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Abstract—The increasing volume of video data, exemplified by
datasets such as YouTube-8M, presents significant challenges to
data engineering processes, particularly in efficiently extracting
relevant information for model training. Existing video querying
systems often fall short in providing a comprehensive solution,
lacking the ability to fetch relevant video sections and frames,
analyze videos for effective searching, and store data in a cen-
tralized location. These limitations are particularly problematic
for enterprises with large datasets, often composed of multiple
sources, where new projects frequently emerge. Such projects
require specific types of videos, such as those featuring cars or
animals. Currently, meeting these changing needs requires repro-
cessing existing datasets or relying on previously assigned tags,
which may not capture the full range of complex interactions.
In response to these challenges, we propose a video querying
system that enables precise searches within large-scale video
datasets. Our solution employs Yolol1 for object detection and
tracking, generating detailed metadata that includes bounding
box coordinates and timestamps. This metadata is stored in a
MongoDB database, allowing users to perform complex queries,
such as identifying when a person and a car are within 10 pixels of
each other. By optimizing the retrieval of relevant video segments
and enhancing the tagging process, our system aims to meet
the evolving needs of enterprises while leveraging the current
technological capabilities of the Yolo11 model.

I. INTRODUCTION

With the increasing volume of video data, massive datasets
like YouTube-8M [1] present significant challenges to data
and machine learning engineering processes due to their size
and complexity. Processing entire datasets for training artificial
intelligence (AI) models is highly resource intensive and often
impractical. This underscores the need for an advanced system
that can effectively filter and retrieve only the most relevant
video segments for targeted machine learning purposes.

Current video querying solutions offer basic features like
object detection and simple temporal tagging but lack sophis-
ticated capabilities such as spatial querying and detecting in-
teractions between multiple objects. They are unable to handle
complex queries, such as identifying when a person and a car
are within a specific proximity or when two objects appear
in a scene together within a specific time frame. This project
addresses these limitations by creating an efficient system that
filters massive datasets and extracts specific segments needed
for Al model training.

The growing complexity of video data requires precise and
efficient querying tools to facilitate the training of AI models.
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Such tools are essential in domains like autonomous driving,
surveillance, and content recommendation. By enabling pre-
cise data extraction, our system aims to reduce computational
resources and accelerate Al development cycles, leading to
more efficient and accurate machine learning processes.

This work aims to develop a comprehensive video querying
system capable of performing precise spatial-temporal queries
and detecting complex object interactions. This system is
designed to serve as a targeted data filtering mechanism, en-
hancing the efficiency of Al training workflows and reducing
resource consumption.

A. Contributions

The primary objectives of the work are:

o Enable Precise Temporal and Spatial Queries: Allow
users to search for moments in videos based on time
intervals and spatial locations.

o Support Complex Object Interaction Queries: Facilitate
searches involving multiple objects and their interactions.

o Provide Efficient Data Filtering for Machine Learning:
Serve as a system to filter data segments needed for
training, conserving resources, and optimizing workflows.

The system integrates state-of-the-art object detection and
tracking technologies into a queryable video database appli-
cation. It involves:

e Video Ingestion: Videos are uploaded and processed
using Yolol1 [2] to detect objects.

o Metadata Generation: Detailed metadata, including spa-
tial and temporal tags, is stored in MongoDB [3].

e Query Engine: Supports temporal and spatial searches
based on the stored metadata.

o Feature Engineering: Detailed metadata, bounding box
coordinates, and timestamps are generated, with spatial
indexing (using R-trees) and temporal indexing imple-
mented to enable efficient querying.

The AVQ video management system involves:

o Video Upload and Storage: Video is divided into smaller
chunks and stored in MongoDB GridFS [4], with meta-
data saved in MongoDB [3].

o Metadata and Querying: Users can query the video data
through a query processor that responds with relevant
metadata and video access links.
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o Video Retrieval: The user can fetch specific video chunks
based on the query.

By providing a system that performs complex temporal and
spatial queries and efficiently retrieves video data, this project
addresses a critical open-sourced need in managing large-scale
datasets for machine learning, making it a valuable tool for
engineers and researchers alike.

II. LITERATURE REVIEW

Currently, there is no open source framework that effi-
ciently retrieves relevant video segments based on content
analysis. Existing closed solutions focus mainly on video
analysis [5], [6], returning metadata that users must store
and process independently. This requires the creation of a
pipeline to segment videos into required portions and convert
them into frames, which is a repetitive and resource-intensive
process [7]. Without such pipelines, significant computational
resources may be wasted processing irrelevant content, often
forcing users to restart the analysis from scratch for each new
use case.

The closest tool to address this issue is Scanner [8], which
provides flexibility and allows the integration of various ma-
chine learning models. Scanner [8] efficiently processes large
video datasets, making it suitable for applications such as 3D
pose estimation, VR video synthesis, and large-scale video
data mining. However, it still requires reprocessing the entire
video when use cases change, despite having techniques to
minimize irrelevant frames.

Major platforms like Google and IBM offer video analysis
services but lack integrated storage, querying, and streaming
solutions. Clients must upload videos to these platforms and
expend resources developing their own solutions for these
tasks.

In the realm of video database management systems
(VDBMY), there are several legacy systems that allow content-
based querying of video frames [2], [9]-[15] (explored in this
Section II of this work). However, many of these platforms
have become obsolete due to advances in video analysis
techniques and codecs that offer superior compression. Con-
sequently, they have failed to adapt to evolving technological
standards.

o VDBMS [9]: This platform introduces video as a fun-
damental data type, supporting image similarity search
and video streaming, but primarily focuses on storage
and does not serve data in formats conducive to machine
learning, returning the entire video instead.

o BilVideo [10]: Their analysis process, termed “fact-
extraction,” is semi-automatic, requiring users to man-
ually specify objects in video frames using minimum
bounding rectangles (MBRs). However, as an older plat-
form, it lacks modern analysis capabilities.

e VIMS [11] This system employs a completely manual
process for analysis and object detection, making it less
efficient.

e YOLOLI1 [2] leverages transformer-based attention mech-
anisms to enhance spatial-temporal feature extraction,
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Fig. 1. Screenshot Demonstration of BilVideo System

boosting accuracy in complex video analysis. Its anchor-
free design improves object localization, while neural
architecture search (NAS) fine-tunes the model’s structure
for optimal performance. Multi-scale and multi-query
processing further elevate detection across diverse scenes,
ensuring robustness in varying contexts.

