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Abstract - Large Language Models (LLMs) demonstrate
impressive generative abilities across a wide range of tasks but
continue to suffer from hallucinations—outputs that are fluent
yet factually incorrect. This paper introduces a reference-free,
token-level hallucination detection framework that identifies
unreliable tokens by analyzing variance in log-probabilities
across multiple stochastic generations. Unlike traditional
methods that depend on external references or sentence-level
verification, our approach is model-agnostic, interpretable, and
computationally efficient, making it suitable for both real-time
and post-hoc analysis.

We evaluate the proposed method on three diverse
datasets—SQuAD v2 (unanswerable questions), XSum
(abstractive summarization), and TriviaQA (open-domain
question answering)—using autoregressive models of
increasing scale: GPT-Neo 125M, Falcon 1B, and Mistral 7B.
Results show that token-level variance strongly correlates with
hallucination behavior, revealing clear distinctions in
uncertainty across model sizes. The framework maintains
accuracy even under limited sampling conditions and
introduces minimal computational overhead, supporting its
practicality for lightweight deployment.

Overall, this work provides a scalable, reproducible, and
fine-grained diagnostic tool for detecting hallucinations in
LLMs, with potential extensions to multilingual and real-time
generation settings.
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1. INTRODUCTION

Large language models (LLMs) have transformed natural
language processing, powering tasks such as summarization,
dialogue generation, and open-ended question answering.
Despite their fluency and versatility, these models can produce
outputs that sound credible but are factually incorrect—a
phenomenon commonly referred to as hallucination. Such
errors can undermine trust, particularly in high-stakes or
knowledge-sensitive applications.
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Existing hallucination detection approaches typically operate
at the sentence or document level, often relying on reference
texts, curated datasets, or structured knowledge bases [3].
While effective in controlled scenarios, these methods are
computationally intensive, provide only coarse-grained
insights, and are unable to pinpoint which parts of a generated
output are unreliable. Their dependence on external sources
also limits real-time applicability and generalization across
model architectures.

To overcome these limitations, we propose a reference-free,
token-level hallucination detection framework. The core idea

is that hallucinations correlate with a model’s internal
uncertainty, = measurable via  variations in  token
log-probabilities across multiple stochastic generations.

Tokens exhibiting high variance are flagged as potentially
hallucinatory. Unlike previous approaches, our method draws
solely on the model’s predictive behavior, requiring no labeled
data, external corpora, or pre-defined factual rules.

Our framework is lightweight, interpretable, and
model-agnostic, suitable for both real-time monitoring and
post-generation auditing. We also investigate how sampling
diversity, threshold selection, and context length affect
detection reliability, ensuring robust performance under
practical constraints.

We  evaluate the approach on  three  diverse
benchmarks—SQuAD v2, TriviaQA (no-context subset), and
XSum—covering unanswerable question answering and
abstractive ~ summarization.  Experiments  on  three
autoregressive models of varying sizes—GPT-Neo 125M,
Falcon 1B, and Mistral 7B—show that token-level variance
effectively highlights uncertain predictions, with larger models
producing more stable, contextually accurate outputs.
Visualizations further reveal interpretable patterns of
hallucination that vary across datasets and model scales.

In summary, this work introduces a scalable, reference-free
method for token-level hallucination detection, offering a
practical tool to enhance the transparency and reliability of
generative language models.
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II. RELATED WORK

Hallucinations in large language models (LLMs) have been
studied from document-level analysis to token-level detection.
Early approaches used supervised classifiers, knowledge
bases, or external verification to assess factual correctness [3,
8], but lacked precision for localizing errors and were hard to
apply in real-time or reference-free settings.

Recent work leverages model uncertainty as a signal.
Deshpande et al. [7] introduced TULR, refining QA
supervision with token-level uncertainty. Ensemble-based
metrics [5] and stochastic decoding strategies like top-k and
nucleus sampling [9] have also been shown to affect
hallucination frequency.

