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Abstract—The increasing volume of video data, exemplified by
datasets such as YouTube-8M, presents significant challenges to
data engineering processes, particularly in efficiently extracting
relevant information for model training. Existing video querying
systems often fall short in providing a comprehensive solution,
lacking the ability to fetch relevant video sections and frames,
analyze videos for effective searching, and store data in a cen-
tralized location. These limitations are particularly problematic
for enterprises with large datasets, often composed of multiple
sources, where new projects frequently emerge. Such projects
require specific types of videos, such as those featuring cars or
animals. Currently, meeting these changing needs requires repro-
cessing existing datasets or relying on previously assigned tags,
which may not capture the full range of complex interactions.
In response to these challenges, we propose a video querying
system that enables precise searches within large-scale video
datasets. Our solution employs Yolo11 for object detection and
tracking, generating detailed metadata that includes bounding
box coordinates and timestamps. This metadata is stored in a
MongoDB database, allowing users to perform complex queries,
such as identifying when a person and a car are within 10 pixels of
each other. By optimizing the retrieval of relevant video segments
and enhancing the tagging process, our system aims to meet
the evolving needs of enterprises while leveraging the current
technological capabilities of the Yolo11 model.

I. INTRODUCTION

With the increasing volume of video data, massive datasets

like YouTube-8M [1] present significant challenges to data

and machine learning engineering processes due to their size

and complexity. Processing entire datasets for training artificial

intelligence (AI) models is highly resource intensive and often

impractical. This underscores the need for an advanced system

that can effectively filter and retrieve only the most relevant

video segments for targeted machine learning purposes.

Current video querying solutions offer basic features like

object detection and simple temporal tagging but lack sophis-

ticated capabilities such as spatial querying and detecting in-

teractions between multiple objects. They are unable to handle

complex queries, such as identifying when a person and a car

are within a specific proximity or when two objects appear

in a scene together within a specific time frame. This project

addresses these limitations by creating an efficient system that

filters massive datasets and extracts specific segments needed

for AI model training.

The growing complexity of video data requires precise and

efficient querying tools to facilitate the training of AI models.

Such tools are essential in domains like autonomous driving,

surveillance, and content recommendation. By enabling pre-

cise data extraction, our system aims to reduce computational

resources and accelerate AI development cycles, leading to

more efficient and accurate machine learning processes.

This work aims to develop a comprehensive video querying

system capable of performing precise spatial-temporal queries

and detecting complex object interactions. This system is

designed to serve as a targeted data filtering mechanism, en-

hancing the efficiency of AI training workflows and reducing

resource consumption.

A. Contributions

The primary objectives of the work are:

• Enable Precise Temporal and Spatial Queries: Allow

users to search for moments in videos based on time

intervals and spatial locations.

• Support Complex Object Interaction Queries: Facilitate

searches involving multiple objects and their interactions.

• Provide Efficient Data Filtering for Machine Learning:

Serve as a system to filter data segments needed for

training, conserving resources, and optimizing workflows.

The system integrates state-of-the-art object detection and

tracking technologies into a queryable video database appli-

cation. It involves:

• Video Ingestion: Videos are uploaded and processed

using Yolo11 [2] to detect objects.

• Metadata Generation: Detailed metadata, including spa-

tial and temporal tags, is stored in MongoDB [3].

• Query Engine: Supports temporal and spatial searches

based on the stored metadata.

• Feature Engineering: Detailed metadata, bounding box

coordinates, and timestamps are generated, with spatial

indexing (using R-trees) and temporal indexing imple-

mented to enable efficient querying.

The AVQ video management system involves:

• Video Upload and Storage: Video is divided into smaller

chunks and stored in MongoDB GridFS [4], with meta-

data saved in MongoDB [3].

• Metadata and Querying: Users can query the video data

through a query processor that responds with relevant

metadata and video access links.
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• Video Retrieval: The user can fetch specific video chunks

based on the query.

By providing a system that performs complex temporal and

spatial queries and efficiently retrieves video data, this project

addresses a critical open-sourced need in managing large-scale

datasets for machine learning, making it a valuable tool for

engineers and researchers alike.

II. LITERATURE REVIEW

Currently, there is no open source framework that effi-

ciently retrieves relevant video segments based on content

analysis. Existing closed solutions focus mainly on video

analysis [5], [6], returning metadata that users must store

and process independently. This requires the creation of a

pipeline to segment videos into required portions and convert

them into frames, which is a repetitive and resource-intensive

process [7]. Without such pipelines, significant computational

resources may be wasted processing irrelevant content, often

forcing users to restart the analysis from scratch for each new

use case.

The closest tool to address this issue is Scanner [8], which

provides flexibility and allows the integration of various ma-

chine learning models. Scanner [8] efficiently processes large

video datasets, making it suitable for applications such as 3D

pose estimation, VR video synthesis, and large-scale video

data mining. However, it still requires reprocessing the entire

video when use cases change, despite having techniques to

minimize irrelevant frames.

Major platforms like Google and IBM offer video analysis

services but lack integrated storage, querying, and streaming

solutions. Clients must upload videos to these platforms and

expend resources developing their own solutions for these

tasks.

In the realm of video database management systems

(VDBMS), there are several legacy systems that allow content-

based querying of video frames [2], [9]–[15] (explored in this

Section II of this work). However, many of these platforms

have become obsolete due to advances in video analysis

techniques and codecs that offer superior compression. Con-

sequently, they have failed to adapt to evolving technological

standards.

• VDBMS [9]: This platform introduces video as a fun-

damental data type, supporting image similarity search

and video streaming, but primarily focuses on storage

and does not serve data in formats conducive to machine

learning, returning the entire video instead.

• BilVideo [10]: Their analysis process, termed ”fact-

extraction,” is semi-automatic, requiring users to man-

ually specify objects in video frames using minimum

bounding rectangles (MBRs). However, as an older plat-

form, it lacks modern analysis capabilities.

• VIMS [11] This system employs a completely manual

process for analysis and object detection, making it less

efficient.