o TransVOD [12] utilizes spatial-temporal transformers for
object detection and tracking, emphasizing relevant fea-
ture extraction through attention mechanisms.

e TransVOD++ [16] enhances feature fusion, improving
spatial and temporal integration for better contextual
understanding. Its refined attention mechanisms dynami-
cally focus on critical features, while multi-scale process-
ing enhances detection of varying object sizes. Advanced
training methodologies further improve generalization.

o TransMOT [13] specializes in multi-object tracking using
graph transformers, effectively capturing spatial relation-
ships but lacking comprehensive querying capabilities.

o BoostTrack [14] emphasizes real-time tracking using ef-
ficient algorithms like DeepSORT, excelling in accuracy
but limited in broader detection tasks.

o AQATrack [15] focuses on single-object tracking, achiev-
ing high accuracy but struggling with interactions among
multiple objects.

Table I provides the summary of the differences between

the systems explored above and our proposed AVQS system.

YOLOI1 leverages neural architecture search (NAS) and

transformer-based models to enhance object detection accu-
racy in video queries. By integrating attention mechanisms,
YOLOV11 ensures precise localization and efficient real-time
video analysis. Its flexible, anchor-free detection system, com-
bined with transformers for improved query handling, sets a
new benchmark for performance in dynamic video and image
analysis tasks [2].

III. PROPOSED AVQS SYSTEM
A. Explanation of the Model

This work aims to develop a comprehensive video querying
system designed to enable precise spatial-temporal queries
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TABLE I. THIS TABLE SHOWS THE DIFFERENT FEATURES PROVIDED BY THE EXISTING PROJECTS THAT ARE RELEVANT TO OUR PROBLEM

SPACE
TransVOD  TansVod++ TransMOT BilVideo VIMS VDBMS  Online Platforms- Video Analysis Our Solution

Analysis Y Y Y N(Manual)  (TAg Based) Y Y Y
Storage N N N Y Y Y N Y
Metadata Query Y Y Y Y Y Y N Y
Metadata storage N N N Y Y Y N Y
Streaming N N N Y Y Y N Y
Chunk Streaming N N N N N N N Y

and support complex multi-object interactions in large-scale

video datasets. The core idea of this system is to extract and

index relevant metadata for each video frame, including object

locations, tlmes.tamps, and interactions, making it .pos.31ble to & Add video Request, Search

search for specific events based on user-defined criteria. a Query Request

B. Workflow Overview

The system workflow consists of the following key stages.

e Video Ingestion: Users upload videos to the system
through APIs. Videos are pre-processed and segmented
for transfer efficiency and relevant segment retrieval.

e Object Detection and Metadata Generation: Using

S3 Bucket, (Temp
Storage, till video

YOLOI11 [2], the system detects objects in each frame, video > process queue
identifies their spatial coordinates (bounding boxes) and Mnanager/ processes the video)
timestamps their occurrences. Then we process this data PQL‘EW

rocessar

to track the object over the video using our Algorithm
described in the next section.

o Metadata Storage: The generated metadata, including
spatial-temporal data and object identifiers, is stored in
MongoDB [3].

e Query Processing: Users can input spatial-temporal video
. . . . process
queries through a query engine. This engine processes Queue

queries by searching the stored metadata and retrieving
relevant video segments based on user-defined conditions.
o Result Presentation: The system provides access to the
retrieved video segments or specific frames that match [
the query criteria. Fragmenter, > McusgguF[s)B

Mongodhb

Data/metadata

C. Workflow Explanation —_—

The workflow diagram illustrates the architecture and oper-
ation of the Video Management System.

o User Requests to Upload a Video: The user initiates
the process by requesting to upload a video. The user
provides a title description of the video.

o Save Video Details in MongoDB [3]: The program saves
the user-provided data (such as video title, upload date,
etc.) in the MongoDB [3] database in collection videos.
The server responds to the user with the generated ID.

o Upload: The user uploads the video to the upload link
and provides the video ID.

¢ S3: Once the video is uploaded, it is sent to s3 so that
other services like Analyzer and then Fragmenter can
access it.

o Analyzer: Processes the video to extract meaningful
metadata using YOLOI11. The extracted metadata only
contains information about object locations and relative Thereafter, the video is available to query. We created five

Fig. 2. Architecture Diagram

positions. We created our algorithm that uses Intersection
over union as the backbone to track objects over time.
o More processing pipelines can be added here along with
an Analyzer that specializes in different categories based
on the needs and processing power available.
o Fragmenter: This divides the video into smaller 5-second
chunks and stored efficiently in MongoDB GridFS [4].
GridFS further breaks these fragments into 5 MB chunks,
which minimizes the loss.
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Fig. 3. Analysis Pipeline Program Flowchart

types of queries that can solve many kinds of problems related
to searching in video. itemsep=>5pt

o User Queries through APIs: We provide REST APIs that
the user has to use in order to get the relevant timestamps
of the video.

o The queries utilize objects collection of MongoDB which
contains the metadata. This metadata is processed on
both MongoDB and query processor which is written in
Nodejs.

o Download video: The user can use this timestamp value
to download the videos, only the relevant section of the
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video will be returned to the user.
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Fig. 4. Fragmenter Pipeline Program Flowchart

The diagram emphasizes the integration of video storage,
efficient metadata management, and a robust querying process
to achieve precise and fast video retrieval based on user-
defined spatial and temporal conditions. This architecture
ensures that large videos are managed efficiently, enabling
seamless upload, storage, and querying operations

D. Differences from Existing Works

Existing commercial video querying services, notably
Google Cloud Video Intelligence API [17] and IBM Watson
Video Enrichment [18], primarily focus on basic general
object detection and simple tagging but do not offer ad-
vanced querying capabilities. They do not support user-defined
complex queries involving multi-object interactions, precise
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TABLE II. OBJECTS COLLECTION SCHEMA STORING DETECTED OBJECT INSTANCES AND THEIR TEMPORAL

METADATA
Field Name Type Short Explanation
_id String Unique identifier for each object instance
video_id String Reference to the source video containing the object
event_name String Class name of detected event (e.g., person, dog, bird)
event_type String Based on the model used for query (e.g., Object, Speech-to-text, Posture)
start_time Number  Start timestamp of object appearance in seconds
end_time Number  End timestamp of object disappearance in seconds
frames Array Collection of frame data with timestamps and bounding boxes

TABLE III. FRAME DATA STRUCTURE WITHIN OBJECTS COLLECTION STORING PER-FRAME DETECTION

DETAILS
Field Name Type Short Explanation
frame Number  Frame number within the video sequence
timestamp String Timestamp in HH:MM:SS.mmm format when object appears
box Array Bounding box coordinates [x1, y1, x2, y2] in pixels
relative_position  Array Normalized center position [x_center, y_center] (0-1 scale)
confidence Number  Detection confidence score from YOLO model (0-1 range)

spatial proximity, or movement tracking across regions and
time intervals among more specialized complex use cases.