In summary, entropy has been used to flag potential
hallucinations [3], but reference dependence limits generality.
Similarly, fine-grained supervised methods [6] restrict
cross-task applicability. Benchmarks like HaDeS [2] provide
token-level evaluation but rely on crowdsourced references,
hindering real-time deployment.

Our method differs by being fully unsupervised and
reference-free. It computes the variance of token
log-probabilities across multiple stochastic generations,
capturing intrinsic uncertainty without labels or external
knowledge. Inspired by instruction tuning and model scaling
[10, 11], we show that larger models, e.g., Mistral 7B, produce
more stable, lower-variance outputs, whereas smaller models
like GPT-Neo 125M are more prone to high-variance
hallucinations.

This framework provides a lightweight, interpretable
alternative to reference-based detection, enabling fine-grained,
token-level analysis of model reliability in open-ended
generation tasks.

III. DATASET

We evaluate our hallucination detection framework across
three diverse datasets to ensure robustness across tasks,
domains, and varying ambiguity levels.

A. SQuAD v2

We use 100+ unanswerable questions from the Stanford
Question Answering Dataset v2.0 (SQuAD v2), where empty
answer fields indicate inherently unanswerable prompts.
Contexts are truncated to 300 characters to increase ambiguity
and better stress-test the models’ uncertainty and hallucination
behavior.

B. TriviaQA (No-Context)

To assess open-domain performance, we include no-context
samples from TriviaQA. These real-world trivia questions
often lack sufficient information, making them naturally
ambiguous. This setting allows us to evaluate hallucination
detection in scenarios that resemble practical, high-uncertainty
use cases.
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C. XSum (Summarization)

We also test on XSum, a news summarization dataset with
highly abstractive summaries. Generated outputs frequently
contain unsupported or fabricated claims, providing a
complementary evaluation for assessing hallucination in
generative summarization tasks.

By combining QA and summarization benchmarks, our
multi-dataset setup enables token-level analysis of
hallucinations under diverse conditions, including short,
ambiguous, or high-variance outputs, directly addressing
reviewer concerns regarding generalization and applicability
to real-world scenarios.

IV. METHODOLOGY

We present a token-level hallucination detection approach that
operates without reference answers, instead utilizing the
model’s uncertainty signals. By measuring the variance in
token-level log-probabilities across multiple stochastic
generations, our method identifies low-confidence outputs
indicative of potential hallucinations. This framework is
computationally  efficient, interpretable, and broadly
applicable across different language models.

A. Variance-Based Hallucination Detection

Our method identifies hallucinated tokens by quantifying the
model’s internal uncertainty during text generation. We
hypothesize that when a model lacks confidence in a particular
token, it produces divergent outputs across repeated sampling
runs. This uncertainty is captured by computing how much the
model's confidence, reflected in token log-probabilities,
fluctuates across multiple generations at the same position.

Let the input prompt be denoted as x. We perform n stochastic
forward passes using nucleus sampling or top-k sampling to
generate a set of completions for all our inputs:

LY, YD), oo yA(0) (1)
Each y”\(i) is a generated sequence consisting of tokens y1°(i),
y27(i),...,yT*(i). At each token position t, we compute the
mean log-probability across all generations:

w t=(1/n)x Yernlogp t9 )

Next, we calculate the sample variance of the log-probabilities
at position tas:

Var_t=(1/n)x Y (log p_t% —p_t) 3)

This value, Varl], serves as our hallucination score for token
position t. A token is flagged as hallucinated if this score
exceeds a threshold t. While we report t 0.5 as a
representative setting, we found performance to be sensitive to
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threshold choice; values between 0.4-0.6 produced stable
results, and the optimal t may vary across models and tasks.

hallucinated t= Var t>1 4
This formulation is grounded in principles of Bayesian
uncertainty estimation and shares philosophical similarities
with ensemble methods [5], [6]. However, it requires no model
modifications or training and is entirely reference-free.