• YOLO11 [2] leverages transformer-based attention mech-

anisms to enhance spatial-temporal feature extraction,

Fig. 1. Screenshot Demonstration of BilVideo System

boosting accuracy in complex video analysis. Its anchor-

free design improves object localization, while neural

architecture search (NAS) fine-tunes the model’s structure

for optimal performance. Multi-scale and multi-query

processing further elevate detection across diverse scenes,

ensuring robustness in varying contexts.

• TransVOD [12] utilizes spatial-temporal transformers for

object detection and tracking, emphasizing relevant fea-

ture extraction through attention mechanisms.

• TransVOD++ [16] enhances feature fusion, improving

spatial and temporal integration for better contextual

understanding. Its refined attention mechanisms dynami-

cally focus on critical features, while multi-scale process-

ing enhances detection of varying object sizes. Advanced

training methodologies further improve generalization.

• TransMOT [13] specializes in multi-object tracking using

graph transformers, effectively capturing spatial relation-

ships but lacking comprehensive querying capabilities.

• BoostTrack [14] emphasizes real-time tracking using ef-

ficient algorithms like DeepSORT, excelling in accuracy

but limited in broader detection tasks.

• AQATrack [15] focuses on single-object tracking, achiev-

ing high accuracy but struggling with interactions among

multiple objects.

Table I provides the summary of the differences between

the systems explored above and our proposed AVQS system.

YOLO11 leverages neural architecture search (NAS) and

transformer-based models to enhance object detection accu-

racy in video queries. By integrating attention mechanisms,

YOLOv11 ensures precise localization and efficient real-time

video analysis. Its flexible, anchor-free detection system, com-

bined with transformers for improved query handling, sets a

new benchmark for performance in dynamic video and image

analysis tasks [2].

III. PROPOSED AVQS SYSTEM

A. Explanation of the Model

This work aims to develop a comprehensive video querying

system designed to enable precise spatial-temporal queries
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TABLE I. THIS TABLE SHOWS THE DIFFERENT FEATURES PROVIDED BY THE EXISTING PROJECTS THAT ARE RELEVANT TO OUR PROBLEM 
SPACE

TransVOD TansVod++ TransMOT BilVideo VIMS VDBMS Online Platforms- Video Analysis Our Solution
Analysis Y Y Y N(Manual) (TAg Based) Y Y Y
Storage N N N Y Y Y N Y
Metadata Query Y Y Y Y Y Y N Y
Metadata storage N N N Y Y Y N Y
Streaming N N N Y Y Y N Y
Chunk Streaming N N N N N N N Y

and support complex multi-object interactions in large-scale

video datasets. The core idea of this system is to extract and

index relevant metadata for each video frame, including object

locations, timestamps, and interactions, making it possible to

search for specific events based on user-defined criteria.

B. Workflow Overview

The system workflow consists of the following key stages.

• Video Ingestion: Users upload videos to the system

through APIs. Videos are pre-processed and segmented

for transfer efficiency and relevant segment retrieval.

• Object Detection and Metadata Generation: Using

YOLO11 [2], the system detects objects in each frame,

identifies their spatial coordinates (bounding boxes) and

timestamps their occurrences. Then we process this data

to track the object over the video using our Algorithm

described in the next section.

• Metadata Storage: The generated metadata, including

spatial-temporal data and object identifiers, is stored in

MongoDB [3].

• Query Processing: Users can input spatial-temporal

queries through a query engine. This engine processes

queries by searching the stored metadata and retrieving

relevant video segments based on user-defined conditions.

• Result Presentation: The system provides access to the

retrieved video segments or specific frames that match

the query criteria.

C. Workflow Explanation

The workflow diagram illustrates the architecture and oper-

ation of the Video Management System.

• User Requests to Upload a Video: The user initiates

the process by requesting to upload a video. The user

provides a title description of the video.

• Save Video Details in MongoDB [3]: The program saves

the user-provided data (such as video title, upload date,

etc.) in the MongoDB [3] database in collection videos.

The server responds to the user with the generated ID.

• Upload: The user uploads the video to the upload link

and provides the video ID.

• S3: Once the video is uploaded, it is sent to s3 so that

other services like Analyzer and then Fragmenter can

access it.

• Analyzer: Processes the video to extract meaningful

metadata using YOLO11. The extracted metadata only

contains information about object locations and relative

Fig. 2. Architecture Diagram

positions. We created our algorithm that uses Intersection
over union as the backbone to track objects over time.

• More processing pipelines can be added here along with

an Analyzer that specializes in different categories based

on the needs and processing power available.

• Fragmenter: This divides the video into smaller 5-second

chunks and stored efficiently in MongoDB GridFS [4].

GridFS further breaks these fragments into 5 MB chunks,

which minimizes the loss.

Thereafter, the video is available to query. We created five
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Fig. 3. Analysis Pipeline Program Flowchart

types of queries that can solve many kinds of problems related

to searching in video. itemsep=5pt

• User Queries through APIs: We provide REST APIs that

the user has to use in order to get the relevant timestamps

of the video.

• The queries utilize objects collection of MongoDB which

contains the metadata. This metadata is processed on

both MongoDB and query processor which is written in

Nodejs.

• Download video: The user can use this timestamp value

to download the videos, only the relevant section of the

video will be returned to the user.

Fig. 4. Fragmenter Pipeline Program Flowchart

The diagram emphasizes the integration of video storage,

efficient metadata management, and a robust querying process

to achieve precise and fast video retrieval based on user-

defined spatial and temporal conditions. This architecture

ensures that large videos are managed efficiently, enabling

seamless upload, storage, and querying operations

D. Differences from Existing Works

Existing commercial video querying services, notably

Google Cloud Video Intelligence API [17] and IBM Watson

Video Enrichment [18], primarily focus on basic general

object detection and simple tagging but do not offer ad-

vanced querying capabilities. They do not support user-defined

complex queries involving multi-object interactions, precise
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TABLE II. OBJECTS COLLECTION SCHEMA STORING DETECTED OBJECT INSTANCES AND THEIR TEMPORAL 
METADATA

Field Name Type Short Explanation
id String Unique identifier for each object instance

video id String Reference to the source video containing the object
event name String Class name of detected event (e.g., person, dog, bird)
event type String Based on the model used for query (e.g., Object, Speech-to-text, Posture)
start time Number Start timestamp of object appearance in seconds
end time Number End timestamp of object disappearance in seconds
frames Array Collection of frame data with timestamps and bounding boxes

TABLE III. FRAME DATA STRUCTURE WITHIN OBJECTS COLLECTION STORING PER-FRAME DETECTION 
DETAILS

Field Name Type Short Explanation
frame Number Frame number within the video sequence
timestamp String Timestamp in HH:MM:SS.mmm format when object appears
box Array Bounding box coordinates [x1, y1, x2, y2] in pixels
relative position Array Normalized center position [x center, y center] (0-1 scale)
confidence Number Detection confidence score from YOLO model (0-1 range)

spatial proximity, or movement tracking across regions and

time intervals among more specialized complex use cases.