The proposed AVQS model differs by providing:

o Customizable Spatial-Temporal Queries: Users can search
for moments based on both spatial regions within video
frames and specific time intervals.

e Multi-Object Interaction Detection: The system allows
users to define and search for interactions between mul-
tiple objects.

o Context-Aware Spatial Region Queries: Enables context-
aware searches based on specific regions and actions
within those regions.

« Efficient Data Filtering for ML Applications: It filters and
extracts only the required video segments, reducing the
computational load for targeted Al training.

E. AVQS Features

o Precise Spatial and Temporal Querying: The system can
identify objects based on user-defined spatial coordinates
within a video frame and specific timestamps. Example:
”Find moments when a car enters the top-left quadrant
between 2 and 3 minutes.”

o Multi-Object Interaction Detection: Enables searches for
specific interactions between objects, such as “Find all
moments when a person and a bicycle are within 10 pixels
of each other.”

o Context-Based Spatial Region Queries: Supports query-
ing based on objects’ movements and actions within
specific regions of the frame. Example: “Identify mo-
ments when a person enters the bottom-right quadrant
and remains there for 5 seconds.”

o Efficient Indexing and Metadata Storage: Uses a combi-
nation of spatial (R-trees) and temporal (B-tree) indexing
for efficient data storage and retrieval.

F. Metadata Table for Complex Spatial-Temporal Queries

The metadata table serves as a crucial feature of the video
querying system, as it efficiently organizes and indexes in-
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formation about events detected within the videos. Each row
in the table represents a specific event, object, or action that
occurs in a video, along with key details necessary for precise
spatial-temporal querying.

Here’s an explanation of the table II and III components:

itemsep=>5pt

« Event Name: Identifies the type of event or object (e.g.,
“ball” or jump”).

o Event Type: Specifies whether the entry is an “object”
(stationary or moving) or an “action” (a specific event
like jumping).

e Video ID: A unique identifier for the video where the
event occurs, allowing for cross-referencing between dif-
ferent videos in the database.

o Start Time and End Time: These columns denote the time
interval in the video where the event is observed. For
example, the “ball” appears between seconds 1 and 3 in
the video, and the “jump” action is observed between
seconds 5 and 7.

o Metadata: Provides additional detailed context about the
event, such as “subtitles,” which could include descrip-
tions or dialogue related to the event.

o Relative Position Start and End: Records the spatial
coordinates of the event at the start and end times. This
information is essential for tracking movements or inter-
actions within the frame. For instance, the coordinates
(X, Y) help the system determine where in the frame
the ”ball” appears and whether it moves or remains
stationaryc.

In the example Metadata Schema table, we see two events:
A ball is seen from 1 to 3 seconds in the video, located at
specific coordinates within the frame. A jump action occurs
from 5 to 7 seconds, representing an action that can be queried
based on time. The metadata table enables the system to
perform complex queries such as: “Find all instances where a
ball is within a specific region of the frame between seconds 1
and 3.” The screenshot of the table effectively showcases the
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TABLE IV. FRAGMENTS COLLECTION SCHEMA FOR GRIDFS-STORED VIDEO SEGMENTS WITH TEMPORAL

METADATA
Field Name Type Short Explanation
_id Objectld  Unique identifier for each video fragment file
filename String Original name of the video fragment file
contentType String MIME type of the fragment (e.g., video/mp4)
length Number  Size of the fragment file in bytes
chunkSize Number  Size of individual chunks for GridFS storage
uploadDate Date Timestamp when fragment was uploaded to GridFS
metadata Object Custom metadata including video ID and timing information
metadata.videolD String Reference to parent video for fragment association
metadata.duration Number  Duration of fragment in seconds
metadata.startTime ~ Number  Start timestamp within parent video
metadata.endTime ~ Number  End timestamp within parent video

organized structure of the event metadata. By linking spatial-
temporal data with detailed object and action information, this
feature allows the system to efficiently handle and retrieve
specific video segments based on user-defined conditions. This
approach significantly enhances the accuracy and flexibility of
the video querying process.

IV. TECHNICAL DETAILS AND ALGORITHMS
A. Object Tracking

1) Overview : The provided implementation performs ob-
ject tracking in videos using the YOLO (You Only Look Once)
object detection model. The key objectives are:

o Detect objects in each video frame.

o Maintain a consistent identity for each detected object
across frames.

o Handle multiple instances of the same object type.

Key Components:
2) Object Detection: The YOLO model detects objects in
each frame and provides the following:

o Bounding boxes B represent the location of detected
objects in the frame.
o Class labels L indicating the type of object (e.g., person,
car).
o Confidence scores C' for each detection.
3) Active Object Tracking: Detected objects are stored in
an active_objects dictionary, which tracks each object’s
state, including:

o A unique identifier instance_id.
o The last frame and timestamp the object was seen.
o The bounding box B of the object.

4) Intersection over Union (IoU): To associate detections
across frames, the Intersection over Union (IoU) metric is
used. IoU measures the overlap between two bounding boxes
B and Bs. Mathematically, it is defined as:

| By N Bs|

IoU = - ——=,
|B1 U Bs|

6]
where | BN By is the area of intersection and | By U Bs| is the
area of the union of the two bounding boxes. An IoU threshold
7 is used to determine if two bounding boxes represent the
same object.
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5) Timeout and Object Expiry: To handle objects disappear-
ing from the frame temporarily, a timeout threshold Tiimeout
is used. If an object is not detected for a duration exceeding
Tlimeout, 1t is removed from the act ive_objects dictionary.

