ISSN 2305-7254

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

Semantic Metadata Extraction from Online News
Using a Modular Media Scraper

Richard Marko, Andrej Streicher
Slovak University of Technology in Bratislava
Bratislava, Slovakia
richard.marko @stuba.sk, andrej.streicher @stuba.sk

Abstract—The vast amount of unstructured information on the
internet presents significant challenges for data analysis. News
articles, in particular, are a valuable but heterogeneous source
of information. This paper presents a modular, self-hosted media
scraper capable of large-scale collection and semantic enrichment
of online news. Unlike open-source scrapers (limited scalability),
commercial APIs (costly and opaque), or academic NLP pipelines
(rarely deployed at scale), our system demonstrates the first
multilingual pipeline operating across hundreds of millions of
documents.

The architecture integrates a sitemap-based indexer, a fault-
tolerant scraper with deterministic partitioning, and a semantic
enrichment pipeline using multilingual named entity recognition
(NER), sentiment analysis, and keyword extraction. Implemented
as a hybrid of C# services and Python microservices, the system
achieved indexing of 411 million links and enrichment of 4.3
million articles, with throughput up to 5000 articles per minute.
Evaluation on an annotated multilingual sample yielded an
NER F1-score of 0.81, sentiment accuracy of (.76, and keyword
extraction F71@10 of 0.68. Failure analysis showed that most of
the 27 % unsuccessful attempts were caused by timeouts or HTTP
errors.

These results confirm that the system is scalable, robust, and
reproducible, providing a transparent alternative to commercial
solutions and a foundation for further research in media moni-
toring and trend analysis.

I. INTRODUCTION

Online media has become one of the dominant sources
of information about global and local events. Every day,
thousands of news articles are published across different plat-
forms, languages, and formats. For researchers, organizations,
and companies, these articles provide valuable insights into
political developments, public opinion, and societal trends [1].
However, the sheer volume and unstructured nature of online
content make automated collection and analysis a challenging
task.

Traditional keyword-based search engines provide limited
support for structured analysis of news data. They often
return noisy or irrelevant results and do not provide semantic
metadata such as identified people, organizations, or relation-
ships. As a result, analysts still rely on manual inspection or
costly third-party solutions to extract meaning from text. The
demand for tools that can transform unstructured news data
into structured, queryable datasets is therefore increasing.

Several factors complicate this task. First, websites differ
greatly in their structure and may block automated crawlers
through mechanisms such as paywalls [2] or scarcity-driven

223

monetization models [3]. Second, the absence of standard
metadata schemas across publishers results in inconsistencies
in dates, titles, and article bodies. Third, multilingual content
introduces the need for natural language processing methods
that can generalize across languages [4]. Fourth, many scrapers
depend on headless browsers or manual configuration, which
are brittle and computationally expensive when applied at
scale. Finally, scalability is crucial: a system must handle mil-
lions of documents while maintaining accuracy and reliability.

The legal and ethical context of web scraping is also rel-
evant. Courts have confirmed that scraping publicly available
data does not necessarily violate computer misuse laws [5],
although issues of copyright, redistribution, and privacy remain
debated [6]. The system described in this work is designed
for academic and research purposes, and it does not bypass
paywalls or technical protections.

This paper addresses these challenges by presenting a
modular media scraper developed as part of a bachelor thesis
project. To our knowledge, this is the first demonstration
of a fully self-hosted, multilingual scraping and enrichment
pipeline operating at the scale of hundreds of millions of links,
including deployment on non-x86 infrastructure. The system
is designed to be:

o Scalable: capable of running multiple scraper instances
in parallel and distributing workload deterministically;

o Resilient: tolerant of network errors, malformed feeds,
and temporary service unavailability;

o Extensible: modular architecture allowing new enrich-
ment models or components to be integrated with mini-
mal changes;

o Self-hosted: deployable without reliance on commercial
APIs or external services, ensuring transparency, repro-
ducibility, and cost control.

The core contributions of this work can be summarized as
follows:

1) A sitemap-driven indexer, implemented from scratch,
that discovered more than 411 million news article links
across multiple domains.

2) A scalable article scraper that successfully processed 4.3
million articles, with deterministic partitioning across
instances and detailed analysis of a 27% failure rate
including error categories.

3) A semantic enrichment pipeline applying multilingual

ISSN 2305-7254

NER, sentiment analysis, and keyword extraction, with
manual evaluation and preliminary precision/recall mea-
surements.

4) Experimental validation on a high-performance Pow-
erPC server, demonstrating throughput up to 5000
articles/minute, robustness to failures, and cost-
effectiveness compared to commercial alternatives.