The proposed AVQS model differs by providing:

• Customizable Spatial-Temporal Queries: Users can search

for moments based on both spatial regions within video

frames and specific time intervals.

• Multi-Object Interaction Detection: The system allows

users to define and search for interactions between mul-

tiple objects.

• Context-Aware Spatial Region Queries: Enables context-

aware searches based on specific regions and actions

within those regions.

• Efficient Data Filtering for ML Applications: It filters and

extracts only the required video segments, reducing the

computational load for targeted AI training.

E. AVQS Features

• Precise Spatial and Temporal Querying: The system can

identify objects based on user-defined spatial coordinates

within a video frame and specific timestamps. Example:

”Find moments when a car enters the top-left quadrant

between 2 and 3 minutes.”

• Multi-Object Interaction Detection: Enables searches for

specific interactions between objects, such as ”Find all

moments when a person and a bicycle are within 10 pixels

of each other.”

• Context-Based Spatial Region Queries: Supports query-

ing based on objects’ movements and actions within

specific regions of the frame. Example: ”Identify mo-

ments when a person enters the bottom-right quadrant

and remains there for 5 seconds.”

• Efficient Indexing and Metadata Storage: Uses a combi-

nation of spatial (R-trees) and temporal (B-tree) indexing

for efficient data storage and retrieval.

F. Metadata Table for Complex Spatial-Temporal Queries

The metadata table serves as a crucial feature of the video

querying system, as it efficiently organizes and indexes in-

formation about events detected within the videos. Each row

in the table represents a specific event, object, or action that

occurs in a video, along with key details necessary for precise

spatial-temporal querying.

Here’s an explanation of the table II and III components:

itemsep=5pt

• Event Name: Identifies the type of event or object (e.g.,

”ball” or ”jump”).

• Event Type: Specifies whether the entry is an ”object”

(stationary or moving) or an ”action” (a specific event

like jumping).

• Video ID: A unique identifier for the video where the

event occurs, allowing for cross-referencing between dif-

ferent videos in the database.

• Start Time and End Time: These columns denote the time

interval in the video where the event is observed. For

example, the ”ball” appears between seconds 1 and 3 in

the video, and the ”jump” action is observed between

seconds 5 and 7.

• Metadata: Provides additional detailed context about the

event, such as ”subtitles,” which could include descrip-

tions or dialogue related to the event.

• Relative Position Start and End: Records the spatial

coordinates of the event at the start and end times. This

information is essential for tracking movements or inter-

actions within the frame. For instance, the coordinates

(X, Y) help the system determine where in the frame

the ”ball” appears and whether it moves or remains

stationaryc.

In the example Metadata Schema table, we see two events:

A ball is seen from 1 to 3 seconds in the video, located at

specific coordinates within the frame. A jump action occurs

from 5 to 7 seconds, representing an action that can be queried

based on time. The metadata table enables the system to

perform complex queries such as: ”Find all instances where a

ball is within a specific region of the frame between seconds 1

and 3.” The screenshot of the table effectively showcases the
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TABLE IV. FRAGMENTS COLLECTION SCHEMA FOR GRIDFS-STORED VIDEO SEGMENTS WITH TEMPORAL 
METADATA

Field Name Type Short Explanation
id ObjectId Unique identifier for each video fragment file

filename String Original name of the video fragment file
contentType String MIME type of the fragment (e.g., video/mp4)
length Number Size of the fragment file in bytes
chunkSize Number Size of individual chunks for GridFS storage
uploadDate Date Timestamp when fragment was uploaded to GridFS
metadata Object Custom metadata including video ID and timing information
metadata.videoID String Reference to parent video for fragment association
metadata.duration Number Duration of fragment in seconds
metadata.startTime Number Start timestamp within parent video
metadata.endTime Number End timestamp within parent video

organized structure of the event metadata. By linking spatial-

temporal data with detailed object and action information, this

feature allows the system to efficiently handle and retrieve

specific video segments based on user-defined conditions. This

approach significantly enhances the accuracy and flexibility of

the video querying process.

IV. TECHNICAL DETAILS AND ALGORITHMS

A. Object Tracking

1) Overview : The provided implementation performs ob-

ject tracking in videos using the YOLO (You Only Look Once)

object detection model. The key objectives are:

• Detect objects in each video frame.

• Maintain a consistent identity for each detected object

across frames.

• Handle multiple instances of the same object type.

Key Components:
2) Object Detection: The YOLO model detects objects in

each frame and provides the following:

• Bounding boxes B represent the location of detected

objects in the frame.

• Class labels L indicating the type of object (e.g., person,

car).

• Confidence scores C for each detection.

3) Active Object Tracking: Detected objects are stored in

an active_objects dictionary, which tracks each object’s

state, including:

• A unique identifier instance id.

• The last frame and timestamp the object was seen.

• The bounding box B of the object.

4) Intersection over Union (IoU): To associate detections

across frames, the Intersection over Union (IoU) metric is

used. IoU measures the overlap between two bounding boxes

B1 and B2. Mathematically, it is defined as:

IoU =
|B1 ∩B2|
|B1 ∪B2|

, (1)

where |B1∩B2| is the area of intersection and |B1∪B2| is the

area of the union of the two bounding boxes. An IoU threshold

τ is used to determine if two bounding boxes represent the

same object.

5) Timeout and Object Expiry: To handle objects disappear-

ing from the frame temporarily, a timeout threshold Ttimeout

is used. If an object is not detected for a duration exceeding

Ttimeout, it is removed from the active_objects dictionary.