6) Handling Multiple Instances of the Same Object Type:
When multiple objects of the same class are present, the
implementation distinguishes them using the following steps:

7) Label-Based Grouping: Detected objects are grouped by
their class label L. Each class label maintains its own list of
active objects.

8) IoU-Based Association: For each detected object in the
current frame, the IoU is computed with all active objects
of the same label. Let B; be the bounding box of a detected
object at time ¢, and B;_1 be the bounding box of a previously
tracked object. If:

IOU(Bt, Bt—l) > T, (2)

then B is associated with the same object as B;_1.

9) New Object Creation: If no existing object satisfies the
IoU threshold, a new object is created with a unique identifier
instance_id and added to active_objects.

10) Relative Position Calculation: The relative position of
an object in the frame is calculated as:

. .. Tcenter Ycenter
Relative Position = ( W o ) , 3)
y1+ty2

where Lcenter — % and Yeenter — 5 - Here, T1,Y1,22,Y2
are the coordinates of the bounding box, and W, H are the
frame width and height, respectively.

11) Data Storage and Updates: Each object’s data is stored
in a MongoDB collection, including:

o Bounding box coordinates B.

o Confidence score C'.

o Relative position.

o Start and end timestamps.

When an object is matched in a new frame, its entry in the
database is updated with the latest data.

V. RESULTS

For the proposed AVQS, we implement query endpoints
that enable precise video contents retrieval. We also report
the algorithms and data structures used (QuadTree, Inter-
val Tree, sweep line, greedy sequence) with their threshold
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policies, MongoDB indexing strategy, and caching behavior
for reproducible performance. Users can specify where the
object should be present in the video by using the predefined
positions: “top-half”, “bottom-half”, “left-half”, “right-half”,
“top-third”, “middle-third-horizontal”, bottom-third”, ”left-
third”, ”middle-third-vertical”, “right-third”, “top-left”, “top-
right”, “bottom-left” and “’bottom-right”.

A. Spatial Object Queries

Endpoint:
/query/spatialObjects

This endpoint enables querying for objects within specified
spatial regions. It implements a logical OR operation to find
instances of any specified objects in the defined area.

Complexity and thresholds: For each instance, frame
scanning is O(F). For large frame sets (F;100), a per-instance
QuadTree is built in O(F) and queried in approximately O(k)
where k is matches; for smaller sets, a linear scan is faster.
Windows are merged by sorting and scanning.

Algorithm (Threshold-Based QuadTree):

SpatialQueryOR (objects[], area):
results « []
FOR EACH obj IN objects DO
instances + DB.find(
{object_name: obj})
FOR EACH inst IN instances DO
frames « inst.frames
IF frames.length > 100 THEN
quadTree + BuildQuadTree (frames)
matches + quadTree.query (area)
ELSE
matches + LinearScan (frames, area)
windows « BuildTimeWindows (matches)
results.append({inst, windows})
RETURN MergeWindows (results)

Data structures used: QuadTree for spatial pruning when
F>100; otherwise linear scan.

Time complexity: Build O(F) per instance; query ~ O(k);
merge O(W log W). Space O(F) transient per instance (tree
discarded after query).

Parameters:

e objects: Array of object names (e.g., [’truck”, “hand-

bag™])
e area: Predefined area (halves/thirds/quadrants) or coor-
dinate array [xI1, y1, x2, y2]

Example queries:
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/query/spatialObjects?objects=["bird"]
&area=top-half
Response: [
{
"video_id":
"object_name":
"windows": [

{

"689cd3905¢c1945e3f7602£42",
"bird",

"start_time": "00:00:01.840"
"end_time": "00:00:04.920"

"video_id":
"object_name":
"windows": [

{

"689cd3905¢c1945e3f7602£42",
"bird",

"start_time": "00:00:01.880",
"end_time": "00:00:02.680"

}

/query/spatialObjects?objects=["person"]
&area=bottom-right
Response: [
{
"video_id": "689cd3905c1945e3£7602£42",
"object_name": "person",
"windows": [
{
"start_time": "00:00:01.040"
"end_time": "00:00:09.200"

"video_id": "689cd3905c1945e3f7602£42",
"object_name": "person",
"windows": [
{
"start_time": "00:00:21.560"
"end_time": "00:00:34.560"
}1H]

B. Spatial Objects AND Query

Endpoint:
/query/spatialObjectsAnd

This endpoint implements logical AND operations to find
video segments where multiple objects appear simultaneously
in the specified area.

Complexity: Intersecting time windows is performed via
sorting and two-pointer scan: O(W log W) for sorting + O(W)

scan.
Algorithm:

SpatialQueryAND (objects|[],
individualResults + []
FOR EACH obj IN objects DO

windows + SpatialQueryOR([obj], area)
individualResults.append({obj, windows})
intersection + IntersectTimeWindows (
individualResults)
RETURN intersection

area) :

Method: Interval intersection via sort-and-scan; avoids O(W?2)
pairwise checks.
Complexity details: Sort O(W log W); scan O(W) overall;
space O(O x W) to hold per-object windows.

Parameters:

e Objects: Array of object names (minimum 2 objects
required)




ISSN 2305-7254

e area: Predefined area or custom box coordinates

Example queries:
/query/spatialObjectsAnd?objects=["person", "dog"]
&area=bottom-half
Response: [

{
"video_id": "689cd3905c1945e3f7602£42",
"objects": [
{
"object_names": [
"person",
"dog"
1,
"windows": [
{
"start_time": "00:00:56.440"
"end_time": "00:06:02.200"

}

/query/spatialObjectsAnd?objects=["person", "bird"]
&area=right-half
Response: [

{
"video_id": "689cd3905c1945e3f7602£42",
"objects": [
{
"object_names": [
"person",
"bird"
i
"windows": [
{
"start_time": "00:01:00.120",
"end_time": "00:05:01.960"

1}
C. Instance-Based Queries

1) Distinct Instances Query: Endpoint:
/query/queryDistinctInstances
Retrieves all individual instances of a specified object class
across all videos.
Example query:
/query/queryDistinctInstances?object=person
Response: {
"person": [
{
" oign
"video_id":

"67c7456d-b4d4-4311-b28f-5a7f8fb64ecc"
"689cd3905c1945e3£7602£42"
"object_name": "person",

"start_time": 0.01,

"end_time": 9.2

"a8805091-c22e-40b6-b8£f9-caf325571808",
"video_id": "689cd3905c1945e3f7602f£42"
"object_name": "person",

"start_time": 13,

"end_time": 21.16

"oidgn:

b,
1)
2) Instance Overlaps Query: Endpoint:
/query/queryInstanceOverlaps
Identifies temporal windows where multiple instances of the

same object class appear simultaneously.
Algorithm: Sweep line over start/end events (end-before-
start tie-break). Complexity O(I log I) for sorting, O(I) scan.