The rest of this paper is structured as follows. Section II
reviews related work in news scraping and semantic enrich-
ment. Section III introduces the system architecture. Section
IV describes the implementation details and design trade-
offs. Section V outlines the methods and experimentation
setup. Section VI presents results and discussion. Section
VII concludes the paper and highlights directions for future
research.

II. RELATED WORK

The task of collecting and analyzing online news has been
studied extensively in both industry and academia. Existing
approaches can be broadly divided into three categories: open-
source scraping libraries, commercial aggregation platforms,
and academic methods for semantic enrichment. While each
category has strengths, none provides a complete solution for
scalable, transparent, and multilingual news analysis.

A. Open-source scraping frameworks

Libraries such as Scrapy [7], BeautifulSoup [8], and Feed-
parser [9] are widely used for extracting information from
websites. These frameworks provide low-level functional-
ity for parsing HTML and handling HTTP requests. While
flexible, they require site-specific configuration and frequent
maintenance as websites change their structure. Moreover,
they do not inherently support semantic enrichment, leaving
users responsible for integrating additional natural language
processing pipelines. As a result, they are effective for targeted
projects but unsuitable for web-scale analysis. To our knowl-
edge, no open-source library has demonstrated enrichment-
oriented scraping at the scale of hundreds of millions of links.

B. Commercial aggregation platforms

Commercial APIs and platforms such as Google News [10],
Diffbot, or NewsCatcher offer structured access to online me-
dia. These services provide article text, metadata, and in some
cases entity annotations. However, they suffer from several
limitations. First, they are often rate-limited or priced accord-
ing to request volume, making large-scale historical analysis
prohibitively expensive. Second, they are closed systems,
offering limited transparency into enrichment methods and
preventing adaptation to specific research needs. Finally, their
reliance on centralized infrastructure raises concerns about
long-term availability and reproducibility of experiments. Re-
ported benchmarks typically focus on coverage rather than
throughput or enrichment accuracy, making comparison dif-
ficult.

224

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

C. Academic approaches to semantic enrichment

Within the research community, a range of natural language
processing methods have been developed for metadata extrac-
tion. Keyword extraction techniques such as TextRank [11]
identify representative terms from documents, while surveys
in named entity recognition (NER) [12], [13] and sentiment
analysis highlight advances in evaluation methodology and
language models. More recently, multilingual transformer-
based models such as those provided by Hugging Face Trans-
formers [14] and spaCy [15] extend coverage across dozens
of languages [4]. However, most studies evaluate enrichment
quality on static benchmark corpora (e.g., CoONLL for NER),
without demonstrating deployment in large-scale, real-time
scraping systems. The use of large language models (LLMs)
for enrichment remains limited due to computational cost,
unpredictability, and the phenomenon of hallucination [16]-
[19].

D. Identified gaps

From the review above, several gaps become evident. Open-
source libraries lack built-in enrichment and proven scal-
ability to hundreds of millions of documents. Commercial
APIs impose high costs, rate limits, and lack transparency.
Academic methods excel in accuracy but are usually tested
on benchmarks rather than deployed in end-to-end scraping
pipelines. This leaves a gap for systems that are self-hosted,
reproducible, multilingual, and able to operate at web scale.
The system presented in this paper directly addresses this
need by integrating large-scale collection, resilient scraping,
and semantic enrichment in a modular architecture, and by
reporting both throughput and enrichment quality on millions
of real-world articles.

III. SYSTEM ARCHITECTURE

The system follows a microservice architecture [20], with
each component implemented as an independent container
and connected through a shared Elasticsearch backend [21].
Unlike scraper pipelines that rely on direct service-to-service
communication or centralized queues, all interactions occur
via Elasticsearch indices. This index-driven design eliminates
coordination overhead, simplifies scaling, and ensures fault
tolerance. Services can be restarted, scaled, or replaced in-
dependently without affecting the rest of the pipeline.

A. Overview

At a high level, the system consists of three major stages: in-
dexing, scraping, and enrichment, with supporting services for
RSS monitoring and API access. The high-level architecture
is shown in Fig. 1, while the data flow between components
is illustrated in Fig. 2.