6) Handling Multiple Instances of the Same Object Type:
When multiple objects of the same class are present, the

implementation distinguishes them using the following steps:

7) Label-Based Grouping: Detected objects are grouped by

their class label L. Each class label maintains its own list of

active objects.

8) IoU-Based Association: For each detected object in the

current frame, the IoU is computed with all active objects

of the same label. Let Bt be the bounding box of a detected

object at time t, and Bt−1 be the bounding box of a previously

tracked object. If:

IoU(Bt, Bt−1) > τ, (2)

then Bt is associated with the same object as Bt−1.

9) New Object Creation: If no existing object satisfies the

IoU threshold, a new object is created with a unique identifier

instance id and added to active_objects.

10) Relative Position Calculation: The relative position of

an object in the frame is calculated as:

Relative Position =
(xcenter

W
,
ycenter

H

)
, (3)

where xcenter =
x1+x2

2 and ycenter =
y1+y2

2 . Here, x1, y1, x2, y2
are the coordinates of the bounding box, and W,H are the

frame width and height, respectively.

11) Data Storage and Updates: Each object’s data is stored

in a MongoDB collection, including:

• Bounding box coordinates B.

• Confidence score C.

• Relative position.

• Start and end timestamps.

When an object is matched in a new frame, its entry in the

database is updated with the latest data.

V. RESULTS

For the proposed AVQS, we implement query endpoints

that enable precise video contents retrieval. We also report

the algorithms and data structures used (QuadTree, Inter-

val Tree, sweep line, greedy sequence) with their threshold
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policies, MongoDB indexing strategy, and caching behavior

for reproducible performance. Users can specify where the

object should be present in the video by using the predefined

positions: ”top-half”, ”bottom-half”, ”left-half”, ”right-half”,

”top-third”, ”middle-third-horizontal”, ”bottom-third”, ”left-

third”, ”middle-third-vertical”, ”right-third”, ”top-left”, ”top-

right”, ”bottom-left” and ”bottom-right”.

A. Spatial Object Queries

Endpoint:
/query/spatialObjects

This endpoint enables querying for objects within specified

spatial regions. It implements a logical OR operation to find

instances of any specified objects in the defined area.

Complexity and thresholds: For each instance, frame
scanning is O(F). For large frame sets (F¿100), a per-instance
QuadTree is built in O(F) and queried in approximately O(k)
where k is matches; for smaller sets, a linear scan is faster.
Windows are merged by sorting and scanning.
Algorithm (Threshold-Based QuadTree):

SpatialQueryOR(objects[], area):
results ← []
FOR EACH obj IN objects DO
instances ← DB.find(

{object_name: obj})
FOR EACH inst IN instances DO
frames ← inst.frames
IF frames.length > 100 THEN
quadTree ← BuildQuadTree(frames)
matches ← quadTree.query(area)

ELSE
matches ← LinearScan(frames, area)

windows ← BuildTimeWindows(matches)
results.append({inst, windows})

RETURN MergeWindows(results)

Data structures used: QuadTree for spatial pruning when

F>100; otherwise linear scan.

Time complexity: Build O(F) per instance; query ≈ O(k);

merge O(W log W). Space O(F) transient per instance (tree

discarded after query).

Parameters:

• objects: Array of object names (e.g., [”truck”, ”hand-

bag”])

• area: Predefined area (halves/thirds/quadrants) or coor-

dinate array [x1, y1, x2, y2]

Example queries:

/query/spatialObjects?objects=["bird"]
&area=top-half
Response: [

{
"video_id": "689cd3905c1945e3f7602f42",
"object_name": "bird",
"windows": [

{
"start_time": "00:00:01.840",
"end_time": "00:00:04.920"

}
]

},
{

"video_id": "689cd3905c1945e3f7602f42",
"object_name": "bird",
"windows": [

{
"start_time": "00:00:01.880",
"end_time": "00:00:02.680"

}
]

}
]

/query/spatialObjects?objects=["person"]
&area=bottom-right
Response: [

{
"video_id": "689cd3905c1945e3f7602f42",
"object_name": "person",
"windows": [

{
"start_time": "00:00:01.040",
"end_time": "00:00:09.200"

}
]

},
{

"video_id": "689cd3905c1945e3f7602f42",
"object_name": "person",
"windows": [

{
"start_time": "00:00:21.560",
"end_time": "00:00:34.560"

}]}]

B. Spatial Objects AND Query

Endpoint:
/query/spatialObjectsAnd

This endpoint implements logical AND operations to find

video segments where multiple objects appear simultaneously

in the specified area.

Complexity: Intersecting time windows is performed via

sorting and two-pointer scan: O(W log W) for sorting + O(W)

scan.
Algorithm:

SpatialQueryAND(objects[], area):
individualResults ← []
FOR EACH obj IN objects DO
windows ← SpatialQueryOR([obj], area)
individualResults.append({obj, windows})

intersection ← IntersectTimeWindows(
individualResults)

RETURN intersection

Method: Interval intersection via sort-and-scan; avoids O(W2)

pairwise checks.

Complexity details: Sort O(W log W); scan O(W) overall;

space O(O×W) to hold per-object windows.

Parameters:
• objects: Array of object names (minimum 2 objects

required)
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• area: Predefined area or custom box coordinates

Example queries:
/query/spatialObjectsAnd?objects=["person","dog"]
&area=bottom-half
Response: [

{
"video_id": "689cd3905c1945e3f7602f42",
"objects": [

{
"object_names": [

"person",
"dog"

],
"windows": [

{
"start_time": "00:00:56.440",
"end_time": "00:06:02.200"

}
]

}
]

}
]

/query/spatialObjectsAnd?objects=["person","bird"]
&area=right-half
Response: [

{
"video_id": "689cd3905c1945e3f7602f42",
"objects": [

{
"object_names": [

"person",
"bird"

],
"windows": [

{
"start_time": "00:01:00.120",
"end_time": "00:05:01.960"

}
]

}
]}]

C. Instance-Based Queries

1) Distinct Instances Query: Endpoint:
/query/queryDistinctInstances

Retrieves all individual instances of a specified object class

across all videos.