B. Model Selection
We assess our approach using three autoregressive transformer

models of different sizes to find out how model scale and
training strategies can influence hallucination patterns.

e GPT-Neo 125M [10]: A small-scale open-weight
model used as a lightweight baseline.

e Falcon 1B [11]: A mid-sized transformer model
designed for efficient inference.

e Mistral 7B [11]: A large instruction-tuned model with
7 billion parameters optimized for factual
consistency.

All models are used in zero-shot settings without any
fine-tuning or adaptation, ensuring the method's generality.

C. Prompt Construction and Sampling Strategy

Each input sample is a tuple (c,q)(c, q)(c,q), where c is the
context passage and q is the associated question. To encourage
model uncertainty and hallucination, we truncate the context
to 300 characters, limiting the information available for
answer generation [8].

The final prompt is structured as: {context[:300]} + "\n\nQ:
{question}\nA:"

We employ stochastic decoding to generate n = 3 distinct
outputs for each input prompt. The decoding settings are:
temperature = 0.9, top_p = 0.95, top_k =50, max_new_tokens
=40

D. Inference Procedure

For each input prompt, the model generates multiple
completions using the above decoding strategy. Each output is
used to extract token-level log-probabilities from the model's
logits.

Let LERN(T*V) be the logit matrix for a sequence of length T,
where V is the vocabulary size. After applying softmax and
log, we extract:
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log probs[t, y t]=log softmax(L)[t,y t] 5)
These values are collected across nnn generations, and
variance is computed token-wise as shown in Section 4.1. All
computations are done in half-precision to optimize memory
usage without affecting numerical stability.

The output of this process includes the generated text and a
token-wise hallucination flag, creating a granular map of
model uncertainty per token.

E. Factors Explored During Evaluation

We systematically examined several factors influencing
hallucination detection quality:

Sample Count (num_samples): With only one
generation, no variance can be computed, leading to
unreliable results. Using three or more samples
enhanced detection stability, particularly in larger
models like Mistral [6].

Context Truncation: Limiting context to 300
characters heightened ambiguity and hallucination
frequency. Longer contexts reduced hallucinations
but increased computational cost [8].

Decoding  Temperature:  Higher  temperatures
introduce greater randomness, elevating variance and
increasing the likelihood of hallucination. This effect
was nonlinear across settings [9].

Threshold Sensitivity: Instead of fixing t, we
evaluated thresholds between 0.4-0.6. Lower
thresholds increased recall but produced more false
positives, while higher thresholds improved
precision but missed subtle hallucinations [7]. T=0.5
was chosen as a balanced default.

Prompt Sensitivity: Small changes in prompt
phrasing or context order impacted output stability,
particularly in smaller models like GPT-Neo [3].

These observations highlight that hallucination detection
depends not only on model architecture but also heavily on
decoding, prompt design, and threshold selection.

F. Variance-Based Detection

We flag a token as hallucinated if its variance across
generations exceeds a fixed threshold. The method is entirely
self-contained, requiring no external verification or annotated
labels [7], [6]. It works uniformly across different model
architectures and sizes and provides token-level
interpretability, offering insight into which parts of the output
the model is least confident about.
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G. Token-Level Scoring and Output Representation

Each record includes: truncated context, question, generated
answer, and gold answer (if applicable). The generated tokens
are annotated with their text, variance score, and binary
hallucination flag. For example:

"tokens": [
{"token": "Marie", "variance": 0.72, "hallucinated": true},
{"token": "Curie", "variance": 0.75, "hallucinated": true},
{"token": "discovered", "variance": 0.10, "hallucinated":

false} ]

This structure supports:

e Visualization of hallucination hotspots.

e Token-level precision/recall evaluation against
references (where available).

e Cross-model comparisons under unified settings.

H. Computational Efficiency

The method incurs minimal overhead; generating three
completions increases inference time linearly (<3x), and
memory usage is optimized with FP16. Unlike
knowledge-base verification, it scales efficiently for large
batches and long sequences, addressing concerns about
real-time deployment.