B. NewsLinkIndexer

The NewsLinkIndexer is responsible for discovering poten-
tial news article URLs. It explores each site’s robots.txt
file to identify sitemap locations and recursively parses sitemap

ISSN 2305-7254

provides modets l

article-finks
< AT
.’ indexes links into——3 [l I updates link with semantic fiags
N 4

NewsLinkindexer

NewsArlicleEnricher

fetches links from
provides models to updates articke with semantic metadata

NewsArticleScraper

~ provides scraping logic to—> RS
’ indexes seraped content into——> D
provides models to— Y

farticles

ScrapingEngine

y /

indexes broken links ino

s

Iscrape-failures

/ ElasticsearchWrapperAP|

provides different formats for arlicles

ovides scraping logic to
gets ariicles from
et

pr
RSS Feed Searchs

provides recent fitered articles o

provides historical articles vith semantic metadata to—————————

User

Fig. 1. High-level architecture of the modular media scraper

files, including nested ones. Links are deduplicated using hash-
based identifiers to avoid redundant processing. Results are
streamed into Elasticsearch in configurable batches, allowing
hundreds of millions of URLs to be stored efficiently. This
sitemap-first strategy is significantly more efficient than naive
crawling, since sitemaps expose canonical URLs and often
cover large archives. During experiments, this component dis-
covered more than 411 million links across multiple domains.

Algorithm 1 shows the recursive traversal process used by
the indexer.

Algorithm 1 Recursive Sitemap Traversal

1: Input: base_url

2: queue < {base_url}
3: visited < ()

4: while queue not empty do

5: url < dequeue(queue)

6: if url in visited then

7 continue

8: end if

9: visited < visited U {url}
10: sitemap <— download(url)
11: for each entry e in sitemap do

12: if e is a nested sitemap then

13: enqueue(queue, e)

14: else

15: store(e) {article link saved to index}
16: end if

17: end for
18: end while

225

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

C. NewsArticleScraper

The NewsArticleScraper retrieves the full content of articles
from indexed URLs. It employs the SmartReader readability
library to extract the main text and metadata while discarding
boilerplate content. Robustness mechanisms include retrying
failed downloads up to three times and discarding malformed
pages after a timeout. A deterministic hash-partitioning strat-
egy distributes workload across multiple scraper instances:

hash(id) mod INSTANCE_COUNT = INSTANCE_ID

This ensures that each article is processed exactly once,
without duplication or coordination overhead. Scaling requires
adjusting the configuration (e.g., updating the instance count
in the Docker Compose file). Up to eight scraper instances
were deployed in parallel during evaluation.

D. NewsArticleEnricher

The NewsArticleEnricher performs semantic enrichment of
successfully scraped articles. It applies multiple NLP and ML
techniques:

o Keyword extraction: based on TextRank [11].

o Named Entity Recognition (NER): provided by a
Python microservice running Hugging Face’s multilingual
model [14], [22].

o Sentiment analysis: provided by a separate service using
a multilingual transformer from Hugging Face [14].

o Additional metadata: including article length, language
detection, and enrichment status.

Each enrichment module runs independently, and partial re-
sults are preserved even if one stage fails, ensuring robustness.

E. RssSearcher

The RssSearcher monitors RSS feeds and identifies relevant
articles in near real-time. It supports both AND and OR logic
in keyword filtering, allowing queries such as “energy AND
policy” or “technology OR innovation.” In contrast to common
RSS readers that only provide short-term access to articles,
results here are stored in Elasticsearch, enabling long-term
historical analysis as well as real-time monitoring. Its design
was influenced by existing feed readers such as Newsboat [23]
and SimpleFeedReader [24].

F. APIs and Data Storage

A lightweight API service exposes the stored data for exter-
nal use. Two endpoints are supported: (i) an RSS-style feed of
recent articles filtered by keywords, and (ii) a Bing-compatible
search interface [25]-[27]. Both allow easy integration with
external dashboards or applications.

Elasticsearch hosts three primary indices:

o article-links: stores discovered URLs with status flags

(scraped/not scraped).
o articles: stores enriched article documents.
o scrape-failures: logs failed scraping attempts for later
inspection.
These indices enforce explicit schemas that are shared across
services via common C# model classes, ensuring consistency

ISSN 2305-7254

NewsArlicleEnricher|

enriches article

process

enrichment flags

enriched arficle

Jarlicles

scraped arficle

Scrape
process

scrapes arficle

Jfarticle-links Jscrape-failures

scraped arficle

erored article
arficle link

Indexing
process

indexes article

ermrored article

NewsArlicleIndexer

Fig. 2. Data flow between indexing, scraping, and enrichment components

and easing integration. This index-driven design decouples
services, enabling fault tolerance and simplified scaling.