Example query:
/query/queryDistinctInstances?object=person
Response: {

"person": [
{

"_id": "67c7456d-b4d4-4311-b28f-5a7f8fb64ecc",
"video_id": "689cd3905c1945e3f7602f42",
"object_name": "person",
"start_time": 0.01,
"end_time": 9.2

},
{

"_id": "a8805091-c22e-40b6-b8f9-caf325571808",
"video_id": "689cd3905c1945e3f7602f42",
"object_name": "person",
"start_time": 13,
"end_time": 21.16

},
]}

2) Instance Overlaps Query: Endpoint:
/query/queryInstanceOverlaps

Identifies temporal windows where multiple instances of the

same object class appear simultaneously.
Algorithm: Sweep line over start/end events (end-before-

start tie-break). Complexity O(I log I) for sorting, O(I) scan.

QueryInstanceOverlaps(object, count):
instances ← DB.find(

{object_name: object})
events ← []

FOR EACH inst IN instances DO
events.append({time: inst.start_time,

type: ’start’, inst})
events.append({time: inst.end_time,

type: ’end’, inst})
events.sort(by time; tie: end first)
active ← ; overlaps ← []
current ← NULL
FOR EACH e IN events DO
IF e.type = ’start’ THEN
active.add(e.inst)
IF |active| count AND

current = NULL THEN
current ← {start: e.time,

instances: copy(active)}
ELSE
IF |active| count AND

current NULL THEN
current.end ← e.time
overlaps.append(current)
current ← NULL

active.remove(e.inst)
RETURN MergeContiguousOverlaps(overlaps)

End-before-start tie-break prevents counting abutting intervals

as overlaps. Space O(I) for events.

Parameters:

• object: Object class name

• count: Minimum number of simultaneous instances

Example queries:
/query/queryInstanceOverlaps?object=bird&count=2
Response: {

"bird": [
{

"video_id": "689cd3905c1945e3f7602f42",
"merged_overlaps": [

{
"start_time": 1.88,
"end_time": 2.68

},
{

"start_time": 21.24,
"end_time": 23.36

},
]}]}

/query/queryInstanceOverlaps?object=person&count=2
Response: {

"person": [
{

"video_id": "689cd3905c1945e3f7602f42",
"merged_overlaps": [

{
"start_time": 41.88,
"end_time": 44.68

},
{

"start_time": 55.24,
"end_time": 59.36

},
]}]}

3) Instance Overlaps in Area Query: Endpoint:
/query/queryInstanceOverlapsInArea

Extends the instance overlaps query by adding spatial con-

straints, finding multiple instances of the same object class

within a specified area.

For each overlap window, frames are verified against the

specified area; success intervals are returned when the count

threshold is satisfied across frames within the area.

Example queries:
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/query/queryInstanceOverlapsInArea?object=bird
&count=3&area=bottom-half
Response: {

"success": true,
"data": [

{
"video_id": "689cd3905c1945e3f7602f42",
"success_intervals": [

{
"start_time": 21.24,
"end_time": 23.36

}
]}]}

/query/queryInstanceOverlapsInArea?object=person
&count=2&area=left-half
Response: {

"success": true,
"data": [

{
"video_id": "689cd3905c1945e3f7602f42",
"success_intervals": [

{
"start_time": 41.88,
"end_time": 44.68

},
]}]}

D. Temporal Queries

Endpoint:
/query/queryInstancesAtTime

Retrieves all instances of specified objects at a particular

timestamp.

Algorithm and thresholds: Instances are grouped by video.
If instances per video ≥ 20, a center-based Interval Tree is
used with point query O(log I+k); otherwise a linear scan is
used. The closest frame to the target time is found via binary
search O(logF ).

QueryInstancesAtTime(object_name, time):
instances ← DB.find({object_name})
groups ← GroupByVideo(instances)
results ← []
FOR EACH (video_id, arr) IN groups DO
IF arr.length 20 THEN
tree ← intervalTreeCache.getOrBuild(

video_id, arr)
matches ← tree.queryPoint(time)

ELSE
matches ← LinearFilter(arr, time)

FOR EACH m IN matches DO
frame ← BinarySearchFrame(

m.frames, time)
results.append({m, frame})

RETURN results

Data structures: Interval Tree (cached for up to 100 videos),

Binary Search for frame lookup.

Complexity: Build O(I log I) per video (amortized via cache);

query O(log I + k) + frame lookup O(logF ). Space O(I) per

tree; cache bounded.

Parameters:

• object: Object class name

• time: Timestamp in seconds

Example queries:

/query/queryInstancesAtTime?object=person
&time=15
Response: {

"object": "person",
"time": 15,
"instances": [

{
"video_id": "689cd3905c1945e3f7602f42",
"instance_id":

"a8805091-c22e-40b6-b8f9-caf325571808"
}

]
}

/query/queryInstancesAtTime?object=person
&time=51
Response: {

"object": "person",
"time": 51,
"instances": [

{
"video_id": "689cd3905c1945e3f7602f42",
"instance_id":

"910921dc-4f83-4d1a-9f60-e7dfa62e690c"
} ]}

Query Name Query Time
spatialObjects 438 ms
spatialObjectsAnd 700 ms
queryDistinctInstances 389 ms
queryInstanceOverlaps 382 ms
queryInstanceOverlapsInArea 803 ms
queryInstancesAtTime 441 ms
objects 1101 ms
spatialObjectsTemporal 416 ms

TABLE V
QUERY PERFORMANCE AVERAGE TIMES FOR VARIOUS QUERY TYPES

Systems Prediction Accuracy
Google Cloud Video Intelligence API 80-90%
Yolo 11 79%

TABLE VI
PREDICTION ACCURACY COMPARISON WITH SYSTEMS.

These query endpoints demonstrate the system’s ability

to perform complex spatial-temporal searches across video

content, enabling precise retrieval of relevant video segments

based on object presence, location, and timing requirements.

E. Spatial-Temporal Query

Endpoint:
/query/spatialObjectsTemporal

Combines spatial OR filtering with a temporal window

[start_time,end_time]. Windows overlapping the tem-

poral range are clipped to the range and returned.