L. Reproducibility & Implementation

All models and tokenizers are accessed via Hugging Face
Transformers. Fixed random seeds and consistent prompts
ensure reproducibility. The method is scalable to any
autoregressive model and supports batch-level hallucination
auditing across datasets.

V. EXPERIMENTAL SETUP

This section outlines the models, generation configuration,
hardware environment, and evaluation metrics used to assess
hallucination behavior in LLMs using our token-level
variance-based detection framework.

A. Models Used

We evaluate our approach on three decoder-only
autoregressive language models spanning different parameter
scales:

e GPT-Neo 125M: A small-scale baseline model for
general-purpose text generation.
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e Falcon 1B: A mid-sized transformer model trained on
filtered web data.
e  Mistral 7B: A larger, instruction-tuned model

designed for stable and factual outputs [11].

All models were accessed via Hugging Face’s Transformers
library with their respective tokenizers [6].

B. Tokenization and Generation Configuration

We used model-specific tokenizers to maintain consistency
across all models. To introduce ambiguity and encourage
hallucination, each context was truncated to the first 300
characters [8]. For every prompt, we generated three
completions using nucleus sampling with top k =50, top p =
0.95, temperature = 0.9, and max _new_tokens = 30. These
hyperparameters were selected to strike a balance between
diversity and coherence in output generation [9].

C. Hardware and Environment

Experiments were conducted on a system running Ubuntu
22.04 LTS, equipped with an Intel Xeon CPU, 64 GB RAM,
and two NVIDIA T4 GPUs (16 GB ecach). Mistral 7B was
quantized to 8-bit using the bitsandbytes library to reduce
memory load, while Falcon 1B and GPT-Neo 125M were used
in full precision [9].

D. Evaluation Metrics

We used the following metrics to quantify hallucination
behavior:

Token-Level Hallucination Rate: The percentage of
tokens whose log-probability variance across samples
exceeded a set threshold (e.g., 0.5). This serves as a
proxy for internal model uncertainty [4], [5].

Visual Variance Heatmaps: Variance scores for
individual tokens are plotted for qualitative
inspection, highlighting unstable regions of generated
output [10].

Model-Scale Comparison: Aggregated hallucination
rates across models were analyzed to observe scaling
trends and validate the hypothesis that larger models
exhibit more stable, factually grounded outputs [1],

[3].

We also explored how different factors, such as sample count,
decoding temperature, and context truncation, influenced
hallucination outcomes. These results are discussed further in
Section 6.
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VI. RESULTS AND ANALYSIS

In this section, we present the quantitative findings of our
hallucination detection framework, compare model behaviors,
and provide both aggregate metrics and qualitative
visualizations.

A. Quantitative Results

We evaluated three autoregressive models—GPT-Neo 125M,
Falcon 1B, and Mistral 7B—on 100 unanswerable questions
from the SQuAD v2 dataset, generating three responses per
question. For each token in the generated answers, we
computed  log-probability = variance and  identified
hallucinations using a fixed threshold.

TABLE I. TOKEN-LEVEL HALLUCINATION RATES ACROSS THREE MODELS

Model Total Tokens | Hallucinated Tokens % Hallucinated
GPT-Neo 4000 2897 72.42%
125M
Falcon 1B 4000 2590 64.75%
Mistral 7B | 2396 641 26.75%

Hallucination Rate Comparison Across Models

% Hallucinated Tokens

Falcon-18.

GPT-Neo-125M

Mistral-78
Fig. 1. Token-level hallucination rates across three models

These results reveal a clear inverse relationship between
model size and hallucination frequency. Mistral 7B, the largest
model, demonstrates significantly greater stability, while
GPT-Neo exhibits the highest hallucination rate.

This finding underscores two key points: (1) larger models
generate more reliable and context-aware completions, and (4)
variance-based hallucination detection offers a quantifiable,
model-agnostic measure of generative uncertainty. These
metrics serve as a foundation for the deeper positional and
variance analyses in the following sections.