IV. IMPLEMENTATION

The system was implemented as a hybrid solution com-
bining C# for high-performance core services with Python
microservices for advanced NLP tasks. This design decision
was motivated by the strength of the .NET ecosystem for
scalable and maintainable services [28], combined with the
availability of state-of-the-art NLP models in the Python
ecosystem [14], [15], [29].

A. Core Services in C#

Five main services were developed in C#:

o NewsLinkIndexer for sitemap exploration and link stor-
age.

o NewsArticleScraper for content extraction and fault-
tolerant downloading.

o NewsArticleEnricher for orchestrating enrichment calls
and storing metadata.

o RssSearcher for keyword-based feed monitoring.

« ElasticsearchWrapperAPI exposing REST endpoints
for queries.

These services share models and utilities through a common
library, ensuring consistent handling of articles and links
across the system. The decision to use SmartReader for content
extraction was based on its efficiency in removing boilerplate
text without the overhead of headless browser rendering, which
would have significantly reduced throughput on large datasets.

226

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

B. Data Models and Index Structures

The system defines explicit data models stored in Elastic-
search indices. These schemas are enforced through shared C#
classes, ensuring consistency and avoiding serialization errors.

o article-links: {id, url, site, scraped, keywordAnalyzed,
sentimentAnalyzed, discoveredAt}

o articles: {id, title, summary, content, entities[PER, ORG,
LOC], keywords, sentiment, articleLength, language,
publishedAt, enrichedAt}

o scrape-failures: {id, url, site, errorType, errorMessage,
attemptCount, attemptedAt}

This explicit design simplifies analysis and debugging. For
example, the scrape-failures index enables detailed reporting
of error categories, which later revealed that 27% of failures
were caused by a mix of timeouts, empty pages, and structural
incompatibilities.

C. Python Microservices

Certain NLP models, especially multilingual transformers,
are not natively supported in .NET. To integrate them, two
Python microservices were developed:

e ner_server.py: provides named entity recognition
using Davlan/xlm-roberta-base-ner-hrl [22].
e sentiment_server.py: pro-

vides sentiment classification using

cardiffnlp/twitter-xlm-roberta-base-sentiment

from Hugging Face.

Both services were implemented with FastAPI, exposing
REST endpoints returning JSON responses. To balance accu-
racy and performance, documents were processed individually
rather than in large batches, avoiding memory spikes while
maintaining reasonable throughput. The sentiment server used
a maximum sequence length of 256 tokens, while the NER
service used 512 tokens to preserve context.

D. Containerization and Deployment

All services were packaged as containers using Podman.
Podman was chosen over Docker due to stronger compatibility
with the PowerPC (ppc64le) architecture where official Docker
images were not always available [30]. Each service was built
with minimal base images to reduce memory overhead and
start-up time.

Environment variables configure runtime parameters such
as:

o Elasticsearch host and port.

o Batch sizes for bulk indexing (default 12,500 documents).

o Timeouts for HTTP requests (8 seconds).

o Maximum retry count (3 attempts with exponential back-
off).

o Instance count and partition IDs for distributed scraping.

o Model service endpoints.

This allows the system to be deployed in different environ-
ments without code modification.

ISSN 2305-7254

E. Partitioning Logic

A key requirement was distributing work across multiple
scraper instances. This was achieved using deterministic hash-
ing of article identifiers:

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

A. Experimental Environment

All experiments were conducted on a dedicated high-
performance server with PowerPC architecture. The choice
of Podman as container runtime was motivated by its com-
patibility with ppc64le, where Docker support was limited

hash(id) mod INSTANCE_COUNT = INSTANCE_ID [30]. Elasticsearch served as the primary storage engine due

This ensures that each article is processed exactly once,
without duplication. Scaling requires editing the configuration
(e.g., updating the instance count in the Docker Compose
file). Deterministic partitioning was chosen over queue-based
systems such as Kafka or RabbitMQ to avoid additional
infrastructure overhead and simplify debugging.

F. Error Handling and Logging

Failures during scraping or enrichment are inevitable due to
site restrictions, malformed feeds, or network timeouts. The
system implements:

o Retries: up to three attempts with exponential backoff.

o Timeouts: an 8-second cut-off for unresponsive sites.

o Failure Index: failed attempts are logged to scrape-
failures with error details.

o Partial Enrichment: if one enrichment step fails, others
proceed.

This guarantees continuity of operation and enables later
analysis of recurring issues.

G. CI/CD Pipeline

Continuous integration was established using GitHub Ac-
tions. On each push, services are built, tested, and container
images are published. Unit and integration tests run automat-
ically, ensuring regressions are detected early. Manual API
testing was performed using Postman to validate end-to-end
functionality before deployment.

