to three attempts with exponential backoff.

• Timeouts: an 8-second cut-off for unresponsive sites.

• Failure Index: failed attempts are logged to scrape-
failures with error details.

• Partial Enrichment: if one enrichment step fails, others

proceed.

This guarantees continuity of operation and enables later

analysis of recurring issues.

G. CI/CD Pipeline

Continuous integration was established using GitHub Ac-

tions. On each push, services are built, tested, and container

images are published. Unit and integration tests run automat-

ically, ensuring regressions are detected early. Manual API

testing was performed using Postman to validate end-to-end

functionality before deployment.

H. Scalability Considerations

The stateless design of services enables horizontal scaling.

During evaluation, up to eight scraper instances were deployed

simultaneously, demonstrating near-linear performance scal-

ing. Elasticsearch provided distributed storage and indexing

capabilities [21], while Podman ensured consistent runtime

isolation across instances. The decision to prioritize determin-

istic partitioning over dynamic load balancing reflects a trade-

off favoring simplicity, transparency, and reproducibility over

absolute flexibility.

V. METHODS AND EXPERIMENTATION

To evaluate the performance and reliability of the proposed

system, a series of experiments were conducted focusing

on scalability, throughput, enrichment quality, and resilience.

This section describes the experimental environment, datasets,

testing methodology, and evaluation scenarios.

A. Experimental Environment

All experiments were conducted on a dedicated high-

performance server with PowerPC architecture. The choice

of Podman as container runtime was motivated by its com-

patibility with ppc64le, where Docker support was limited

[30]. Elasticsearch served as the primary storage engine due

to its ability to handle distributed indexing and large-scale

text search efficiently [21], [31]. The specifications of the

environment are summarized in Table I.

TABLE I. EXPERIMENTAL ENVIRONMENT 
SPECIFICATIONS

CPU 64-core PowerPC (ppc64le) @ 2.5 GHz
RAM 64 GB
Storage 30 TB HDD, 100 GB SSD (system)
Operating System RHEL-based Linux distribution
Core software .NET 8, Python 3.11, Elasticsearch 8.x
Container runtime Podman

B. Datasets

Two primary datasets were collected during evaluation:

• Article links: The sitemap indexer discovered over

411 million unique links from Slovak and international

news websites. This dataset highlights the efficiency of

sitemap-driven discovery compared to forum-style crawl-

ing [32].

• Articles: More than 6 million links were attempted

for scraping. Approximately 4.3 million articles were

successfully processed and enriched.

This dataset scale ensures that experiments reflect realistic,

large-scale use cases.

C. Testing Methodology

Testing was performed at three levels:

• Unit testing: Focused on link hashing, keyword extrac-

tion, and sitemap parsing.

• Integration testing: Verified end-to-end document life-

cycle in Elasticsearch, including insertion, updates, and

deletions.

• API testing: Postman collections were used to validate

that exposed endpoints returned correct data and error

handling was robust.

In addition, fault simulations were conducted:

• Expired or dead links.

• Malformed RSS feeds.

• Service crashes and restarts.

• Network timeouts and DNS failures.

The system’s ability to recover gracefully from these scenarios

was considered a critical factor.

D. Experimentation Scenarios

Three main experiments were carried out.

ISSN 2305-7254________________________________________PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 227 ----------------------------------------------------------------------------



1) Scraper throughput: Throughput was measured under

varying numbers of scraper instances, from one to eight. Each

instance used hash-based partitioning to process a disjoint

subset of article links. Throughput was recorded in articles per

minute, with bulk indexing following Elasticsearch guidelines

for optimal batch size [31]. Results are reported as both

average and peak throughput.

2) Enrichment accuracy: A multilingual sample of 500

articles (Slovak, English, German, Czech) was manually an-

notated by human evaluators to establish ground truth for

enrichment tasks. Accuracy was quantified as follows:

• Named Entity Recognition (NER): Precision, recall,

and F1 score were calculated against the annotated

ground truth for PER, ORG, and LOC entities.

• Sentiment analysis: Predicted labels were compared

with majority human judgment, producing accuracy and

Cohen’s κ agreement.

• Keyword extraction: Overlap with human-selected key-

words was measured using F1@10 (precision/recall on

the top 10 extracted keywords).

This quantitative evaluation extends beyond manual inspection

and aligns with established benchmarking practices [12].

3) Failure analysis: Failures were categorized and quanti-

fied using the scrape-failures index. Table II summarizes the

observed categories.

TABLE II. DISTRIBUTION OF SCRAPING 
FAILURES

Failure type Share of total failures
Timeouts 41%
HTTP errors (403/404/500) 28%
Empty or missing content 18%
Invalid HTML structure 9%
Other/unknown 4%

4) System resilience: Resilience was assessed by deliber-

ately inducing failures, such as shutting down enrichment ser-

vices mid-processing or providing malformed input. Metrics

included the percentage of articles successfully enriched de-

spite partial failures and the effectiveness of retry mechanisms.