QueryInstanceOverlaps (object, count):
instances ¢+ DB.find(
{object_name: object})

events « []
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FOR EACH inst IN instances DO
events.append({time: inst.start_time,

type: ’'start’, inst})
events.append({time: inst.end_time,
type: 'end’, inst})
events.sort (by time; tie: end first)

active « ; overlaps + []
current & NULL
FOR EACH e IN events DO
IF e.type = ’'start’ THEN
active.add(e.inst)

IF |active| count AND
current = NULL THEN
current « {start: e.time,
instances: copy(active)}
ELSE
IF |active]| count AND
current NULL THEN

current.end + e.time
overlaps.append (current)
current « NULL
active.remove (e.inst)
RETURN MergeContiguousOverlaps (overlaps)

End-before-start tie-break prevents counting abutting intervals
as overlaps. Space O(I) for events.

Parameters:

e object: Object class name
e count: Minimum number of simultaneous instances

Example queries:
/query/queryInstanceOverlaps?object=bird&count=2
Response: {

"pird": [
{
"video_id": "689cd3905c1945e3f7602£42",
"merged_overlaps": [
{
"start_time": 1.88,
"end_time": 2.68

"start_time": 21.24,
"end_time": 23.36
by
111}

/query/queryInstanceOverlaps?object=person&count=2
Response: {
"person": [
{
"video_id": "689cd3905c1945e3f7602£42",
"merged_overlaps": [
{
"start_time": 41.88,
"end_time": 44.68
I
{
"start_time": 55.24,
"end_time": 59.36
I
111}
3) Instance Overlaps in Area Query: Endpoint:

/query/queryInstanceOverlapsInArea

Extends the instance overlaps query by adding spatial con-
straints, finding multiple instances of the same object class
within a specified area.

For each overlap window, frames are verified against the
specified area; success intervals are returned when the count
threshold is satisfied across frames within the area.

Example queries:
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/query/queryInstanceOverlapsInArea?object=bird
&count=3&area=bottom-half
Response: {
"success":
"data": [
{

true,

"video_id": "689cd3905c1945e3f7602f42"
"success_intervals": [
{
"start_time": 21.24,
"end_time": 23.36

131}
/query/queryInstanceOverlapsInArea?object=person
&count=2&area=left-half
Response: {

"success":
"data": [
{

true,

"video_id": "689cd3905c1945e3£f7602£42",
"success_intervals": [
{
"start_time": 41.88,
"end_time": 44.68

D. Temporal Queries

Endpoint:
/query/queryInstancesAtTime

Retrieves all instances of specified objects at a particular
timestamp.

Algorithm and thresholds: Instances are grouped by video.
If instances per video > 20, a center-based Interval Tree is
used with point query O(log I + k); otherwise a linear scan is
used. The closest frame to the target time is found via binary
search O(log ).

QueryInstancesAtTime (object_name, time) :
instances + DB.find({object_name})
groups + GroupByVideo (instances)
results + []

FOR EACH (video_id, arr)
IF arr.length 20 THEN
tree + intervalTreeCache.getOrBuild(
video_id, arr)
matches ¢ tree.queryPoint (time)
ELSE
matches ¢ LinearFilter (arr,
FOR EACH m IN matches DO
frame « BinarySearchFrame (
m.frames, time)
results.append({m, frame})
RETURN results

IN groups DO

time)

Data structures: Interval Tree (cached for up to 100 videos),
Binary Search for frame lookup.

Complexity: Build O(I log I) per video (amortized via cache);
query O(log I + k) + frame lookup O(log F'). Space O(I) per
tree; cache bounded.

Parameters:

e object: Object class name
o time: Timestamp in seconds

Example queries:
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/query/queryInstancesAtTime?object=person
&time=15
Response: {
"object": "person",
"time": 15,
"instances": [
{
"video_id": "689cd3905c1945e3£f7602£42"
"instance_id":
"a8805091-c22e-40b6-b8£f9-caf325571808"

1

/query/queryInstancesAtTime?object=person
&time=51
Response: {
"object": "person",
"time": 51,
"instances": [
{
"video_id": "689cd3905c1945e3f7602f42",
"instance_id":
"910921dc-4£83-4d1la-9f60-e7dfa62e690c"
b1l

Query Name Query Time
spatialObjects 438 ms
spatialObjectsAnd 700 ms
queryDistinctInstances 389 ms
queryInstanceOverlaps 382 ms
queryInstanceOverlapsInArea | 803 ms
queryInstancesAtTime 441 ms
objects 1101 ms
spatialObjectsTemporal 416 ms
TABLE V

QUERY PERFORMANCE AVERAGE TIMES FOR VARIOUS QUERY TYPES

Systems Prediction Accuracy
Google Cloud Video Intelligence API | 80-90%
Yolo 11 79%

TABLE VI
PREDICTION ACCURACY COMPARISON WITH SYSTEMS.

These query endpoints demonstrate the system’s ability
to perform complex spatial-temporal searches across video
content, enabling precise retrieval of relevant video segments
based on object presence, location, and timing requirements.

E. Spatial-Temporal Query

Endpoint:
/query/spatialObjectsTemporal

Combines spatial OR filtering with a temporal window
[start_time,end_time]|. Windows overlapping the tem-
poral range are clipped to the range and returned.
Parameters:

e Objects: Array of object names

e area: Predefined area name or coordinate array

e start_time, end_time: Temporal window in sec-
onds

Algorithm (Temporal Window Filter):

FilterByTimeWindow (results,
FOR EACH r IN results DO
filtered « []
FOR EACH w IN r.windows DO
overlap + ComputeOverlap (
w, [start, end])
THEN

start, end):

IF overlap
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filtered.append(overlap)
r.windows + filtered
RETURN results

Complexity: O(R x W) time and space (R results; W windows
per result).