H. Scalability Considerations

The stateless design of services enables horizontal scaling.
During evaluation, up to eight scraper instances were deployed
simultaneously, demonstrating near-linear performance scal-
ing. Elasticsearch provided distributed storage and indexing
capabilities [21], while Podman ensured consistent runtime
isolation across instances. The decision to prioritize determin-
istic partitioning over dynamic load balancing reflects a trade-
off favoring simplicity, transparency, and reproducibility over
absolute flexibility.

V. METHODS AND EXPERIMENTATION

To evaluate the performance and reliability of the proposed
system, a series of experiments were conducted focusing
on scalability, throughput, enrichment quality, and resilience.
This section describes the experimental environment, datasets,
testing methodology, and evaluation scenarios.

227

to its ability to handle distributed indexing and large-scale
text search efficiently [21], [31]. The specifications of the
environment are summarized in Table 1.

TABLE I. EXPERIMENTAL ENVIRONMENT
SPECIFICATIONS

CPU 64-core PowerPC (ppc6dle) @ 2.5 GHz
RAM 64 GB
Storage 30 TB HDD, 100 GB SSD (system)

RHEL-based Linux distribution
NET 8, Python 3.11, Elasticsearch 8.x
Podman

Operating System
Core software
Container runtime

B. Datasets

Two primary datasets were collected during evaluation:

o Article links: The sitemap indexer discovered over
411 million unique links from Slovak and international
news websites. This dataset highlights the efficiency of
sitemap-driven discovery compared to forum-style crawl-
ing [32].

o Articles: More than 6 million links were attempted
for scraping. Approximately 4.3 million articles were
successfully processed and enriched.

This dataset scale ensures that experiments reflect realistic,
large-scale use cases.

C. Testing Methodology

Testing was performed at three levels:

o Unit testing: Focused on link hashing, keyword extrac-
tion, and sitemap parsing.

o Integration testing: Verified end-to-end document life-
cycle in Elasticsearch, including insertion, updates, and
deletions.

o API testing: Postman collections were used to validate
that exposed endpoints returned correct data and error
handling was robust.

In addition, fault simulations were conducted:

o Expired or dead links.

o Malformed RSS feeds.

o Service crashes and restarts.

e Network timeouts and DNS failures.

The system’s ability to recover gracefully from these scenarios
was considered a critical factor.

D. Experimentation Scenarios

Three main experiments were carried out.

ISSN 2305-7254

1) Scraper throughput: Throughput was measured under
varying numbers of scraper instances, from one to eight. Each
instance used hash-based partitioning to process a disjoint
subset of article links. Throughput was recorded in articles per
minute, with bulk indexing following Elasticsearch guidelines
for optimal batch size [31]. Results are reported as both
average and peak throughput.

2) Enrichment accuracy: A multilingual sample of 500
articles (Slovak, English, German, Czech) was manually an-
notated by human evaluators to establish ground truth for
enrichment tasks. Accuracy was quantified as follows:

o Named Entity Recognition (NER): Precision, recall,
and F1 score were calculated against the annotated
ground truth for PER, ORG, and LOC entities.

o Sentiment analysis: Predicted labels were compared
with majority human judgment, producing accuracy and
Cohen’s x agreement.

o Keyword extraction: Overlap with human-selected key-
words was measured using F;@10 (precision/recall on
the top 10 extracted keywords).

This quantitative evaluation extends beyond manual inspection
and aligns with established benchmarking practices [12].

3) Failure analysis: Failures were categorized and quanti-
fied using the scrape-failures index. Table II summarizes the
observed categories.

TABLE II. DISTRIBUTION OF SCRAPING

FAILURES
Failure type Share of total failures
Timeouts 41%
HTTP errors (403/404/500) 28%
Empty or missing content 18%
Invalid HTML structure 9%
Other/unknown 4%

4) System resilience: Resilience was assessed by deliber-
ately inducing failures, such as shutting down enrichment ser-
vices mid-processing or providing malformed input. Metrics
included the percentage of articles successfully enriched de-
spite partial failures and the effectiveness of retry mechanisms.

E. Evaluation Metrics

The experiments were evaluated using the following met-
rics:

o Throughput: average and peak articles processed per
minute.

o Success rate: proportion of attempted links resulting in
a valid enriched article.

o Accuracy: quantitative precision, recall, F1, and agree-
ment scores for enrichment tasks.

o Resilience: ability to recover from failures without data
loss or service interruption.

« Failure distribution: statistics on error types contributing
to the 27% failure rate.