B. Visual Comparison

We visualized token-level variance distributions using kernel
density estimates (KDE) to assess model uncertainty (Fig. 2).
Mistral 7B shows a sharp peak near zero, reflecting consistent,
low-variance predictions. In contrast, GPT-Neo 125M and
Falcon 1B display broader curves with substantial mass
beyond the 0.5 threshold, signaling greater instability.
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This visualization complements aggregate metrics by
highlighting how frequently and severely token confidence
fluctuates, reinforcing that larger models like Mistral exhibit
more stable, reliable generation.

Distribution of Token Variance

£ Mistral-78
Falcon-18

[ GPT-Neo-125M

~-- Hallucination Threshold

04

02

00

a
Token Variance

Fig. 2. Distribution of Token Variance
C. Position-wise Hallucination Analysis

Fig. 3 plots hallucination probability across token positions
(up to 40 tokens). GPT-Neo 125M and Falcon 1B exhibit
increasing hallucination rates after the first 20 tokens, often
surpassing the 50% mark, whereas Mistral 7B sustains
relatively low hallucination levels across the entire sequence.

This trend reveals that smaller models accumulate uncertainty
over longer generations, whereas larger models remain
contextually grounded. Position-wise analysis proves valuable
in pinpointing where hallucinations typically emerge, a finding
consistent with prior work on generation drift [5].

Token Position vs Hallucination Probability

— Mistral-78

—— falcon-18
—— GPT-Neo-125M

Fig. 3. Token Position vs Hallucination Probability
D. Token-Level Variance Heatmap

Fig. 4 presents a token-level heatmap of variance for a
common prompt across all models. Mistral 7B displays
consistently low variance, indicating stronger confidence and
better adherence to the prompt. Falcon 1B displays isolated
spikes (e.g., “ad”, “</s>”), while GPT-Neo 125M shows
widespread high variance, especially on tokens like “venture”.

These patterns demonstrate that larger models are better
calibrated, generating more stable outputs. In contrast, smaller
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models like GPT-Neo exhibit broad uncertainty, reinforcing
the link between high variance and hallucination.

Token Variance Heatmap Across Models (Example 0)
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Fig. 4. Token-Level Variance Heatmap
E. Cumulative Distribution of Token Variance

Figure 6 shows the CDF of token-level variance across
models. Mistral 7B rises steeply, with most tokens below the
hallucination  threshold, indicating stable, confident
generation. In contrast, Falcon 1B and GPT-Neo 125M rise
slowly, reflecting broader variance and higher token
instability.

This shift highlights model reliability: Mistral produces
consistently low-variance tokens, while GPT-Neo’s flatter
curve signals greater susceptibility to hallucination.

CDF of Token Variance

° °
Y ®

14
S

Cumulative Fraction

o
N

/ — Mistral
/; —— Falcon
/ GPT-Neo
=== Threshold

o 1 2 3 a 5 6 7 8
Token Variance

Fig. 5. Cumulative Distribution of Token Variance

F. Average Token Variance by Position

Figure 7 illustrates how average variance changes across token
positions. Mistral 7B consistently maintains low variance,
indicating stable confidence throughout generation. GPT-Neo
125M shows high wvariance across positions, reflecting
persistent uncertainty, while Falcon 1B falls in between, with
moderate but fluctuating variance.

The included threshold line highlights instability zones, where
GPT-Neo frequently crosses into high-variance regions. This
analysis reinforces that larger models not only hallucinate less
but also sustain more stable uncertainty profiles across the
sequence.
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Average Token Variance by Position

Fig. 6. Average Token Variance by Position
G. KL Divergence Analysis

We compute the KL divergence between token-level variance
distributions to compare model uncertainty. As shown in
Figure 8, Mistral and Falcon align closely, while GPT-Neo
diverges—especially from Falcon—indicating more erratic
uncertainty patterns.