F. Sequence Query

Endpoint:
/query/temporal/objects
/query/querySequence)

Finds video segments where objects appear in a specified
sequential order using a greedy closest-match strategy (each
next object starts at or after the previous ends).

Parameters:

(alias  supported:

e sequence: Array of object names in order
e window_size (optional): Maximum allowed duration

Algorithm (Greedy Sequential Matching):

QuerySequence (sequence[], windowSize) :

grouped + {}

FOR EACH o IN sequence DO
inst « DB.find({object_name:
FOR EACH x IN inst DO

grouped [x.video_id] .append (x)

results « []

FOR EACH (video_id, data) IN grouped DO
IF NOT AllObjectsPresent (

data, sequence) THEN CONTINUE
firstSet « datal[sequence([0]]
FOR EACH a IN firstSet DO
end + a.end_time; path « [a]
FOR i + 1 TO sequence.length-1 DO
b « FindClosestAfter (
data[sequence[il],
NULL THEN BREAK
path.append(b); end « b.end_time
IF path.length = sequence.length THEN
dur + end - a.start_time
IF windowSize = 0 OR
dur windowSize THEN
results.append({video_id, path})
RETURN results

o})

end)
IF b =

Complexity:  Fetch/group OM x N);
O x M x log I5) with sorted sets.

matching =~

G. Objects Co-occurrence Query

Endpoint:
/query/objects

Finds time windows per video where all specified objects
co-appear (temporal overlap only; no spatial constraint). Op-
tionally enforces a maximum window size.

H. Additional Endpoints

e /query/spatialObjectsPaginated,
/query/queryInstancesPaginated
e /query/stream
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1. Algorithmic Complexity Summary

1) Notation:

e F: number of frames in an instance

o [: number of object instances (per video when noted)

o k: number of results returned

e W: number of time windows

o M: sequence length; N: avg instances per object

o I;: instances of first object; Iy: avg instances of subse-
quent objects

J. Indexing Strategy (MongoDB)

Objects collection (5 indexes):

e Object_name: 1

e video_id: 1

e Object_name: 1,

e Object_name: 1,
end_time: 1

e video_id: 1,
start_time: 1

video_id: 1
start_time: 1,

object_name: 1,

Videos collection (2 indexes):

e status: 1, createdAt: -1
e CreatedAt: -1

Rationale: Compound indexes order the most selective
fields first to maximize pruning. B-tree lookups provide
O(log N) access versus O(N) scans.

K. Caching and Thresholds

Query result cache: LRU with capacity-based eviction (100
MB size limit) and 1-hour TTL; manual invalidation endpoints
are provided to clear entries by video or object.

Interval Tree cache: LRU for up to 100 videos (center-based
tree reused across queries).

Thresholds: QuadTree used when frames per instance > 100;
Interval Tree when instances per video > 20; Binary search
always used for frame lookup.

Spatial semantics: Spatial queries primarily use normalized
centers (relative_position); QuadTree queries approx-
imate inclusion via small boxes around centers. If full per-
frame bounding_box is available, it can be used for higher
precision.

L. Advanced Optimizations
1) LRU Query Result Cache: Algorithm:

CLASS LRUCache (capacity,
cache: Map<key, {value,
keys: Array (LRU order)
FUNCTION query (gqType, params,

key & generateKey (qType,
normalizeParams (params) )
IF cache.has (key) AND
notExpired (cache[key])
moveToEnd (key)
RETURN cache[key].value
result « fn ()
size « estimateSize (result)
IF size > maxSize THEN RETURN result

maxSize, ttl):
ts, sizel}>

fn) :

THEN
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TABLE VII. ALGORITHMIC COMPLEXITY SUMMARY FOR
CORE QUERIES

Query Type Simple Approach Our Approach

Data Structures

Find objects in area
Find all objects in area
Instances at time
Overlapping instances
Sequence pattern

O(F) per instance
O(W?) compare
Ol x F)

O(1?) pairs

O(I™) combinations

O(F) build + O(k) query

O(W log W) sort + scan

O(I log I) build + O(log I + k) + O(log F)
O( log I) sort + scan

OM X Nlog N) + OI1 x M X log I2)

QuadTree, Cache

Time Window Intersection

Interval Tree, Binary Search, Cache
Sweep Line

Greedy Sequence

evictToFitSize (size)

cache[key] + {value: result,
ts: now(), size}

keys.append(key); RETURN result

Performance: Hits O(1); misses equal original query time.
Size bounded to 100 MB, TTL 1 hour; manual invalidation

supported.
2) QuadTree (Spatial Search): Structure and operations:

CLASS QuadTreeNode:
bounds; children; objects
maxObjects=10; maxLevels=4; level
FUNCTION BuildQuadTree (frames) :
root ¢+ new QuadTreeNode([0,0,1,11)
FOR EACH (f, i) IN frames DO
Insert (root, f.relative_position,
RETURN root
FUNCTION Query (node, area):
IF NOT Intersects (node.bounds,
THEN RETURN []
IF node.isLeaf () THEN
RETURN FilterByArea (node.objects,
results « []
FOR child IN node.children DO
results.extend (Query (child,
RETURN results

i)

area)

area)

area))

Complexity: Build O(F); query =~ O(k); space O(F). Used
only when F>100.

3) Interval Tree (Time Search):
query:

Structure and point

CLASS IntervalTreeNode:
center
intervals{left,right,overlap(sorted) }
left; right

FUNCTION BuildIntervalTree (intervals):
// choose median center
// partition into left/right/overlap
// recurse

FUNCTION QueryPoint (node, time):
// scan overlap (early exit by start)
// then recurse left/right by time

Complexity: Build O(I log I); query O(log I + k); space O(I).
Cached for up to 100 videos.