228

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

VI. RESULTS AND DISCUSSION

This section presents the outcomes of the experiments and
discusses the system’s performance, enrichment quality, and
limitations.

A. Throughput and Scalability

The system achieved high throughput under parallel exe-
cution. With a single scraper instance, the system processed
around 500 articles per minute. Scaling up to eight instances
increased throughput to a peak of 5000 articles per minute.
The scaling behavior was nearly linear, demonstrating the
effectiveness of the hash-based partitioning strategy. Scaling
required adjusting the Docker Compose configuration, but no
central coordination was needed.

B. Processing Outcomes

Over the course of evaluation, the system attempted to
scrape approximately 6 million articles. Of these, 4.3 million
were successfully scraped and enriched. The remainder were
classified as failures due to timeouts, HTTP errors, or struc-
tural incompatibilities. Table III summarizes these statistics.

TABLE III. SUMMARY OF ARTICLE PROCESSING

OUTCOMES
Total links indexed 411,000,000
Articles attempted 6,005,445
Articles successfully scraped 4,379,282
Average throughput 2000/min
Peak throughput 5000/min
Failure rate 27%

A breakdown of failure causes is shown in Table II, reveal-
ing that timeouts and HTTP errors account for nearly 70%
of all failures. This analysis provides a clearer understanding
of system limitations compared to reporting a single failure
percentage.

C. Enrichment Quality

Quantitative evaluation was performed on a manually anno-
tated sample of 500 multilingual articles. Results are shown
in Table IV.

TABLE IV. ENRICHMENT ACCURACY ON
ANNOTATED SAMPLE

NER (PER/ORG/LOC) Fl1-score | 0.81
Sentiment accuracy 0.76
Cohen’s k (sentiment) 0.71
Keyword extraction F; @10 0.68

These results indicate that enrichment quality is sufficient
for downstream tasks such as trend detection and clustering.
For instance, Slovak political articles consistently identified
the correct politicians and parties, while sentiment classifica-
tion agreed with human judgment in most cases. Keyword
extraction produced meaningful phrases, although multi-word
terms occasionally lacked precision.

ISSN 2305-7254

D. System Resilience

The system successfully recovered from induced failures.
When enrichment services were temporarily disabled, articles
were still scraped and stored, with missing enrichment re-
tried later. Timeout and retry mechanisms prevented scraper
lock-ups, while failed attempts were consistently logged in
the scrape-failures index. This design ensured continuity of
operation even under unstable conditions, which is consistent
with prior research emphasizing fault tolerance in large-scale
crawlers [32].

E. Comparison with Existing Solutions

Compared with commercial APIs such as Google News
[10] or NewsCatcher, the proposed system offers several
advantages:

e Cost efficiency: No per-request charges or licensing
restrictions.

o Transparency: Full control over enrichment models, data
structures, and error reporting.

o Scalability: Near-linear scaling up to eight instances,
with throughput comparable to commercial offerings.

o Multilingual support: Integration of transformer-based
NER and sentiment models [4], [14].

Open-source frameworks such as Scrapy or BeautifulSoup
provide scraping capabilities but lack the ability to integrate
enrichment or operate at this scale. Academic enrichment
studies provide higher-quality benchmarks but are not typically
embedded in a scalable collection pipeline. The novelty of this
work lies in bridging these domains by combining large-scale
scraping with real-world enrichment and transparent reporting
of throughput and accuracy.

F. Limitations
Several limitations were identified:

o Reliance on readability-based parsing may fail for highly
dynamic or JavaScript-heavy websites.

o Enrichment evaluation was limited to a manually anno-
tated subset of 500 articles; larger benchmarks would
further validate accuracy.

o Distributed crawling speed remains constrained by site-
imposed rate limits, which cannot be bypassed without
proxies.

o Scaling requires manual configuration changes rather than
automatic elastic deployment.

Despite these limitations, the system demonstrates strong per-
formance and a promising foundation for further development.

VII. CONCLUSION

This paper presented the design, implementation, and eval-
uation of a modular media scraper for semantic metadata
extraction from online news. The system was developed as
a self-hosted and extensible solution, combining C# services
for large-scale link discovery and scraping with Python mi-
croservices for multilingual natural language processing tasks
[14], [28].

229

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

Unlike prior approaches that are either limited in scala-
bility (open-source scrapers), costly and opaque (commercial
APIs), or isolated from large-scale deployment (academic NLP
pipelines), this work demonstrates the first fully self-hosted,
multilingual scraping and enrichment pipeline operating at
the scale of hundreds of millions of links. By integrating
sitemap-driven indexing, deterministic partitioning across mul-
tiple scraper instances, and enrichment with transformer-based
NLP models, the system bridges gaps between engineering
feasibility and applied research in media analytics.