E. Evaluation Metrics

The experiments were evaluated using the following met-

rics:

• Throughput: average and peak articles processed per

minute.

• Success rate: proportion of attempted links resulting in

a valid enriched article.

• Accuracy: quantitative precision, recall, F1, and agree-

ment scores for enrichment tasks.

• Resilience: ability to recover from failures without data

loss or service interruption.

• Failure distribution: statistics on error types contributing

to the 27% failure rate.

VI. RESULTS AND DISCUSSION

This section presents the outcomes of the experiments and

discusses the system’s performance, enrichment quality, and

limitations.

A. Throughput and Scalability

The system achieved high throughput under parallel exe-

cution. With a single scraper instance, the system processed

around 500 articles per minute. Scaling up to eight instances

increased throughput to a peak of 5000 articles per minute.

The scaling behavior was nearly linear, demonstrating the

effectiveness of the hash-based partitioning strategy. Scaling

required adjusting the Docker Compose configuration, but no

central coordination was needed.

B. Processing Outcomes

Over the course of evaluation, the system attempted to

scrape approximately 6 million articles. Of these, 4.3 million

were successfully scraped and enriched. The remainder were

classified as failures due to timeouts, HTTP errors, or struc-

tural incompatibilities. Table III summarizes these statistics.

TABLE III. SUMMARY OF ARTICLE PROCESSING 
OUTCOMES

Total links indexed 411,000,000
Articles attempted 6,005,445
Articles successfully scraped 4,379,282
Average throughput 2000/min
Peak throughput 5000/min
Failure rate 27%

A breakdown of failure causes is shown in Table II, reveal-

ing that timeouts and HTTP errors account for nearly 70%

of all failures. This analysis provides a clearer understanding

of system limitations compared to reporting a single failure

percentage.

C. Enrichment Quality

Quantitative evaluation was performed on a manually anno-

tated sample of 500 multilingual articles. Results are shown

in Table IV.

TABLE IV. ENRICHMENT ACCURACY ON 
ANNOTATED SAMPLE

NER (PER/ORG/LOC) F1-score 0.81
Sentiment accuracy 0.76
Cohen’s κ (sentiment) 0.71
Keyword extraction F1@10 0.68

These results indicate that enrichment quality is sufficient

for downstream tasks such as trend detection and clustering.

For instance, Slovak political articles consistently identified

the correct politicians and parties, while sentiment classifica-

tion agreed with human judgment in most cases. Keyword

extraction produced meaningful phrases, although multi-word

terms occasionally lacked precision.

ISSN 2305-7254________________________________________PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 228 ----------------------------------------------------------------------------



D. System Resilience

The system successfully recovered from induced failures.

When enrichment services were temporarily disabled, articles

were still scraped and stored, with missing enrichment re-

tried later. Timeout and retry mechanisms prevented scraper

lock-ups, while failed attempts were consistently logged in

the scrape-failures index. This design ensured continuity of

operation even under unstable conditions, which is consistent

with prior research emphasizing fault tolerance in large-scale

crawlers [32].

E. Comparison with Existing Solutions

Compared with commercial APIs such as Google News

[10] or NewsCatcher, the proposed system offers several

advantages:

• Cost efficiency: No per-request charges or licensing

restrictions.

• Transparency: Full control over enrichment models, data

structures, and error reporting.

• Scalability: Near-linear scaling up to eight instances,

with throughput comparable to commercial offerings.

• Multilingual support: Integration of transformer-based

NER and sentiment models [4], [14].

Open-source frameworks such as Scrapy or BeautifulSoup

provide scraping capabilities but lack the ability to integrate

enrichment or operate at this scale. Academic enrichment

studies provide higher-quality benchmarks but are not typically

embedded in a scalable collection pipeline. The novelty of this

work lies in bridging these domains by combining large-scale

scraping with real-world enrichment and transparent reporting

of throughput and accuracy.

F. Limitations

Several limitations were identified:

• Reliance on readability-based parsing may fail for highly

dynamic or JavaScript-heavy websites.

• Enrichment evaluation was limited to a manually anno-

tated subset of 500 articles; larger benchmarks would

further validate accuracy.

• Distributed crawling speed remains constrained by site-

imposed rate limits, which cannot be bypassed without

proxies.

• Scaling requires manual configuration changes rather than

automatic elastic deployment.

Despite these limitations, the system demonstrates strong per-

formance and a promising foundation for further development.

VII. CONCLUSION

This paper presented the design, implementation, and eval-

uation of a modular media scraper for semantic metadata

extraction from online news. The system was developed as

a self-hosted and extensible solution, combining C# services

for large-scale link discovery and scraping with Python mi-

croservices for multilingual natural language processing tasks

[14], [28].

