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Abstract—The rapid growth of multimodal large language 

models (LLMs) call for a detailed analysis of the linguistic features 
in AI-generated, image-conditioned descriptions. Using a paired 
corpus of AI and human descriptions of artworks from the 
Hermitage collection, we developed a comprehensive authorship 
framework that incorporates measures of lexical diversity, 
morphological density and entropy, syntactic roles and 
complexity, and a novel set of semantic oppositions designed to 
infer modality engagement (sensory, cognitive, emotional, etc.). 
We built interpretable linear classifiers (elastic net logistic 
regression and ridge logistic regression) and tested them on 100 
unseen images, each paired with one AI and one human caption. 
These classifiers achieved high balanced accuracy (0.9). AI-
generated captions showed significantly higher levels of 
subordination, verbs per sentence, object-type syntactic relations, 
and longer dependency distances, along with greater engagement 
with cognition, size and intensity, time, socialness, and positive 
emotions, as captured by our semantic opposition features, as well 
as increased lexical diversity. In contrast, human captions 
demonstrated stronger engagement with somatic, visual, and 
motor concepts, and a higher frequency of adjectival modifiers 
that contribute to scene setting and attribute description. Beyond 
average differences, AI-generated texts were more homogeneous. 
Prompts that explicitly request concrete visual evidence along with 
limited subordination and reduced scalar intensity can guide 
outputs toward human-like, perceptually grounded descriptions. 
This approach is particularly valuable for applications requiring 
explainable, evidence-based reporting, such as medical imaging 
captions. 

I. INTRODUCTION 

The advent of multimodal large language models (MLLMs) 
incorporating vision capabilities has revolutionized the task of 
generating textual descriptions for images, known as image 
captioning – a longstanding challenge in both the computer 
vision and natural language processing [1-3]. These models can 
generate lengthy, detailed descriptions based on visual input, 
surpassing the short captions typical of traditional approaches. 
Research has demonstrated that state-of-the-art models, such as 
GPT-4o, perform on par or even surpass human-level 
performance in pairwise caption battles paradigm, at least for 
images primarily focused on everyday life scenarios [3]. 

As new models generate long, detailed image descriptions,  
not only does their ability to provide precise depictions of image  
 

content becomes increasingly important. Equally critical is the 
study of their linguistic characteristics. Developing prompting 
strategies that account for the linguistic differences between AI- 
and human-generated image descriptions is essential. This 
especially true in safety-critical domains like medicine, where 
linguistic cues such as negation, uncertainty, hedging, and 
qualifiers can significantly alter clinical meaning (e.g., “no 
hemorrhage” versus “possible hemorrhage”). Feature-level 
analyses help ensure that models interpret and use these cues 
correctly. The use of overconfident language (e.g., “definite,” 
“clear”) when evidence is weak can be a risky. Linguistic 
profiling aids in calibrating the tone and claims of descriptions 
to align accurately with visual evidence. Interpretable features 
reveal how a model constructs its descriptions, enabling 
transparent analysis beyond relying solely on accuracy metrics 
[3], which is particularly important in medical image analysis. 
Furthermore, when images vary due to new scanners, lighting 
conditions, or styles, stable linguistic behaviors (such as 
concreteness and spatial terms) offer an additional measure of 
robustness beyond visual accuracy. 

This study aims to systematically compare picture 
descriptions in Russian produced by humans and MLLM using 
a carefully curated dataset. We have developed a reproducible 
pipeline that integrates lexical, morphological, syntactic, and 
semantic features of both AI- and human-generated picture 
descriptions. A key aspect of our approach is a novel set of 
features we call neurobiology-motivated semantic oppositions, 
which offer quantitative contrasts along conceptual dimensions, 
such as abstract versus concrete, cognitive versus perceptual, 
evaluative versus descriptive, etc.  

In addition to analyzing descriptive contrasts, we develop 
predictive models to determine whether these features can 
differentiate AI-generated captions from human-generated ones 
on unseen data (using “caption” as general term for all text 
paired with an image). We approach this as an authorship 
classification problem and train interpretable linear classifiers – 
specifically, elastic net logistic regression and ridge logistic 
regression – as well as, for comparison, a non-linear RBF-kernel 
SVM. To ensure robustness and interpretability, we control for 
text length using ANCOVA-style adjustments. This 
combination of descriptive and predictive analyses ensures  
that observed differences are both interpretable and 
generalizable. 
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The contributions of our work can be summarized as follows: 

• a feature-centric benchmark for caption authorship: a 
replicable pipeline that uses interpretable linguistic signals to 
distinguish AI-generated picture descriptions from those written 
by humans; 

• introduction of semantic oppositions: a novel, domain-
independent set of features that capture a range of contrasts 
motivated by neurobiological research on word meaning; 

• comprehensive analysis with practical implications: this 
integrated evaluation highlights the differences between AI and 
human-generated long image descriptions across multiple levels. 
These insights can be applied to prompting strategies to achieve 
the desired style. Such an approach is valuable in designing 
captioning systems that balance abstraction with perceptual 
grounding to produce explainable and clinically trustworthy 
outputs. 

II. RELATED WORK 

The advancement of MLLMs has highlighted the challenge 
of analyzing and evaluating lengthy textual descriptions of 
images [2]. In recent years, numerous studies have compared 
AI-generated and human-generated image descriptions, 
particularly for medical images [4]. However, the primary focus 
has largely been on downstream task accuracy, such as object 
or lesion detection, abnormality characterization, and 
diagnostic output [5], or on general quality assessments 
typically based on metrics that measure similarity to human 
descriptions [2]. Another approach, proposed in a recent 
benchmark study [3], involved human raters evaluating both 
human- and AI-generated image descriptions using subjective 
criteria such as precision, informativeness, hallucination, and 
attention to detail. These metrics could be further improved by 
incorporating a broader range of linguistic measures beyond AI-
human content similarity, provided such measures are available. 