Parameters:
• objects: Array of object names

• area: Predefined area name or coordinate array

• start_time, end_time: Temporal window in sec-

onds

Algorithm (Temporal Window Filter):
FilterByTimeWindow(results, start, end):
FOR EACH r IN results DO
filtered ← []
FOR EACH w IN r.windows DO
overlap ← ComputeOverlap(

w, [start, end])
IF overlap THEN
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filtered.append(overlap)
r.windows ← filtered

RETURN results

Complexity: O(R×W) time and space (R results; W windows

per result).

F. Sequence Query

Endpoint:
/query/temporal/objects (alias supported:

/query/querySequence)

Finds video segments where objects appear in a specified

sequential order using a greedy closest-match strategy (each

next object starts at or after the previous ends).

Parameters:

• sequence: Array of object names in order

• window_size (optional): Maximum allowed duration

Algorithm (Greedy Sequential Matching):

QuerySequence(sequence[], windowSize):
grouped ← {}
FOR EACH o IN sequence DO
inst ← DB.find({object_name: o})
FOR EACH x IN inst DO
grouped[x.video_id].append(x)

results ← []
FOR EACH (video_id, data) IN grouped DO
IF NOT AllObjectsPresent(

data, sequence) THEN CONTINUE
firstSet ← data[sequence[0]]
FOR EACH a IN firstSet DO
end ← a.end_time; path ← [a]
FOR i ← 1 TO sequence.length-1 DO
b ← FindClosestAfter(

data[sequence[i]], end)
IF b = NULL THEN BREAK
path.append(b); end ← b.end_time

IF path.length = sequence.length THEN
dur ← end - a.start_time
IF windowSize = 0 OR

dur windowSize THEN
results.append({video_id, path})

RETURN results

Complexity: Fetch/group O(M×N); matching ≈
O(I1×M× log I2) with sorted sets.

G. Objects Co-occurrence Query

Endpoint:
/query/objects

Finds time windows per video where all specified objects

co-appear (temporal overlap only; no spatial constraint). Op-

tionally enforces a maximum window size.

H. Additional Endpoints

• /query/spatialObjectsPaginated,

/query/queryInstancesPaginated
• /query/stream

I. Algorithmic Complexity Summary

1) Notation:
• F: number of frames in an instance

• I: number of object instances (per video when noted)

• k: number of results returned

• W: number of time windows

• M: sequence length; N: avg instances per object

• I1: instances of first object; I2: avg instances of subse-

quent objects

J. Indexing Strategy (MongoDB)

Objects collection (5 indexes):
• object_name: 1
• video_id: 1
• object_name: 1, video_id: 1
• object_name: 1, start_time: 1,
end_time: 1

• video_id: 1, object_name: 1,
start_time: 1

Videos collection (2 indexes):
• status: 1, createdAt: -1
• createdAt: -1

Rationale: Compound indexes order the most selective

fields first to maximize pruning. B-tree lookups provide

O(logN ) access versus O(N) scans.

K. Caching and Thresholds

Query result cache: LRU with capacity-based eviction (100

MB size limit) and 1-hour TTL; manual invalidation endpoints

are provided to clear entries by video or object.

Interval Tree cache: LRU for up to 100 videos (center-based

tree reused across queries).

Thresholds: QuadTree used when frames per instance > 100;

Interval Tree when instances per video ≥ 20; Binary search

always used for frame lookup.

Spatial semantics: Spatial queries primarily use normalized

centers (relative_position); QuadTree queries approx-

imate inclusion via small boxes around centers. If full per-

frame bounding_box is available, it can be used for higher

precision.

L. Advanced Optimizations
1) LRU Query Result Cache: Algorithm:

CLASS LRUCache(capacity, maxSize, ttl):
cache: Map<key, {value, ts, size}>
keys: Array (LRU order)
FUNCTION query(qType, params, fn):
key ← generateKey(qType,

normalizeParams(params))
IF cache.has(key) AND

notExpired(cache[key]) THEN
moveToEnd(key)
RETURN cache[key].value

result ← fn()
size ← estimateSize(result)
IF size > maxSize THEN RETURN result
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TABLE VII. ALGORITHMIC COMPLEXITY SUMMARY FOR 
CORE QUERIES

Query Type Simple Approach Our Approach Data Structures
Find objects in area O(F) per instance O(F) build + O(k) query QuadTree, Cache
Find all objects in area O(W2) compare O(W log W) sort + scan Time Window Intersection
Instances at time O(I × F) O(I log I) build + O(log I + k) + O(log F) Interval Tree, Binary Search, Cache
Overlapping instances O(I2) pairs O(I log I) sort + scan Sweep Line
Sequence pattern O(Im) combinations O(M × N log N) + O(I1 × M × log I2) Greedy Sequence

evictToFitSize(size)
cache[key] ← {value: result,

ts: now(), size}
keys.append(key); RETURN result

Performance: Hits O(1); misses equal original query time.

Size bounded to 100 MB, TTL 1 hour; manual invalidation

supported.
2) QuadTree (Spatial Search): Structure and operations:

CLASS QuadTreeNode:
bounds; children; objects
maxObjects=10; maxLevels=4; level

FUNCTION BuildQuadTree(frames):
root ← new QuadTreeNode([0,0,1,1])
FOR EACH (f, i) IN frames DO

Insert(root, f.relative_position, i)
RETURN root

FUNCTION Query(node, area):
IF NOT Intersects(node.bounds, area)

THEN RETURN []
IF node.isLeaf() THEN

RETURN FilterByArea(node.objects, area)
results ← []
FOR child IN node.children DO

results.extend(Query(child, area))
RETURN results

Complexity: Build O(F); query ≈ O(k); space O(F). Used

only when F>100.
3) Interval Tree (Time Search): Structure and point

query:
CLASS IntervalTreeNode:

center
intervals{left,right,overlap(sorted)}
left; right

FUNCTION BuildIntervalTree(intervals):
// choose median center
// partition into left/right/overlap
// recurse

FUNCTION QueryPoint(node, time):
// scan overlap (early exit by start)
// then recurse left/right by time

Complexity: Build O(I log I); query O(log I + k); space O(I).

Cached for up to 100 videos.