M. When to Use Each Data Structure

Threshold-based selection:

e QuadTree for spatial search when frames per instance >
100; otherwise linear scan

« Interval Tree for time search when instances per video >
20; otherwise linear scan

o Binary Search always for frame lookup
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Decision logic:

IF searching by location AND
frames > 100:
Use QuadTree
ELSE:
Use simple loop
IF searching by time AND
instances >= 20 per video:
Use Interval Tree (with caching)
ELSE:
Use simple loop
For frame lookups:
Always use Binary Search

Memory usage: Interval Tree cache (=1-2 MB per video, up
to 100 videos); result cache up to 100 MB; QuadTree built
per query and discarded.

N. Efficient Video Fragmentation and Retrieval

The proposed system incorporates a novel approach for
video fragmentation, using keyframes to divide videos into
smaller, approximately 5-second chunks. This method is es-
sential for optimizing the storage and retrieval of video data,
particularly for large-scale datasets.

1) Keyframe-Based Fragmentation: Keyframes, or intra-
frames, are self-contained frames that do not rely on other
frames for decoding. The fragmentation process ensures that
video chunks are split at keyframes, avoiding visual artifacts
and ensuring compatibility with playback tools. The system
uses FFmpeg to achieve this, with the following characteris-
tics:

o No Transcoding/Re-Encoding: By copying the codec
(-codec copy), the video quality remains intact, and
computational overhead is minimized.

o Variable Chunk Lengths: Chunks align with the nearest
keyframe after the specified duration (e.g., 5 seconds),
ensuring the integrity of each segment.

2) Metadata for Precise Retrieval: Each video chunk is as-
sociated with metadata stored in MongoDB GridFS, including:

o Video ID: Identifies the original video.

« Start and End Timestamps: Denote the temporal bound-
aries of the chunk.

o Duration: Specifies the length of the fragment.

This metadata facilitates temporal and spatial queries, enabling
efficient access to specific segments without processing the
entire video.
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3) Advantages of Fragmentation: The fragmentation ap-
proach offers several benefits:

Efficient Bandwidth Usage: Only relevant chunks are
transmitted, significantly reducing network load com-
pared to retrieving whole video files.

Scalable Storage: Parallel processing of chunks improves
system scalability for large datasets.

Optimized Querying: Metadata enables rapid temporal
and spatial searches, essential for applications requiring
precise video segment retrieval.

Improved User Experience: Users can access desired
segments quickly, enhancing interactivity and responsive-
ness.

0. Scalability

1) Microservices Architecture:

The system is designed

as a loosely-coupled microservices architecture where each
component operates independently and can be deployed on
specialized hardware optimized for its workload:

Service Isolation: Python ML pipeline, Node.js API
service, MongoDB database, and FFmpeg processing op-
erate as independent services with well-defined interfaces
Containerization: Docker-based deployment enables
consistent environments across development, staging,
and production; Kubernetes orchestration supports auto-
scaling and load balancing

Heterogeneous Hardware: ML service on GPU-enabled
nodes (NVIDIA Tesla/RTX); query service on CPU-
optimized instances; database on storage-optimized in-
stances

Message Queue Integration: Asynchronous video pro-
cessing via job queues (Redis/RabbitMQ) decouples up-
load from analysis pipeline

API Gateway: RESTful API (Fastify framework) serves
as unified entry point; supports rate limiting, authentica-
tion, and request routing

Cost Optimization: GPU instances used only during
video analysis; query service runs on cost-effective CPU
instances; MongoDB replica sets provide read scaling
without GPU overhead

2) Python ML Pipeline:

GPU Requirements: YOLOI11 model inference bene-
fits from CUDA-enabled GPUs (NVIDIA RTX 3060 or
higher recommended); CPU-only mode supported with
reduced throughput

Processing Rate: GPU: ~30-60 FPS for 1080p video;
CPU: ~5-10 FPS

Memory: 2-4 GB GPU VRAM for batch processing; 4-8
GB system RAM per worker process

Scalability: Horizontal scaling via multiple worker pro-
cesses; video processing queue supports distributed de-
ployment

3) Node.js Query Service:

CPU Requirements: Multi-core CPU (4+ cores recom-
mended) for concurrent query processing
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Memory: 2-4 GB per Node.js instance; cache footprint
up to 200 MB (100 MB result cache + 100 MB interval
tree cache)

Throughput: Handles 100-500 queries/second depending
on query complexity and cache hit rate

Scalability: Stateless design enables horizontal scaling
behind load balancer; cache warming strategies improve
cold-start performance

4) MongoDB Database:

Storage Growth: ~10-50 MB metadata per hour of
analyzed video (varies with object density and frame rate)
Index Overhead: 5 compound indexes on Objects col-
lection; total index size ~20-30% of collection size
Query Performance: Indexed lookups O(log V) scale to
millions of object instances; compound indexes optimize
multi-field queries

Scalability: Supports replica sets for read scaling and
sharding for horizontal partitioning on video_id

5) FFmpeg Video Processing:

CPU Requirements: Multi-threaded encoding/decoding;
4-8 cores for real-time processing

Hardware Acceleration: Supports NVENC (NVIDIA),
Quick Sync (Intel), VideoToolbox (macOS) for GPU-
accelerated encoding

Memory: 1-2 GB per concurrent FFmpeg process de-
pending on resolution

Scalability: Process isolation enables parallel processing
of multiple videos; containerization (Docker) facilitates
deployment

6) Storage Efficiency:

Video Storage: Original videos stored in GridFS; frag-
ments stored separately with temporal metadata
Metadata Compression: Per-frame detections stored
with normalized coordinates (8 bytes per detection vs.
full bounding boxes)

Deduplication: Instance-level aggregation reduces redun-
dancy; shared object tracks minimize storage

Total Footprint: For 100 hours of analyzed video: ~1-5
GB metadata + original video size

7) Deployment Patterns:

Cloud-Native Deployment: Compatible with AWS
(EC2, S3, DocumentDB), Google Cloud (Compute En-
gine, Cloud Storage, Atlas), Azure (VMs, Blob Storage,
Cosmos DB)

Hybrid Architecture: On-premise GPU cluster for ML
processing; cloud-hosted query service and database for
global accessibility

Edge Computing: Lightweight query service deployable
on edge nodes; ML processing offloaded to centralized
GPU resources

Auto-Scaling Policies: Query service scales based on
request rate (target: 70% CPU utilization); ML workers
scale based on queue depth
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o Geographic Distribution: Multi-region MongoDB
replica sets reduce query latency; video storage
replicated across regions for redundancy