To the best of our knowledge, the linguistic properties of 
image textual descriptions have not been studied. Since 
MLLMs generate image descriptions using text generators, it is 
appropriate to frame linguistic analysis of such descriptions 
within the context of systematic differences between AI- and 
human-generated text. 

As LLMs have grown more powerful and widely accessible, 
research has largely concentrated on their task performance 
rather than examining their writing style [6]. Nevertheless, 
several studies have identified systematic linguistic differences 
between AI-generated and human writing across various genres 
and model architectures [6-10]. These distinctions are 
especially pronounced in instruction-tuned models, which often 
display an informationally dense, noun-heavy style 
characterized by increased nominalizations, noun- and 
preposition-based phrases for abstract descriptions, fewer 
human subjects, reduced use of epistemic stance markers, and 
greater lexical diversity [6-10]. 

Human texts exhibit a broader range of sentence lengths, 
distinct patterns in dependency and constituent types, shorter 
constituents, and more optimized dependency distances [7-10]. 
Compared to text generated by LLMs, humans tend to express 

stronger negative emotions, such as fear and disgust, and less 
joy [10]. LLM outputs contain more numbers, symbols, and 
auxiliary words, indicating a more objective tone than human 
texts, along with a higher frequency of pronouns [9]. 
Additionally, human texts generally have simpler syntactic 
structures and more varied semantic content [9]. Newer models 
often resemble each other more closely and exhibit less 
variation than human texts, a phenomenon known as model 
collapse [6, 9]. Texts produced by ChatGPT excel in categories 
such as social processes, analytical style, cognition, attentional 
focus, and positive emotional tone, leading researchers to 
conclude that that LLMs can be "more human than human" 
[10]. 

The authors [6] highlight that their findings underscore the 
importance of incorporating linguistic structures to gain a 
deeper understanding of the capabilities and outputs of LLMs. 
They particularly emphasize the significant role of linguistic 
expertise and functional views of language in both the 
application and development of LLMs. At present, various 
linguistic perspectives are frequently overlooked during the 
development and internal evaluation of these models [6]. 

While very high classification accuracies are often reported 
in the literature – for example, random forests and lasso-
penalized logistic regression reaching 93–98% in [6]—the 
problem of generalizability remains. In that study, models 
trained on one corpus frequently collapsed to chance-level 
performance when applied to a different corpus, underscoring 
that success in within-domain classification does not 
necessarily transfer across datasets or registers. 

It is important to note that, in the studies mentioned above, 
surprisingly little attention has been given to controlling for the 
effect of text length. Most research has concentrated on 
English-language texts. Furthermore, to the best of our 
knowledge, this body of work does not include textual 
descriptions of images generated by MLLMs. Our study is the 
first to investigate this area. 

III. METHODS 

A. Dataset 

The dataset used in this study comprises textual descriptions 
of images from the Hermitage collections [11]. Each image is 
paired with one AI-generated caption and between three and 
twelve human-written captions. The AI captions were generated 
by a state-of-the-art MLLM developed by Yandex Research, 
which was in the process of being released at the time of the paper 
was submitted. According to the dataset creators (personal 
communication), the model was given images as input without 
any accompanying text examples. The prompts were provided in 
Russian, and the generated texts were also in Russian. The human 
segment of the dataset was produced by native Russian speakers 
who tasked with describing the same artworks used as inputs to 
the MLLM. 

All captions are stored with metadata, including image_id, 
source (AI or HUMAN), caption_id, and text. Below is a sample 
AI-generated description (translated from Russian) of 
T. Gainsborough’s "Portrait of a Lady in Blue". 
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AI description: An 
eighteenth-century portrait 
in a realist manner shows a 
woman in a blue lace dress, 
wearing a pearl necklace 
and earrings. Her hair is 
styled high with a feather, 
and she faces the viewer 
with a slight smile. The dark 
background and directional 
lighting emphasize the 
fabric’s texture and the 
intricate details of her hair. 

Human description: In the 
painting, a young woman—
approximately 30–35 years 
old—is portrayed with a high, 
voluminous ash-coloured wig 
topped by a feathered hat. She 
has brown eyes and delicate 
features. A black ribbon tied in 
a bow and a small cross 
pendant adorn her neck, and a 
watch is worn on her right 
wrist. She is dressed in white 
and light-blue fabrics that 
coordinate with her hat. 

We started with the complete collection of artworks (n = 902), 
each accompanied by one AI-generated description and between 
three and twelve human-generated descriptions. For this study, 
we limited the dataset to images that had all twelve human 
captions as well as the AI caption available. This approach 
ensured a balanced and comparable set of human and AI texts per 
image, resulting in 101 images × 12 human captions = 1,212 
human captions, plus 101 AI captions, for a total of 1,313 texts. 
This subset ("main") was used for all exploratory analyses of 
linguistic features and for training classification models. 

To create a held-out evaluation set, we randomly selected 100 
images from the remaining dataset. For each image, we extracted 
both the AI-generated description and one randomly chosen 
human caption, resulting in 200 texts evenly balanced between 
the two sources (AI and human). This dataset, referred to as 
"paired", was used to compare results obtained from the main 
dataset and to test classifiers on unseen material (see Table I). 

TABLE I. DATASET COMPOSITION AND DESCRIPTIVE STATISTICS 

Dataset 
Size

(texts) 
AI 

texts 
Human 

texts 
Feature 

AI mean
(SD) 

Human 
mean 
(SD) 

Main 1,313 101 1,212 n_words 64.3 
(21.7) 

54.0 
(31.4) 

n_chars 449.6 
(155.6) 

354.0 
(207.8) 

Paired 200 100 100 n_words 66.6 
(22.9) 

64.2 
(44.3) 

n_chars 472.0 
(174.8) 

424.3 
(287.6) 

In the main dataset, AI-generated captions were consistently 
longer than human ones, with significant differences in both word 
and character counts (small–moderate effect sizes, p < .001). In 
the paired dataset, by contrast, no reliable length differences 
emerged between AI and human captions. 