M. When to Use Each Data Structure

Threshold-based selection:
• QuadTree for spatial search when frames per instance >

100; otherwise linear scan

• Interval Tree for time search when instances per video ≥
20; otherwise linear scan

• Binary Search always for frame lookup

Decision logic:

IF searching by location AND
frames > 100:

Use QuadTree
ELSE:

Use simple loop
IF searching by time AND

instances >= 20 per video:
Use Interval Tree (with caching)

ELSE:
Use simple loop

For frame lookups:
Always use Binary Search

Memory usage: Interval Tree cache (≈1–2 MB per video, up

to 100 videos); result cache up to 100 MB; QuadTree built

per query and discarded.

N. Efficient Video Fragmentation and Retrieval

The proposed system incorporates a novel approach for

video fragmentation, using keyframes to divide videos into

smaller, approximately 5-second chunks. This method is es-

sential for optimizing the storage and retrieval of video data,

particularly for large-scale datasets.

1) Keyframe-Based Fragmentation: Keyframes, or intra-

frames, are self-contained frames that do not rely on other

frames for decoding. The fragmentation process ensures that

video chunks are split at keyframes, avoiding visual artifacts

and ensuring compatibility with playback tools. The system

uses FFmpeg to achieve this, with the following characteris-

tics:

• No Transcoding/Re-Encoding: By copying the codec

(-codec copy), the video quality remains intact, and

computational overhead is minimized.

• Variable Chunk Lengths: Chunks align with the nearest

keyframe after the specified duration (e.g., 5 seconds),

ensuring the integrity of each segment.

2) Metadata for Precise Retrieval: Each video chunk is as-

sociated with metadata stored in MongoDB GridFS, including:

• Video ID: Identifies the original video.

• Start and End Timestamps: Denote the temporal bound-

aries of the chunk.

• Duration: Specifies the length of the fragment.

This metadata facilitates temporal and spatial queries, enabling

efficient access to specific segments without processing the

entire video.
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3) Advantages of Fragmentation: The fragmentation ap-

proach offers several benefits:

• Efficient Bandwidth Usage: Only relevant chunks are

transmitted, significantly reducing network load com-

pared to retrieving whole video files.

• Scalable Storage: Parallel processing of chunks improves

system scalability for large datasets.

• Optimized Querying: Metadata enables rapid temporal

and spatial searches, essential for applications requiring

precise video segment retrieval.

• Improved User Experience: Users can access desired

segments quickly, enhancing interactivity and responsive-

ness.

O. Scalability

1) Microservices Architecture: The system is designed

as a loosely-coupled microservices architecture where each

component operates independently and can be deployed on

specialized hardware optimized for its workload:

• Service Isolation: Python ML pipeline, Node.js API

service, MongoDB database, and FFmpeg processing op-

erate as independent services with well-defined interfaces

• Containerization: Docker-based deployment enables

consistent environments across development, staging,

and production; Kubernetes orchestration supports auto-

scaling and load balancing

• Heterogeneous Hardware: ML service on GPU-enabled

nodes (NVIDIA Tesla/RTX); query service on CPU-

optimized instances; database on storage-optimized in-

stances

• Message Queue Integration: Asynchronous video pro-

cessing via job queues (Redis/RabbitMQ) decouples up-

load from analysis pipeline

• API Gateway: RESTful API (Fastify framework) serves

as unified entry point; supports rate limiting, authentica-

tion, and request routing

• Cost Optimization: GPU instances used only during

video analysis; query service runs on cost-effective CPU

instances; MongoDB replica sets provide read scaling

without GPU overhead

2) Python ML Pipeline:
• GPU Requirements: YOLO11 model inference bene-

fits from CUDA-enabled GPUs (NVIDIA RTX 3060 or

higher recommended); CPU-only mode supported with

reduced throughput

• Processing Rate: GPU: ≈30-60 FPS for 1080p video;

CPU: ≈5-10 FPS

• Memory: 2-4 GB GPU VRAM for batch processing; 4-8

GB system RAM per worker process

• Scalability: Horizontal scaling via multiple worker pro-

cesses; video processing queue supports distributed de-

ployment

3) Node.js Query Service:
• CPU Requirements: Multi-core CPU (4+ cores recom-

mended) for concurrent query processing

• Memory: 2-4 GB per Node.js instance; cache footprint

up to 200 MB (100 MB result cache + 100 MB interval

tree cache)

• Throughput: Handles 100-500 queries/second depending

on query complexity and cache hit rate

• Scalability: Stateless design enables horizontal scaling

behind load balancer; cache warming strategies improve

cold-start performance

4) MongoDB Database:

• Storage Growth: ≈10-50 MB metadata per hour of

analyzed video (varies with object density and frame rate)

• Index Overhead: 5 compound indexes on Objects col-

lection; total index size ≈20-30% of collection size

• Query Performance: Indexed lookups O(logN ) scale to

millions of object instances; compound indexes optimize

multi-field queries

• Scalability: Supports replica sets for read scaling and

sharding for horizontal partitioning on video_id

5) FFmpeg Video Processing:

• CPU Requirements: Multi-threaded encoding/decoding;

4-8 cores for real-time processing

• Hardware Acceleration: Supports NVENC (NVIDIA),

Quick Sync (Intel), VideoToolbox (macOS) for GPU-

accelerated encoding

• Memory: 1-2 GB per concurrent FFmpeg process de-

pending on resolution

• Scalability: Process isolation enables parallel processing

of multiple videos; containerization (Docker) facilitates

deployment

6) Storage Efficiency:

• Video Storage: Original videos stored in GridFS; frag-

ments stored separately with temporal metadata

• Metadata Compression: Per-frame detections stored

with normalized coordinates (8 bytes per detection vs.

full bounding boxes)

• Deduplication: Instance-level aggregation reduces redun-

dancy; shared object tracks minimize storage

• Total Footprint: For 100 hours of analyzed video: ≈1-5

GB metadata + original video size

7) Deployment Patterns:

• Cloud-Native Deployment: Compatible with AWS

(EC2, S3, DocumentDB), Google Cloud (Compute En-

gine, Cloud Storage, Atlas), Azure (VMs, Blob Storage,

Cosmos DB)