8) Performance Optimization Strategies:

« Batch Processing: ML pipeline processes multiple video
frames in batches (8-16 frames) to maximize GPU uti-
lization

o Lazy Loading: Fragment metadata loaded on-demand;
full video data fetched only when required

o Connection Pooling: MongoDB connection pool (50-100
connections) reduces overhead for concurrent queries

o CDN Integration: Processed video fragments served via
CDN (CloudFront, Cloudflare) for low-latency delivery

¢ Cron-Based Fragmentation: Background worker peri-
odically fragments uploaded videos during off-peak hours

o Read Replicas: Read-heavy queries distributed across
MongoDB replicas; write operations directed to primary
node

9) Monitoring and Observability:

o Metrics Collection: Prometheus-compatible metrics for
query latency, cache hit rates, GPU utilization, and queue
depth

o Distributed Tracing: Request tracing across microser-
vices for bottleneck identification

o Logging: Centralized logging (ELK stack or Cloud-
Watch) for error tracking and audit trails

o Health Checks: Kubernetes liveness/readiness probes
ensure service availability; automatic restart on failure

VI. CHALLENGES AND LIMITATIONS
A. Challenges

This project faced several challenges, particularly in transi-
tioning from TransVOD++ to YOLOvI11. TransVOD++, while
optimized for spatiotemporal video analysis, exhibited signif-
icant limitations in object detection across diverse scenarios.
For instance:

o Narrow Object Detection Scope: TransVOD++ reliably
detected specific objects (e.g., a “husk™) but struggled
with generic object classes such as an “apple,” limiting
its utility in broader applications.

o Complexity of Integration: Its focus on temporal and
spatial modeling made it challenging to align with our
metadata generation pipeline, which prioritizes explicit
object recognition.

In contrast, YOLOvI11 was chosen for its robust neural ar-
chitecture search (NAS) capabilities and transformer-based en-
hancements, which significantly improved detection accuracy
and query responsiveness. However, integrating YOLOvl1
into a scalable framework required careful adjustments to
the pipeline, including adapting it to handle varying video
resolutions and object densities.

Additionally, handling metadata storage and retrieval in
MongoDB GridFS posed logistical hurdles. Optimizing the
chunk size to 5 MB minimized overhead, but this approach
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still poses challenges with larger video files, as chunk size
may need further re-evaluation to maintain efficiency.

B. Limitations

The current approach, while demonstrating significant ad-
vancements, has notable limitations:

o Limited Object Detection Scope: The reliance on a pre-
trained YOLO11 model constrains the system to detecting
a predefined set of objects from the COCO dataset. This
limitation restricts applicability in domains requiring the
identification of custom or specialized object types.

o Pipeline Integration Challenges: Existing video pro-
cessing pipelines like Scanner [8], which could enhance
video processing efficiency, are no longer actively devel-
oped. Attempts to integrate these tools revealed compat-
ibility issues with our workflow.

o GridFS Chunk Size Management: While the default
255 KB chunk size in GridFS was optimized to 5
MB to reduce metadata overhead, this solution may not
scale well for significantly larger video files. Dynamic
evaluation of chunk sizes is necessary to balance storage
and retrieval efficiency.

o Absence of Advanced Features: The system does not
yet handle cross-model collaboration or provide real-
time updates. Implementing these features would require
substantial architectural enhancements.

Despite these limitations, the system lays a solid foundation
for future enhancements. Addressing these areas will unlock
its potential for diverse applications, including autonomous
systems, large-scale surveillance, and Al-driven content rec-
ommendation.

VII. CODE & DATA AVAILABILITY
A. GitHub:

e The code is available in this repository
https://github.com/vikasdimaniya/VidMetaStream

o The complete api documentation with inputs and output
schema is available in Postman JSON format.

VIII. CONCLUSIONS AND FUTURE WORK
A. Conclusions

In this work, we presented a novel video querying system
designed to address the challenges of processing and analyzing
large-scale video datasets. Our approach integrates advanced
object detection and metadata generation techniques to enable
precise spatial-temporal queries and multi-object interaction
detection. Key achievements of the system include:

o Leveraging MongoDB for metadata storage, enabling
efficient querying and retrieval.

o Utilizing FFmpeg for keyframe-based video fragmenta-
tion to optimize storage and scalability.

o Enhancing the querying process to support diverse use
cases, such as autonomous driving and surveillance.

While the system demonstrates significant advancements in
video analysis and querying, certain limitations remain. These




ISSN 2305-7254

include reliance on a pre-trained YOLO11 model constrained
by its training dataset, the absence of parallel processing for
multiple machine learning models, and challenges in leverag-
ing pipelines such as Scanner. Addressing these constraints
offers exciting directions for future development.

The proposed framework lays the foundation for scalable
and efficient video analysis systems, with potential applica-
tions in autonomous driving, surveillance, and content recom-
mendation. Future enhancements, such as incorporating dy-
namic chunking strategies, spatial indexing, and cross-model
collaboration, can further elevate the system’s capabilities,
making it a valuable tool for researchers and engineers work-
ing with large-scale video datasets.

B. Future Work

To further enhance the system, future work will focus on:

e Advanced Scene-Text Grounding: Integrating neural
architectures and contextual embeddings for precise text
extraction from video frames, enabling applications like
automated indexing, real-time text recognition, and se-
mantic video search.

o Parallel Model Integration: Enabling the concurrent
execution of multiple machine learning models by intro-
ducing additional status states within the video processing
pipeline, thereby generating richer metadata.

o Spatial and Temporal Indexing: Employing ad-
vanced indexing techniques to accelerate spatial-temporal
queries, particularly in large datasets requiring complex
object interaction analysis.

These improvements will significantly enhance the system’s
utility, making it a more versatile and impactful tool for
researchers and engineers working with large-scale video
datasets.

1) Conclusion: This implementation effectively tracks ob-
jects across video frames using a combination of:

o Detection via YOLO.

o IoU-based matching for consistent identification.
o Timeout thresholds for handling occlusions.

o MongoDB for persistent storage.

These methods enable reliable tracking of multiple instances
of the same class and ensure accurate object identification
throughout the video.
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