Variance analysis showed that in the paired dataset, human 
captions exhibited significantly greater variability than AI 
captions, both in word count (Levene’s test, F(1,198) = 21.23, p 
< 0.00001) and character count (F(1,198) = 15.42, p < 0.001). In  

contrast, the main dataset revealed no significant differences in 
variance for character count (F(1,1311) = 2.46, p = 0.117). 
However, human texts in the main dataset exhibited greater 
variance in word count compared to AI (Levene’s test, F(1,198) 

= 5.57, p < 0.018). This indicates that individual human captions 
can vary widely in length (at least in terms of word count), while 
AI-generated captions tend to be more consistent. 

To prevent subsequent analyses from being simply influenced 
by differences in text length, we control for potential effect of text 
length (measured in word count) when selecting linguistic 
features. 

B. Features 

We developed a feature set grounded in previous studies 
examining systemic differences between AI-genereated and 
human texts [6-10], as well as our experience with various 
authorship analysis tasks [12]. The features encompass (1) 
lexical diversity, (2) morphosyntactic density and complexity, 
(3) syntactic roles, and (4) semantic concept engagement. 

1) Lexical diversity

Since our captions are relatively short, we prioritize indices 
known to be more stable for short texts [13-15] and statistically 
control for any residual length effects. 

We calculated three well-established indices that are robust 
for short texts:  

1. HDD (Hypergeometric Distribution Diversity) was
calculated manually following the method described by 
McCarthy & Jarvis [14, 15]. HDD estimates, for each word 
type, the probability that it appears at least once in a random 
sample of tokens of size s from the text, averaged across all 
word types. We compute HD-D using the standard sample size 
s=42 [15]. For captions shorter than 42 tokens, we set s=min(42, 
N−1) to comply with the hypergeometric formulation and avoid 
the degenerate case where s=N. We use s=42 as the de facto 
standard in the HD-D literature to maintain comparability 
across studies and languages. A higher HDD value indicates 
greater lexical diversity.  

2. MATTR (Moving-Average Type-Token Ratio) was
calculated using the implementation in quanteda.textstats R 
package, with the default window size set to 50 tokens [16]. 
MATTR computes the type-token ratio within a fixed-length 
moving window and averages the results across the entire text. 
For texts shorter than 50 tokens, we reduced the window size to 
a minimum of 10 tokens to ensure full coverage of all 
documents. This approach helps stabilize the type-token ratio 
against text length effects, where higher values indicate greater 
lexical diversity [13]. 

3. Maas (Maas index) was calculated using
quanteda.textstats. This measure applies a logarithmic 
transformation of the type-token ratio, which reduces sensitivity 
to text length. Unlike MATTR and HDD, lower Maas values 
indicate greater lexical diversity, whereas higher values reflect 
increased lexical repetition. Therefore, the Maas index 
complements MATTR and HDD by offering a length-adjusted 
estimate of lexical variety on a different scale [13]. 

All three indices were calculated using tokenized texts that 
were lowercased, with punctuation and numbers removed, and 
stopwords filtered out to highlight the content vocabulary. 
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We conducted two sets of calculations: 1) a raw pipeline 
where tokens were surface forms; and 2) a lemmatized pipeline 
where tokens were lemmas extracted using the udpipe R 
package with the pretrained Russian model.  

This dual approach enabled us to assess whether the 
observed differences in lexical diversity were influenced by 
inflectional variation (surface forms) or by normalized lexical 
forms (lemmas). 

To account for the well-established dependence of lexical 
diversity indices on text length, we combined two length-
control strategies: 1) residualization, where each metric  was 
regressed on the logarithm of token count, followed by Welch’s 
t-tests on the residuals to compare AI and  human captions; and 
2) ANCOVA, using raw indices served as outcomes in models
that include both caption source (AI vs. human) and log token 
count as predictors. Residualization offers a model-free 
approach to length control for simple group comparisons, while 
ANCOVA provides adjusted effects and interpretable adjusted 
means. Convergence between the residualized and ANCOVA 
results increases confidence in the robustness of our findings. 
To control for multiple testing, the Benjamini–Hochberg FDR 
correction was applied within each analysis type (residualized 
vs. ANCOVA) across the three indices per dataset.  

The same length-control strategies were consistently applied 
to other feature sets beyond lexical diversity as well. 

2) Morphosyntactic density and complexity

We calculated a set of morphological and syntactic features 
to capture the structural properties of captions authored by AI  
and humans. These measures targeted both the composition of 
morphological categories and the complexity of syntax [17-19]. 
Specifically, they included: 

Morphological composition: 

 upos_entropy: normalized Shannon entropy of 
Universal POS (UPOS) tag distributions  (POS_entropy). 
Higher values indicate a more balanced mix of parts of speech; 

 upos_bigram_entropy: normalized Shannon entropy of 
adjacent UPOS tag bigrams, capturing the diversity of 
sequential POS (POS_bigram_H). Higher values indicate 
greater variation in POS sequencing, suggesting less formulaic 
language; 

 func_ratio: the proportion of function words relative to 
the total number of tokens. Higher values indicate a greater 
presence of functional scaffolding compared to content words. 

Morphological variety: 

 morph_entropy (H)_<feature>: normalized entropy of 
values within specific morphological categories (e.g., 
H_Case_N, H_Gend_N, H_Anim_N, H_Tense_V, etc.). 
Following [18], the entropy of morphological categories 
provides a reliable measure of how evenly grammatical 
distinctions are distributed  throughout a text. Higher entropy 
values indicate a more balanced use of the category’s values, 
reflecting greater morphological diversity (e.g., a balanced use 
of several noun cases or a mix of animate and inanimate nouns). 
In contrast, lower values suggest that one or a few values 

dominate, indicating limited variety (such as  nearly all nouns 
appearing in the nominative case). 

 feat_per_token: mean number of marked morphological 
attributes per token indicates the richness of morphological 
marking. Higher values indicate a more complex morphology, 
where tokens typically encode multiple grammatical 
distinctions simultaneously. This usually corresponds to the 
presence of inflected nouns, verbs, and adjectives carrying 
several features at once. In contrast, lower values suggest lighter 
morphological marking, with texts containing more uninflected 
words (such as function words, particles, and short adverbs) or 
primarily analytic structures. 