Experiments demonstrated the ability to index over 411
million article links, successfully scrape and enrich 4.3 million
articles, and achieve throughput of up to 5000 articles per
minute when scaled across eight instances. Beyond through-
put, the evaluation included quantitative enrichment metrics
(NER Fl-score of 0.81, sentiment accuracy of 0.76, keyword
extraction F7@10 of 0.68) and a detailed breakdown of the
27% failure rate, showing that most failures were due to
timeouts and HTTP errors. This level of transparent reporting
provides a stronger empirical foundation than is typical in
comparable systems.

Compared with existing approaches, the proposed system
offers transparency, cost-efficiency, scalability, and multilin-
gual processing capabilities, while enabling reproducibility
and long-term historical analysis. At the same time, several
limitations remain: reliance on readability parsing for article
extraction, manual configuration for scaling, and evaluation
limited to 500 annotated articles.

Future work will focus on extending enrichment to relation
extraction, clustering, and event detection [33], [34], as well
as integrating visualization dashboards for exploring enriched
datasets. Additional benchmarks on larger annotated corpora
and more dynamic websites will further validate generalizabil-
1ty.

Overall, this work demonstrates the feasibility and value
of building a robust, self-hosted pipeline for semantic news
analysis. It provides both a practical tool for research and
monitoring, and a reproducible platform for future academic
studies on large-scale media data.

ACKNOWLEDGMENT

This work was supported by the Science Grant Agency -
project VEGA 1/0300/25. Also funded by the EU NextGenera-
tionEU through the Recovery and Resilience Plan for Slovakia
under the project No. 09105-03-V02-00057.

REFERENCES

[1] M. Tanwar, R. Duggal, and S. K. Khatri, “Unravelling unstructured data:
A wealth of information in big data,” in 2015 4th International Confer-
ence on Reliability, Infocom Technologies and Optimization (ICRITO)
(Trends and Future Directions), 2015, pp. 1-6.

[2] L. Chiou and C. Tucker, “Paywalls and the demand for news,”
Information Economics and Policy, vol. 25, no. 2, pp. 61-69, 2013.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167624513000097

[31 V. K. Kanuri and A. Pattabhiramaiah, “Scarcity-driven
monetization of digital content,” Frontiers in Research
Metrics and Analytics, vol. Volume 7 - 2022,
2022. [Online]. Available: https://www.frontiersin.org/journals/

ISSN 2305-7254

[4]
[5]

[6]

[7]
[8]

[9]

[10]
[11]

[12]

[13]

[14]
[15]

[16]

(23]

[17]

[18]

research-metrics-and-analytics/articles/10.3389/frma.2022.995202

G. G. Krishna, “Multilingual nlp,” International Journal of Advanced
Engineering and Nano Technology, vol. 10, no. 6, pp. 9-12, 2023.
United States Court of Appeals, Ninth Circuit, “HiQ Labs, Inc.
v. LinkedIn Corporation, no. 17-16783,” 2022, ninth Circuit
decision affirming that scraping public data does not violate
the CFAA. [Online]. Available: https://cdn.ca9.uscourts.gov/datastore/
opinions/2022/04/18/17-16783.pdf

A. G. Fontana, “Web scraping: Jurisprudence and legal doctrines,” The
Journal of World Intellectual Property, vol. 28, no. 1, pp. 197-212,
2025.

S. Developers, “Scrapy: A fast and powerful web crawling and web
scraping framework,” available at https://scrapy.org.

L. Richardson, “Beautiful soup: A python library for navigating html
and xml documents,” available at https://www.crummy.com/software/
BeautifulSoup/.

M. Pilgrim and Contributors, “Feedparser: Parse atom and rss feeds in
python,” available at https://pypi.org/project/feedparser/.

“Google news,” available at https://news.google.com/.

R. Mihalcea and P. Tarau, “TextRank: Bringing order into text,” in
Proceedings of the 2004 Conference on Empirical Methods in Natural
Language Processing, D. Lin and D. Wu, Eds. Barcelona, Spain:
Association for Computational Linguistics, Jul. 2004, pp. 404—411.
[Online]. Available: https://aclanthology.org/W04-3252/

D. Nadeau and S. Sekine, “A survey of named entity recognition and
classification,” Lingvisticae Investigationes, vol. 30, 08 2007.