Unlike prior approaches that are either limited in scala-

bility (open-source scrapers), costly and opaque (commercial

APIs), or isolated from large-scale deployment (academic NLP

pipelines), this work demonstrates the first fully self-hosted,

multilingual scraping and enrichment pipeline operating at

the scale of hundreds of millions of links. By integrating

sitemap-driven indexing, deterministic partitioning across mul-

tiple scraper instances, and enrichment with transformer-based

NLP models, the system bridges gaps between engineering

feasibility and applied research in media analytics.

Experiments demonstrated the ability to index over 411

million article links, successfully scrape and enrich 4.3 million

articles, and achieve throughput of up to 5000 articles per

minute when scaled across eight instances. Beyond through-

put, the evaluation included quantitative enrichment metrics

(NER F1-score of 0.81, sentiment accuracy of 0.76, keyword

extraction F1@10 of 0.68) and a detailed breakdown of the

27% failure rate, showing that most failures were due to

timeouts and HTTP errors. This level of transparent reporting

provides a stronger empirical foundation than is typical in

comparable systems.

Compared with existing approaches, the proposed system

offers transparency, cost-efficiency, scalability, and multilin-

gual processing capabilities, while enabling reproducibility

and long-term historical analysis. At the same time, several

limitations remain: reliance on readability parsing for article

extraction, manual configuration for scaling, and evaluation

limited to 500 annotated articles.

Future work will focus on extending enrichment to relation

extraction, clustering, and event detection [33], [34], as well

as integrating visualization dashboards for exploring enriched

datasets. Additional benchmarks on larger annotated corpora

and more dynamic websites will further validate generalizabil-

ity.

Overall, this work demonstrates the feasibility and value

of building a robust, self-hosted pipeline for semantic news

analysis. It provides both a practical tool for research and

monitoring, and a reproducible platform for future academic

studies on large-scale media data.

ACKNOWLEDGMENT

This work was supported by the Science Grant Agency -

project VEGA 1/0300/25. Also funded by the EU NextGenera-

tionEU through the Recovery and Resilience Plan for Slovakia

under the project No. 09105-03-V02-00057.

REFERENCES

[1] M. Tanwar, R. Duggal, and S. K. Khatri, “Unravelling unstructured data:
A wealth of information in big data,” in 2015 4th International Confer-
ence on Reliability, Infocom Technologies and Optimization (ICRITO)
(Trends and Future Directions), 2015, pp. 1–6.

[2] L. Chiou and C. Tucker, “Paywalls and the demand for news,”
Information Economics and Policy, vol. 25, no. 2, pp. 61–69, 2013.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167624513000097

[3] V. K. Kanuri and A. Pattabhiramaiah, “Scarcity-driven
monetization of digital content,” Frontiers in Research
Metrics and Analytics, vol. Volume 7 - 2022,
2022. [Online]. Available: https://www.frontiersin.org/journals/

ISSN 2305-7254________________________________________PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 229 ----------------------------------------------------------------------------



research-metrics-and-analytics/articles/10.3389/frma.2022.995202
[4] G. G. Krishna, “Multilingual nlp,” International Journal of Advanced

Engineering and Nano Technology, vol. 10, no. 6, pp. 9–12, 2023.
[5] United States Court of Appeals, Ninth Circuit, “HiQ Labs, Inc.

v. LinkedIn Corporation, no. 17-16783,” 2022, ninth Circuit
decision affirming that scraping public data does not violate
the CFAA. [Online]. Available: https://cdn.ca9.uscourts.gov/datastore/
opinions/2022/04/18/17-16783.pdf

[6] A. G. Fontana, “Web scraping: Jurisprudence and legal doctrines,” The
Journal of World Intellectual Property, vol. 28, no. 1, pp. 197–212,
2025.

[7] S. Developers, “Scrapy: A fast and powerful web crawling and web
scraping framework,” available at https://scrapy.org.

[8] L. Richardson, “Beautiful soup: A python library for navigating html
and xml documents,” available at https://www.crummy.com/software/
BeautifulSoup/.

[9] M. Pilgrim and Contributors, “Feedparser: Parse atom and rss feeds in
python,” available at https://pypi.org/project/feedparser/.

[10] “Google news,” available at https://news.google.com/.
[11] R. Mihalcea and P. Tarau, “TextRank: Bringing order into text,” in

Proceedings of the 2004 Conference on Empirical Methods in Natural
Language Processing, D. Lin and D. Wu, Eds. Barcelona, Spain:
Association for Computational Linguistics, Jul. 2004, pp. 404–411.
[Online]. Available: https://aclanthology.org/W04-3252/

[12] D. Nadeau and S. Sekine, “A survey of named entity recognition and
classification,” Lingvisticae Investigationes, vol. 30, 08 2007.