Inflectional richness: 

 SD3_NOUN / SD3_VERB / SD3_ADJ: a set of 
features that capture the diversity of suffixes within three major 
inflecting word classes (nouns, verbs, and adjectives). For each 
token, the last three characters of its surface form are extracted 
to approximate morphological endings in Russian, where 
inflection is primarily expressed through suffixes. Formally, it 
is defined as the number of distinct three-character endings 
observed in a document, normalized by the total number of 
tokens in that word class. Higher values indicate greater 
morphological productivity or variability, meaning the text uses 
a wider range of inflected forms (e.g., nouns appearing in 
multiple cases or verbs across different tenses, aspects, or 
persons). Lower values indicate restricted or repetitive suffix 
patterns, where fewer endings dominate, suggesting limited 
inflectional variation (e.g., mostly nominative singular nouns or 
predominantly infinitive verbs). 

 AFL (Average Forms per Lemma): mean number of 
distinct surface forms per lemma. Higher values suggest a richer 
inflectional variety for each lemma, meaning that lemmas occur 
in multiple paradigmatic forms. In contrast, lower values 
indicate more limited inflection, thus quantifying 
morphological complexity by the extent of form proliferation. 

 BFL (Average Bundles per Lemma): mean number of 
unique morphological bundles (combinations of features) 
realized per lemma. Each bundle is defined by a set of 
morphological attributes in the UD annotation (e.g., Case=Gen, 
Number=Plur, Gender=Fem). While multiple surface forms 
may correspond to the same bundle (e.g., spelling variants), 
BFL counts only the unique bundles. Higher values indicate that 
lemmas appear in a wider range of morphosyntactic contexts. 
This index captures functional inflectional diversity by 
abstracting from spelling variations and focusing on 
grammatical categories. 

 Inflectional Diversity Index (IDI) is a ratio-based 
measure that quantifies the number of morphological bundles 
realized relative to the lemma inventory. Essentially, it is 
effectively a normalized version of BFL. Higher IDI values 
indicate that lemmas are expressed through a greater variety of 
distinct inflectional bundles, reflecting a broader functional 
range. While BFL calculates the average number of bundles per 
lemma, IDI presents this information as a ratio, making it easier 
to compare across corpora or texts with different lemma sizes. 
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 Morphological Bundle Type–Token Ratio 
(MB_TTR) is a type–token ratio calculated not only on word 
forms but on lemma–bundle pairs (e.g., стол + Case=Gen.Sg; 
стол + Case=Nom.Pl). Similar to traditional TTR, higher 
MB_TTR values indicate greater variety, but with the added 
morphological information. 

 editdist_mean (Mean Lemma–Token Edit Distance) 
is the average Levenshtein distance between each surface token 
and its corresponding lemma, measuring the morphological 
difference from the base form. Higher values indicate greater 
inflectional or derivational complexity (e.g., long case or tense 
suffixes, stem alternations). 

Lemma distributional shape: 

 hapax_share is the proportion of lemmas that appear 
only once in a document (known as hapax legomena); 

 gini_lemma is the Gini coefficient computed over the 
lemma frequency distribution, reflecting the inequality of 
lemma reuse. Higher values indicate dominance by a small set 
of lemmas, while low value reflect a more equal lemma 
distribution. 

Both metrics are computed using lemmas (after 
lemmatization) and thus correspond directly to our 
morphological features. Unlike HDD/MATTR, which assess 
global lexical diversity through type-token dynamics, these 
measures target the distributional shape of lemmas, specifying 
long-tail variety and inequality in reuse. 

Syntactic complexity: 

 depdist_mean (Mean Dependency Distance) is the 
average linear distance between a head and its dependent within 
a syntactic dependency tree, excluding root relations (Liu 
2008). Higher values indicate longer distances and, 
consequently, greater syntactic complexity; 

 verb_sent_mean (Verbal Density per Sentence) 
represents the average number of verbs per sentence. Higher 
values indicate that sentences contain more predicates or verbal 
events, reflecting a denser clausal structure and potentially more 
complex event packaging. 

 subord_ratio (Subordination Ratio) is the 
proportion of sentences containing at least one subordinate or 
clausal dependent relation, such as adverbial clause, clausal 
complement, open clausal complement, adnominal clause, or 
relative clause. A higher presence of these structures increases 
syntactic dependency and complexity, while lower values 
indicate more paratactic or simpler sentence structures. 

All morphosyntactic features were computed on texts 
annotated using the UDPipe Russian model. Punctuation and 
symbols were excluded. To avoid undefined values, we set 
log(tokens)=log(1) when token counts were zero. For metrics 
requiring a specific part-of-speech category (e.g., entropy of 
verb tense, noun case, or subject/object counts), documents 
lacking the relevant POS was absent were assigned NA for that 
metric and excluded pairwise from statistical testing. 
Normalization and statistical controls for length followed our 

pipeline: residualization of each metric against the log token 
count and ANCOVA with log length as a covariate. 

3) Syntactic Roles

We quantified core syntactic roles using Universal 
Dependencies (UD) relations from the UDPipe annotation of 
the Russian captions. For each token, we extracted its 
dependency relation (dep_rel) and counted occurrences of the 
following UD labels, including all subtypes: nsubj (nominal 
subject), obj (direct object), iobj (indirect object), amod 
(adjectival modifier), obl (oblique nominals, e.g., locatives, 
instrumentals), and conj (conjuncts, i.e., coordinated elements 
linked to their head conjunct). Additionally, we created a 
combined object count: obj_any = obj + iobj, to capture the total 
object realization regardless of direct or indirect status. 