• Hybrid Architecture: On-premise GPU cluster for ML

processing; cloud-hosted query service and database for

global accessibility

• Edge Computing: Lightweight query service deployable

on edge nodes; ML processing offloaded to centralized

GPU resources

• Auto-Scaling Policies: Query service scales based on

request rate (target: 70% CPU utilization); ML workers

scale based on queue depth
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• Geographic Distribution: Multi-region MongoDB

replica sets reduce query latency; video storage

replicated across regions for redundancy

8) Performance Optimization Strategies:
• Batch Processing: ML pipeline processes multiple video

frames in batches (8-16 frames) to maximize GPU uti-

lization

• Lazy Loading: Fragment metadata loaded on-demand;

full video data fetched only when required

• Connection Pooling: MongoDB connection pool (50-100

connections) reduces overhead for concurrent queries

• CDN Integration: Processed video fragments served via

CDN (CloudFront, Cloudflare) for low-latency delivery

• Cron-Based Fragmentation: Background worker peri-

odically fragments uploaded videos during off-peak hours

• Read Replicas: Read-heavy queries distributed across

MongoDB replicas; write operations directed to primary

node

9) Monitoring and Observability:
• Metrics Collection: Prometheus-compatible metrics for

query latency, cache hit rates, GPU utilization, and queue

depth

• Distributed Tracing: Request tracing across microser-

vices for bottleneck identification

• Logging: Centralized logging (ELK stack or Cloud-

Watch) for error tracking and audit trails

• Health Checks: Kubernetes liveness/readiness probes

ensure service availability; automatic restart on failure

VI. CHALLENGES AND LIMITATIONS

A. Challenges

This project faced several challenges, particularly in transi-

tioning from TransVOD++ to YOLOv11. TransVOD++, while

optimized for spatiotemporal video analysis, exhibited signif-

icant limitations in object detection across diverse scenarios.

For instance:

• Narrow Object Detection Scope: TransVOD++ reliably

detected specific objects (e.g., a ”husk”) but struggled

with generic object classes such as an ”apple,” limiting

its utility in broader applications.

• Complexity of Integration: Its focus on temporal and

spatial modeling made it challenging to align with our

metadata generation pipeline, which prioritizes explicit

object recognition.

In contrast, YOLOv11 was chosen for its robust neural ar-

chitecture search (NAS) capabilities and transformer-based en-

hancements, which significantly improved detection accuracy

and query responsiveness. However, integrating YOLOv11

into a scalable framework required careful adjustments to

the pipeline, including adapting it to handle varying video

resolutions and object densities.

Additionally, handling metadata storage and retrieval in

MongoDB GridFS posed logistical hurdles. Optimizing the

chunk size to 5 MB minimized overhead, but this approach

still poses challenges with larger video files, as chunk size

may need further re-evaluation to maintain efficiency.

B. Limitations

The current approach, while demonstrating significant ad-

vancements, has notable limitations:

• Limited Object Detection Scope: The reliance on a pre-

trained YOLO11 model constrains the system to detecting

a predefined set of objects from the COCO dataset. This

limitation restricts applicability in domains requiring the

identification of custom or specialized object types.

• Pipeline Integration Challenges: Existing video pro-

cessing pipelines like Scanner [8], which could enhance

video processing efficiency, are no longer actively devel-

oped. Attempts to integrate these tools revealed compat-

ibility issues with our workflow.

• GridFS Chunk Size Management: While the default

255 KB chunk size in GridFS was optimized to 5

MB to reduce metadata overhead, this solution may not

scale well for significantly larger video files. Dynamic

evaluation of chunk sizes is necessary to balance storage

and retrieval efficiency.

• Absence of Advanced Features: The system does not

yet handle cross-model collaboration or provide real-

time updates. Implementing these features would require

substantial architectural enhancements.

Despite these limitations, the system lays a solid foundation

for future enhancements. Addressing these areas will unlock

its potential for diverse applications, including autonomous

systems, large-scale surveillance, and AI-driven content rec-

ommendation.

VII. CODE & DATA AVAILABILITY

A. GitHub:

• The code is available in this repository

https://github.com/vikasdimaniya/VidMetaStream

• The complete api documentation with inputs and output

schema is available in Postman JSON format.

VIII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this work, we presented a novel video querying system

designed to address the challenges of processing and analyzing

large-scale video datasets. Our approach integrates advanced

object detection and metadata generation techniques to enable

precise spatial-temporal queries and multi-object interaction

detection. Key achievements of the system include:

• Leveraging MongoDB for metadata storage, enabling

efficient querying and retrieval.

• Utilizing FFmpeg for keyframe-based video fragmenta-

tion to optimize storage and scalability.

• Enhancing the querying process to support diverse use

cases, such as autonomous driving and surveillance.

While the system demonstrates significant advancements in

video analysis and querying, certain limitations remain. These
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include reliance on a pre-trained YOLO11 model constrained

by its training dataset, the absence of parallel processing for

multiple machine learning models, and challenges in leverag-

ing pipelines such as Scanner. Addressing these constraints

offers exciting directions for future development.

The proposed framework lays the foundation for scalable

and efficient video analysis systems, with potential applica-

tions in autonomous driving, surveillance, and content recom-

mendation. Future enhancements, such as incorporating dy-

namic chunking strategies, spatial indexing, and cross-model

collaboration, can further elevate the system’s capabilities,

making it a valuable tool for researchers and engineers work-

ing with large-scale video datasets.

B. Future Work

To further enhance the system, future work will focus on:

• Advanced Scene-Text Grounding: Integrating neural

architectures and contextual embeddings for precise text

extraction from video frames, enabling applications like

automated indexing, real-time text recognition, and se-

mantic video search.

• Parallel Model Integration: Enabling the concurrent

execution of multiple machine learning models by intro-

ducing additional status states within the video processing

pipeline, thereby generating richer metadata.

• Spatial and Temporal Indexing: Employing ad-

vanced indexing techniques to accelerate spatial-temporal

queries, particularly in large datasets requiring complex

object interaction analysis.

These improvements will significantly enhance the system’s

utility, making it a more versatile and impactful tool for

researchers and engineers working with large-scale video

datasets.

1) Conclusion: This implementation effectively tracks ob-

jects across video frames using a combination of:

• Detection via YOLO.

• IoU-based matching for consistent identification.

• Timeout thresholds for handling occlusions.

• MongoDB for persistent storage.

These methods enable reliable tracking of multiple instances

of the same class and ensure accurate object identification

throughout the video.
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