[13] E. Marsh and D. Perzanowski, “MUC-7 evaluation of IE technology:
Overview of results,” in Seventh Message Understanding Conference
(MUC-7): Proceedings of a Conference Held in Fairfax, Virginia, April
29 - May 1, 1998, 1998. [Online]. Available: https://aclanthology.org/
M98-1002/

[14] H. F. Inc., “Transformers: State-of-the-art natural language processing,”
available at https://huggingface.co/transformers/.

[15] E. AI, “spacy: Industrial-strength natural language processing in
python,” available at https://spacy.io.

[16] M. U. Hadi, R. Qureshi, A. Shah, M. Irfan, A. Zafar, M. B. Shaikh,
N. Akhtar, J. Wu, S. Mirjalili et al., “Large language models: a
comprehensive survey of its applications, challenges, limitations, and
future prospects,” Authorea Preprints, vol. 1, pp. 1–26, 2023.

[23] N. Contributors, “Newsboat: A console-based rss/atom feed reader,”
available at https://newsboat.org/.

[17] M. Burtsev, M. Reeves, and A. Job, “The working limitations of large
language models,” MIT Sloan Management Review, vol. 65, no. 2, pp.
8–10, 2024.

[18] L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen,
W. Peng, X. Feng, B. Qin, and T. Liu, “A survey on hallucination
in large language models: Principles, taxonomy, challenges, and open
questions,” ACM Trans. Inf. Syst., vol. 43, no. 2, Jan. 2025. [Online].
Available: https://doi.org/10.1145/3703155

[19] J. Wei, Y. Yao, J.-F. Ton, H. Guo, A. Estornell, and Y. Liu, “Measuring
and reducing llm hallucination without gold-standard answers,” arXiv
preprint arXiv:2402.10412, 2024.

[20] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice
architecture: aligning principles, practices, and culture. ” O’Reilly
Media, Inc.”, 2016.

[21] N. Kathare, O. V. Reddy, and V. Prabhu, “A comprehensive study of
elasticsearch,” International journal of science and research (IJSR),
2020.

[22] Davlan, “xlm-roberta-base-ner-hrl,” https://huggingface.co/Davlan/
xlm-roberta-base-ner-hrl, 2021, accessed: 2025-05-12.

[24] S. Contributors, “Simplefeedreader: A lightweight rss and atom feed
reader for .net,” available at https://github.com/simplefeedreader.

[25] Microsoft, “Bing news search api - endpoints,” 2024, accessed May
11, 2025. [Online]. Available: https://learn.microsoft.com/en-us/bing/
search-apis/bing-news-search/reference/endpoints

[26] ——, “Bing news search api - query parameters,” 2024, accessed May
11, 2025. [Online]. Available: https://learn.microsoft.com/en-us/bing/
search-apis/bing-news-search/reference/query-parameters

[27] ——, “Bing news search api - response objects,” 2024, accessed May
11, 2025. [Online]. Available: https://learn.microsoft.com/en-us/bing/
search-apis/bing-news-search/reference/response-objects

[28] ——, “Asp.net core documentation,” available at https://learn.microsoft.
com/en-us/aspnet/core/.

[29] S. Bird and E. Loper, “Natural language toolkit (nltk),” available at
https://www.nltk.org.

[30] D. Inc., “Docker: Empowering app development for the modern world,”
available at https://www.docker.com/.

[31] Elastic, “Using and sizing bulk requests,” 2024, accessed May 11, 2025.
[Online]. Available: https://www.elastic.co/guide/en/elasticsearch/guide/
current/indexing-performance.html# using and sizing bulk requests

[32] R. Cai, J.-M. Yang, W. Lai, Y. Wang, and L. Zhang, “irobot: an
intelligent crawler for web forums,” in Proceedings of the 17th
International Conference on World Wide Web, ser. WWW ’08. New
York, NY, USA: Association for Computing Machinery, 2008, p.
447–456. [Online]. Available: https://doi.org/10.1145/1367497.1367558

[33] I. Stavrakantonakis, A.-E. Gagiu, H. Kasper, I. Toma, and A. Thalham-
mer, “An approach for evaluation of social media monitoring tools,”
Common Value Management, vol. 52, no. 1, pp. 52–64, 2012.

[34] X. Wan, H. Jia, S. Huang, and J. Xiao, “Summarizing the differences
in multilingual news,” in Proceedings of the 34th International ACM
SIGIR Conference on Research and Development in Information
Retrieval, ser. SIGIR ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 735–744. [Online]. Available:
https://doi.org/10.1145/2009916.2010015

ISSN 2305-7254________________________________________PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 230 ----------------------------------------------------------------------------