To make counts comparable across documents of varying 
lengths, we converted raw counts to rates per 100 tokens. 

4) Semantic features

We present a novel set of semantic features based on concept 
engagement functionality, as implemented in the text2map R 
package [20]. This approach estimates the extent to which a text 
engages with specific semantic concepts by calculating the 
optimal transport cost required to map a document’s lexical 
content onto predefined concept prototypes (lower cost 
indicates stronger alignment, see also [21, 22] for details). 

Building on prior research into the componential structure of 
word meaning in language models and recent neuroscientific 
studies on the representation of semantic components in the 
brain [23], we compiled a list of 46 semantic features describing 
word meanings [24]. These features are grouped by major 
modalities and domains, including perceptual (visual, auditory, 
somatic, gustatory, olfactory), motor and spatiotemporal 
dimensions, affective-emotional, cognitive and social domains, 
and drives. 

Each concept prototype was defined as the centroid of its 
exemplar word vectors, and the alignment of a text with the 
prototype was computed using vector similarity. Oppositional 
dimensions were constructed by defining semantic axes (e.g., 
concrete–abstract, pleasant–unpleasant, static–dynamic). Texts 
were scored based on their projection onto these axes. 

Concept prototypes and semantic scales were derived from 
multiple sources. For example, to develop features reflecting 
the salience of the visual modality in text, we created a semantic 
scale with one pole consisting of words rated highest on and the 
opposite pole consisting of words rated lowest as reported in 
[25]. Additionally, we utilized resources we previously 
developed [26] and exemplar lists provided by [23]. We also 
included a core set of semantic-differential oppositions [27]. 
High values on these features indicate stronger alignment of the 
text with the corresponding semantic domain. For instance, a 
high VisNorms score reflects frequent text engagement with 
the visual modality; a high EmoHappy score indicates a 
stronger presence of positive affect; and a high 
CognitionAbstract score corresponds to more abstract, 
conceptual vocabulary. 
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The resulting 46-dimensional semantic feature set has been 
successfully applied in our prior research on authorship 
profiling [12] and in modelling individual differences in the 
word meaning [24, 27]. These features provide insight into 
which conceptual systems (sensory, cognitive, emotional, etc.) 
are more salient in AI versus human captions. 

C. Classification 

We evaluated the predictive value of the linguistic features 
by training binary classifiers to distinguish between AI-
generated and human-generated captions. Models were trained 
on the main dataset and tested on a held-out paired set of 100 
unseen images, each containing one AI captions and one human 
caption. Model selection employed grouped cross-validation 
with groups defined by image_id, ensuring that captions from 
the same image did not appear in both training and validation 
folds. We used three classifiers: elastic net logistic regression 
(our primary baseline, combining L1 and L2 regularization), 
ridge logistic regression (L2 regularization only; linear, 
interpretable comparator), and a Support Vector Machine 
(SVM) with a radial basis function (RBF) kernel (a non-linear 
comparator). 

Elastic Net Logistic Regression was chosen as the primary 
model because it performs embedded feature selection, handles 
correlated predictors effectively, and yields well-calibrated 
probabilities for interpretability. Ridge Logistic Regression was 
included as a stability check, since it applies shrinkage without 
variable selection, thereby testing whether the same decision 
boundary is recovered without sparsity.  

From the elastic net model at its selected penalty, we 
collected features with non-zero coefficients, and then removed 
redundancy using a de-correlation filter (Pearson ρ > 0.98), 
retaining the strongest coefficient in each cluster. The retained 
subset was re-fitted using bias-reduced (Firth) logistic 
regression to obtain odds ratios (ORs) and 95% CIs. ORs are 
reported for the AI label (OR > 1 increases odds of AI; OR < 1 
increases odds of Human). 

IV. RESULTS 

Table II reports adjusted effect estimates (est) and FDR-
corrected p-values for raw-form and lemma-based lexical 
diversity indices, across both the main and paired datasets.  
 

TABLE II. RESULTS OF ANCOVA MODELS FOR LEXICAL DIVERSITY 
INDICES (HDD, MATTR, MAAS) IN AI VS. HUMAN CAPTIONS, ADJUSTED FOR 

LOG TOKEN COUNT 

Dataset Metric Raw est Raw FDR Lemma est 
Lemma 
FDR 

Main HDD -2.621 0.000 -2.767 0.000 
Main MATTR -0.001 0.154 -0.003 0.038 
Main Maas 0.012 0.038 0.016 0.009 
Paired HDD -4.530 0.000 -4.320 0.000 
Paired MATTR -0.002 0.061 -0.004 0.001 
Paired Maas 0.010 0.124 0.006 0.399 

 
HDD values were significantly higher for AI across both 

raw and lemmatized pipelines in both datasets, indicating a 
robust breadth of vocabulary. MATTR also showed a similar 
trend, although statistical significance was observed only for the 

lemmatized texts in both datasets. This suggests that AI outputs 
maintain a broad and evenly distributed vocabulary relative to 
length, particularly when inflectional variation is controlled. 

By contrast, the Maas index which penalizes repetition more 
heavily and is sensitive to low-frequency types identified 
greater repetitiveness in human texts, but only in the larger main 
dataset. Even after lemmatization, AI-generated captions 
employed a wider range of rarer lemmas and exhibited less 
formulaic repetition, resulting in lower Maas values. The 
absence of this effect in the smaller paired dataset likely reflects 
greater human variation on this metric. 

Overall, converging evidence from HDD, MATTR, and 
Maas consistently indicates that AI-generated descriptions 
exhibit greater lexical diversity than human-generated 
descriptions.  