E. Marsh and D. Perzanowski, “MUC-7 evaluation of IE technology:
Overview of results,” in Seventh Message Understanding Conference
(MUC-7): Proceedings of a Conference Held in Fairfax, Virginia, April
29 - May 1, 1998, 1998. [Online]. Available: https://aclanthology.org/
M98-1002/

H. F. Inc., “Transformers: State-of-the-art natural language processing,”
available at https://huggingface.co/transformers/.

E. Al, “spacy: Industrial-strength natural language processing in
python,” available at https://spacy.io.

M. U. Hadi, R. Qureshi, A. Shah, M. Irfan, A. Zafar, M. B. Shaikh,
N. Akhtar, J. Wu, S. Mirjalili et al., “Large language models: a
comprehensive survey of its applications, challenges, limitations, and
future prospects,” Authorea Preprints, vol. 1, pp. 1-26, 2023.

N. Contributors, “Newsboat: A console-based rss/atom feed reader,”
available at https://newsboat.org/.

M. Burtsev, M. Reeves, and A. Job, “The working limitations of large
language models,” MIT Sloan Management Review, vol. 65, no. 2, pp.
8-10, 2024.

L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen,
W. Peng, X. Feng, B. Qin, and T. Liu, “A survey on hallucination
in large language models: Principles, taxonomy, challenges, and open
questions,” ACM Trans. Inf. Syst., vol. 43, no. 2, Jan. 2025. [Online].
Available: https://doi.org/10.1145/3703155

230

[19]

[20]

[21]

[22]
[24]

[25]

[26]

[27]

[28]

[29]
[30]

(31]

(32]

[33

—

[34]

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

J. Wei, Y. Yao, J.-F. Ton, H. Guo, A. Estornell, and Y. Liu, “Measuring
and reducing llm hallucination without gold-standard answers,” arXiv
preprint arXiv:2402.10412, 2024.

I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice
architecture: aligning principles, practices, and culture. O’Reilly
Media, Inc.”, 2016.

N. Kathare, O. V. Reddy, and V. Prabhu, “A comprehensive study of
elasticsearch,” International journal of science and research (IJSR),
2020.

Davlan, “xlm-roberta-base-ner-hrl,” https://huggingface.co/Davlan/
xIm-roberta-base-ner-hrl, 2021, accessed: 2025-05-12.

S. Contributors, “Simplefeedreader: A lightweight rss and atom feed
reader for .net,” available at https:/github.com/simplefeedreader.
Microsoft, “Bing news search api - endpoints,” 2024, accessed May
11, 2025. [Online]. Available: https://learn.microsoft.com/en-us/bing/
search-apis/bing-news-search/reference/endpoints

——, “Bing news search api - query parameters,” 2024, accessed May
11, 2025. [Online]. Available: https://learn.microsoft.com/en-us/bing/
search-apis/bing-news-search/reference/query-parameters

——, “Bing news search api - response objects,” 2024, accessed May
11, 2025. [Online]. Available: https://learn.microsoft.com/en-us/bing/
search-apis/bing-news-search/reference/response-objects

——, “Asp.net core documentation,” available at https://learn.microsoft.
com/en-us/aspnet/core/.

S. Bird and E. Loper, “Natural language toolkit (nltk),” available at
https://www.nltk.org.

D. Inc., “Docker: Empowering app development for the modern world,”
available at https://www.docker.com/.

Elastic, “Using and sizing bulk requests,” 2024, accessed May 11, 2025.
[Online]. Available: https://www.elastic.co/guide/en/elasticsearch/guide/
current/indexing-performance.html#_using_and_sizing_bulk_requests
R. Cai, J.-M. Yang, W. Lai, Y. Wang, and L. Zhang, “irobot: an
intelligent crawler for web forums,” in Proceedings of the 17th
International Conference on World Wide Web, ser. WWW *08. New
York, NY, USA: Association for Computing Machinery, 2008, p.
447-456. [Online]. Available: https://doi.org/10.1145/1367497.1367558

1. Stavrakantonakis, A.-E. Gagiu, H. Kasper, I. Toma, and A. Thalham-
mer, “An approach for evaluation of social media monitoring tools,”
Common Value Management, vol. 52, no. 1, pp. 52-64, 2012.

X. Wan, H. Jia, S. Huang, and J. Xiao, “Summarizing the differences
in multilingual news,” in Proceedings of the 34th International ACM
SIGIR Conference on Research and Development in Information
Retrieval, ser. SIGIR ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 735-744. [Online]. Available:
https://doi.org/10.1145/2009916.2010015