Syntactic complexity features were the strongest 
discriminators between AI- and human-authored captions. 
Across both datasets, the subordination ratio, verbs per 
sentence, and mean dependency distance exhibited large, highly 
significant effects (all FDR-corrected p < 10⁻⁶) (Fig. 1-2). AI 
captions contained more verbs per sentence (main: +0.47; 
paired: +0.66 relative to human), a markedly higher proportion 
of subordinate clauses (main: +0.24; paired: +0.36), and longer 
average dependency distances (main: +0.24; paired: +0.31). 
These patterns indicate that AI outputs are structurally more 
complex, constructing multi-clausal sentences with deeper 
embedding and longer head–dependent spans. 

By contrast, human captions demonstrated a modest but 
consistent advantage in inflectional variety per lemma. Average 
Forms per Lemma (AFL), Average Bundles per Lemma (BFL) 
and Inflectional Diversity Index (IDI) were slightly higher in 
human texts (approximately +0.02–0.03), indicating that 
although human captions are shorter and syntactically 
simpler, they exhibit somewhat richer paradigmatic 
variation across lemmas. 

Analysis of morphological entropy indices further refines 
this picture: AI captions exhibited greater diversity in case and 
gender marking, consistent with their more elaborate noun 
phrase constructions. Human captions varied the number, 
person, and animacy slightly more. 

AI-generated captions tend to exhibit more morphological 
features per token, reflecting their higher structural complexity. 
This highlights a key difference: AI captions build complexity 
through clausal embedding and morphologically dense tokens, 
while human captions achieve variety by employing a wider 
range of lemma-level inflectional forms. Rather than a 
contradiction, this difference reflects a trade-off between local 
morphological density and paradigmatic breadth. AI-generated 
texts often feature longer, more clause-heavy sentences, with 
individual words carrying multiple morphological features 
(e.g., verbs marked for tense, aspect, person, number or 
adjectives with case–gender–number agreement). This 
increases the feature load per token. In contrast, human captions 
tend to be syntactically simpler but exhibit a slightly broader 
paradigmatic range, reusing the same word roots in a more 
diverse set of forms and feature bundles. In summary, AI 
achieves complexity through structural embedding and locally 
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dense morphology, whereas humans achieve complexity 
through lemma-level inflectional variety. 

 

Fig. 1. Differences in morphosyntactic features between human and AI captions 
in the main dataset (ANCOVA estimates adjusted for log token count). Top 
panel: Human–AI estimate contrasts (positive = higher in Human; negative = 
higher in AI). Bottom panel: Benjamini–Hochberg FDR-adjusted p-values  

Syntactic role analysis further highlights the structural 
complexity of AI-generated captions (Fig. 3). In the main 
dataset, AI texts contained more objects per 100 tokens - both 
direct objects (obj, −0.76, pFDR = .0035), indirect objects (iobj, 
−0.57, pFDR < .001), and their combined total (obj + iobj, 
−1.32, pFDR < .001). AI also produced significantly more 
coordination structures (conj, −1.01, pFDR = .0015). In 
contrast, human captions exhibited richer nominal packaging, 
with more adjectival modifiers (amod, +0.99, pFDR = .058, 
trend-level) and more obliques (obl, +1.07, pFDR = .007). The 
rate of subjects (nsubj) did not differ between groups (−0.11, 
pFDR = .72). 

The paired dataset replicated the object pattern: AI again 
used more direct objects (−0.85, pFDR = .016), indirect objects 

(−0.80, pFDR < .001), and their combined total (−1.65, pFDR 
< .001). Human captions once again favored adjectival 
modification (amod, +1.86, pFDR = .012). Differences in 
coordination (conj, −0.85, pFDR = .084) and obliques (obl, 
+0.30, pFDR = .58) were not statistically significant in this 
smaller sample. Subjects showed no consistent differences 
(nsubj, −0.51, pFDR = .24). 

Taken together, these results confirm that AI-generated 
captions achieve complexity through object density and 
coordination, whereas human captions emphasize nominal 
elaboration by using modifiers and obliques. 

 

Fig. 2. Differences in morphosyntactic features between human and AI captions 
in the paired dataset (ANCOVA estimates adjusted for log token count). Top 
panel: Human–AI estimate contrasts (positive = higher in Human; negative = 
higher in AI). Bottom panel: Benjamini–Hochberg FDR-adjusted p-values  

Overall, the object effect is consistently replicated across 
both datasets as the most stable AI grammar signal. AI style is 
predicate-heavy, featuring more objects and often enumerative, 
with increased coordination. Humans prefer noun-centric 
descriptions, conveying detail through adjectives and 
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prepositional phrases (obliques) that add scene setting and 
attributes.  

a) 

 

 

b) 

Fig. 3. Differences in syntactic roles preference between human and AI captions 
in the main (a) and paired (b) dataset (ANCOVA estimates adjusted for log 
token count). Top panel: Human–AI estimate contrasts (positive = higher in 
Human; negative = higher in AI). Bottom panel: Benjamini–Hochberg FDR-
adjusted p-values  

Semantic feature analysis revealed a robust and consistently 
replicated distinction between AI- and human-authored 
captions across both the main and paired datasets (Fig. 4). This 
pattern was observed with large effect sizes in categories 
reflecting the opposition between abstract and concrete 
language (CognitionAbstract, main dz = 1.88; paired dz = 
1.66; CognitionLIWC, 1.34; 1.24), indicating strong AI 
engagement with abstract words and terms related to cognitive 
processes. 

 

Fig. 4. Differences between AI- and human-authored captions across semantic 
domains. Positive values indicate higher scores in AI captions; negative values 
indicate higher scores in human captions. 

AI texts are characterized by higher values of opposition 
poles in brightness (bright vs. dark: VisIntens 1.47 vs. 1.37), 
size (large vs. small: VisSize 1.23 vs. 1.13), age (old vs. new: 
TempAge 1.20 vs. 1.05), and spatial orientation (vertical vs. 
horizontal framing: SpatialUpDown 1.18 vs. 1.14). 

Other domains also consistently skewed toward AI, 
including positive and surprising emotions (EmoHappy, 
EmoSurprised), usefulness (EmoBenefit, DriveNeeds), 
causality (Causal), and words describing socially approvable 
personality traits such as kind and talented (SocialSelf). Higher 
values in contrasts like long–short (TempDuration), loud–
quiet, and close–far also characterize AI captions. Overall, AI-
generated texts are more engaged with the auditory modality 
(AudIntens, AudNorms). These effects reinforce the 
impression of AI captions as more interpretive, abstract, and 
evaluative, frequently employing degree, scale, and causal 
framings, as well as positive affect. 

In contrast, human captions relied more on concrete, 
embodied, and perceptually grounded language. Strong 
replicated effects were observed for concrete words 
(CognitionImage: main dz = −1.80; paired = −1.62), words 
related to motor modality and objects with which one could 
have personal experience (MotorPractice: −1.61; −1.46; 
MotorBinder: −1.46; −1.18; VisMotion: −0.97; −0.86), 
somatosensory descriptors (SomatNorms: −1.60; −1.43; 
SomatTexture: −1.33; −1.20; 
SomatLIWC/Nociception/Surface: −0.6 to −1.15), 
descriptions of body and face terms (VisBody: −1.32; −1.10; 
VisFace: −0.3 to −0.73), visual modality overall (VisNorms: 
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−1.26; −1.08), colors (VisColor: −0.88; −0.75), numbers 
(SpatialNumber: −1.28; −1.05), olfactory and gustatory terms 
(OlfacNorms: −1.03; −1.08; GustNorms: −0.84; −0.83; 
GustTaste: paired only, −0.21, q = .038), and emotionally 
charged words (EmoSentiment: −1.28; −1.13). 

Thus, human captions were more grounded in perceptual 
experience, frequently referencing body parts, colors, 
movements, textures, tastes, smells, emotions, as well as richer 
motor and somatosensory language. 

Crucially, these effects cannot be explained by caption 
length. Correlations between AI–Human semantic score 
differences and token-count disparities were modest (median |r| 
≈ 0.18), accounting for no more than 7% of the variance. After 
regressing out caption length, effect sizes attenuated only 
minimally (median |Δdz| ≈ a few hundredths). This 
demonstrates that the semantic divergence between AI and 
human captions reflects genuine differences in content selection 
and framing, rather than verbosity. 

In summary, AI-generated captions tend to emphasize 
abstract, scalar, and affective aspects of descriptions, while 
human-generated captions focus more on embodied, perceptual, 
and concrete experiences. This distinction reflects a 
fundamental stylistic contrast: AI leans toward interpretive 
commentary, whereas humans remain closer to the sensory 
details of the depicted scene. 

We evaluated three classifiers representing complementary 
modeling strategies (Table III).  

TABLE III. CLASSIFICATION PERFORMANCE ON THE TEST DATASET 

Classifier BAcc Precision Recall F1 
Elastic Net Logistic Regression 0.9 0.955 0.84 0.894 
Ridge Logistic Regression 0.9 0.955 0.84 0.894 
Support Vector Machine (RBF) 0.875 0.844 0.92 0.88 

Both linear models achieved balanced accuracy of 0.900, 
with high precision (0.955) and good recall (0.840), confirming 
their consistency. The confusion matrix (84/100 AI and 96/100 
human captions correctly classified) illustrates this balance, 
showing that linear models preserved strong recall while 
maximizing precision. 

To contrast with linear approaches, we also tested a 
nonlinear Support Vector Machine (RBF kernel). This classifier 
reached higher recall for AI (0.920) but at the expense of lower 
precision (0.844), yielding slightly reduced balanced accuracy 
(0.875). 

Together, these results indicate that linear penalized logistic 
regression provides both high accuracy and stable calibration, 
while the SVM demonstrates that nonlinear decision boundaries 
can shift the precision–recall trade-off but do not improve 
overall generalization. 

While classification results demonstrate that AI and human 
captions can be reliably distinguished, they do not reveal which 
linguistic features drive the distinction. To address this, we 
applied bias-reduced logistic regression to the de-correlated 
elastic-net subset. This second-stage analysis provided 
interpretability beyond performance metrics and identified 

seven predictors with odds ratios significantly different from 
1.0, confirming their robust contribution to AI–human 
discrimination. Features associated with AI captions (OR > 1) 
included subordination ratio (OR 67.0), mean dependency 
distance (OR 11.5), CognitionLIWC (OR 2.66), lexical 
diversity (HDD_Lemma) (OR 1.06). Features associated with 
human captions (OR < 1) were Attentional arousal (OR 0.46), 
SomaticLIWC (OR 0.38), SomatNociception (OR 0.24). 

AttentionArousal is higher in AI on average, but after 
accounting for stronger, correlated predictors (e.g., 
subordination, dependency distance, cognition), its unique 
contribution predicts Human (conditional OR < 1), a standard 
suppression effect due to feature overlap. 

V. DISCUSSION 

Our results converge across lexical, morphosyntactic, and 
semantic dimensions, revealing a systematic stylistic difference 
between AI- and human-authored captions. 

AI captions consistently exhibited greater diversity 
according to HDD and MATTR metrics, while Maas metric 
also indicated lower repetition in the main dataset. These 
findings suggest that AI-generated texts utilize a broader and 
more evenly distributed vocabulary compared to human-
authored texts. 

At the structural level, AI-generated captions exhibited 
greater syntactic complexity, characterized by more verbs per 
sentence, an increased number of subordinate clauses, and 
longer dependency distances. They also included more direct 
and indirect objects, along with greater coordination, indicating 
denser propositional content. In contrast, human captions 
favored nominal elaboration, with more adjectival modifiers 
and oblique dependents, and demonstrated a small but 
consistent advantage in lemma-level inflectional variety. This 
reflects a trade-off: AI complexity arises through clausal 
embedding and morphological density per token, whereas 
human complexity emerges from the paradigmatic diversity of 
inflection across lemmas. 

The semantic feature analysis revealed a complementary 
division of labor. AI-generated captions were enriched with 
abstract, scalar, and interpretive language featuring abstract 
cognition, intensity and size descriptors, causal framing and 
expressions of positive or surprising emotions. In contrast, 
human-generated captions emphasized concrete, perceptual, 
and embodied content, including visual details (such as color, 
motion, faces, and bodies), somatosensory descriptors, motor 
actions, and olfactory and gustatory terms. Thus, while AI tends 
to describe images in an interpretive and evaluative manner, 
humans remain more closely connected to situated sensory 
experience. 

This contrast carries both methodological and theoretical 
implications. Methodologically, it demonstrates that semantic 
feature sets can effectively capture the nuanced differences 
between AI and human language, offering interpretable 
evidence of distinctions that remain undetected when relying 
solely on lexical or syntactic measures. Our results suggest that 
AI-generated descriptions tend to replicate the higher-level 
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interpretive aspects of meaning-making, while human 
descriptions highlight the sensory foundations of experience. 

Crucially, our predictor analysis mirrors some published 
linguistic patterns: AI captions show greater structural 
complexity (higher subordination ratio; longer dependency 
distances), more cognition-oriented vocabulary, and higher 
lexical diversity, whereas human captions exhibit more 
embodied/attentional content. This convergence suggests that 
the discriminative cues reported in earlier work generalize 
beyond expository essays to visual description in a different 
language and register.  

Importantly, we controlled for text length, a confounding 
factor often overlooked in prior studies, and found that the AI-
Human contrasts remained robust even after adjusting for text 
length. This suggests that the observed differences are not 
merely artifacts of verbosity but reflect genuine stylistic 
distinctions. Despite the shift to multimodal image description, 
our classifiers and feature-level signals closely track patterns 
reported in the literature, and the length-controlled evaluation 
indicates these effects reflect stylistic/structural properties of AI 
vs. human texts – not quirks of the captioning task. 

By placing our findings within the broader literature, we 
demonstrate that linguistic expertise is essential for interpreting 
the outputs of LLMs. While previous research on LLMs has 
often prioritized task performance over linguistic analysis, our 
results highlight the value of examining lexical, 
morphosyntactic and semantic features. Additionally, whereas 
most prior studies focus on English, our work offers a new 
perspective by analyzing Russian image descriptions, thereby 
broadening the empirical foundation for stylistic evaluation. 

To our knowledge, this is the first study to examine 
linguistic characteristics of MLLM-generated captions in direct 
comparison with human descriptions. This research contributes 
to the field by demonstrating that the stylistic divergences 
observed in text-only LLMs also apply to multimodal contexts, 
where challenges related to perceptual grounding and 
interpretive abstraction are especially prominent. 

Several limitations of this study should be noted. First, our 
analysis was limited to Russian-language captions, so cross-
linguistic generalizability remains to be established, 
particularly given typological differences in morphology and 
syntax. Second, we evaluated AI outputs from only one 
MLMM, and results may differ across various model 
architectures or training approaches. Third, we inspected only 
one type of image (artworks). We therefore treat our paired 
Russian caption dataset as a controlled testbed with strong 
internal validity, while leaving cross-domain external validity 
as an open question. Future work should stress-test robustness 
across languages, registers (captions vs. essays/news), and 
model families (vision-language vs. text-only LLMs), and 
probe whether the same structural complexity and cognition-
lexicon signals persist when image types or prompt styles vary. 

VI. CONCLUSION

We developed a comprehensive pipeline to compare 
Russian AI-generated captions with human-generated ones 

across linguistic, syntactic, content, and semantic dimensions, 
uncovering systematic differences between them. 

The implications of this work span a wide range of applied 
fields. Beyond simply detecting objects or suggesting 
diagnoses, the safety and effectiveness of vision-language 
systems depend on how they generate text – whether 
descriptions are concrete or abstract, perceptual or cognitive, 
and evaluative or descriptive; whether they accurately handle 
negation, uncertainty, and spatial language; whether their 
syntax remains clear and well-grounded. A feature-centric 
analysis anchored in our semantic oppositions and 
complemented by lexical, morphological and syntactic features 
makes model behavior auditable, could uncover failure modes 
(such as overconfidence and bias) and enables targeted control. 
Given the growing importance of prompt design, especially in 
sensitive domains such as medicine, future work should 
systematically examine how different prompt formulations 
shape the balance between abstract/interpretive and 
concrete/perceptual language. This issue is particularly relevant 
for emerging imaging modalities such as laser-induced contrast 
visualization (LICV) [28-29], an optical technique that uses 
laser excitation to generate high-contrast, label-free images of 
biological tissues. LICV offers complementary structural and 
functional information compared to conventional imaging 
methods (e.g., X-ray, CT), and its adoption will require AI 
captioning systems that are both accurate and clinically 
interpretable. In clinical or diagnostic settings, overly 
interpretive or evaluative AI-generated captions could mislead 
practitioners, while insufficiently descriptive outputs might 
omit critical details. 

Beyond their value for distinguishing AI- and human-
authored texts, the linguistic contrasts identified in this study – 
syntactic complexity, lexical diversity, and semantic 
oppositions between cognition-related and 
embodied/attentional vocabulary – are also highly relevant to 
second language acquisition. These features capture the kinds 
of structural and semantic contrasts that often pose challenges 
for learners of Russian as a foreign language. By showing that 
such dimensions can be reliably extracted and quantified, our 
approach provides a methodological foundation for developing 
pedagogical tools and resources that emphasize functionally 
meaningful contrasts in Russian usage. 
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