Divergence is highest between tokens 6-20 in
Falcon—>GPT-Neo, revealing GPT-Neo's instability and
distinct confidence modeling. This highlights that smaller
models not only hallucinate more but also express uncertainty
differently across positions.

KL Divergence Between Models (Token-wise Variance Distribution)

MistralesFalcon

MistralsGPT-Neo

FalconeGPT-Neo

12345678 91011121314151617 1819 2021222324 252627 2829 30 31 32 33 34 35 36 3738 39 40
Token Position

Fig. 7. KL Divergence of Token Variance Across Model Pairs
H. Absolute Mean Variance Difference

Figure 9 shows token-wise mean variance differences between
model pairs. Mistral vs GPT-Neo displays the largest gap,
highlighting GPT-Neo’s instability. Mistral vs Falcon shows
smaller differences, indicating closer behavior. Falcon vs
GPT-Neo exceeds the hallucination threshold in many
positions, especially after token 10.

This confirms that larger models like Mistral maintain stable
generation confidence, while smaller ones like GPT-Neo vary
more across the sequence.

Token-wise Absolute Mean Variance Differences Between Models

shold

Fig. 8. Absolute Mean Variance Difference Across Model Pairs
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VII. ABLATION STUDY AND SENSITIVITY ANALYSIS

To assess the robustness of our hallucination detection
framework, we varied core parameters and observed their
effects.

Sampling Diversity (num_samples):

With num_samples = 1, the variance is minimal and
hallucinations are underrepresented; even in Mistral, the
hallucination rate appeared to be ~60% due to a lack of
diversity. Increasing the number of samples to 3 or 5 improved
variance visibility and better exposed unstable tokens, thereby
improving detection accuracy.

Hallucination Thresholds:

Variance thresholds between 0.4-0.6 produced consistent
model rankings. Lower thresholds increase recall but may
introduce false positives, while higher values improve
precision at the cost of missed hallucinations. A threshold of
0.5 balanced both well.

Response Length:

Short completions (<15 tokens) rarely exhibit meaningful
variance, making hallucination harder to catch. In longer
responses, variance typically increases after position 10, with
hallucinations appearing more frequently in later spans,
reinforcing the utility of position-aware analysis.

These findings emphasize that detection effectiveness hinges
on sampling diversity, well-tuned thresholds, and generation
length.

VIII. DiscussION

Our token-level variance framework provides fine-grained
insight into the stability of generated outputs, allowing precise
identification of hallucinated spans rather than relying on
coarse, sequence-level metrics. This localized perspective
helps pinpoint where a model is uncertain, making it valuable
for research and deployment.

A key limitation is its underperformance on short or
deterministic outputs, where variance is naturally low. For
example, factoid QA (“Who wrote *Hamlet?”
“Shakespeare”) or structured responses may yield single-token
answers with low variance that are still incorrect. In such
cases, variance alone cannot reliably distinguish factual from
fabricated content. Potential mitigations include combining
variance with complementary signals like perplexity or
entropy, applying dynamic thresholds adapted to response
length, or integrating lightweight external verification.

—

Despite these limitations, the approach is broadly applicable
across tasks such as summarization, code generation, and
open-ended dialogue. It also shows promise as a lightweight
decoding-time filter, capable of flagging and optionally
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resampling high-variance tokens in real time to improve
reliability without retraining.

Future directions: aim to address current limitations and
expand applicability: (1) Real-time integration — incorporating
the variance-based detector into decoding pipelines for
on-the-fly filtering or resampling of uncertain tokens; (2)
Multilingual and domain-specific evaluation — extending
experiments beyond English QA and summarization to other
languages and high-stakes domains, such as healthcare, law, or
scientific literature; (3) Hybrid factuality metrics — combining
token-level variance with external factuality signals, such as
knowledge graphs or retrieval-augmented models, to improve
precision, particularly for short outputs; and (4) Efficiency
benchmarking — conducting detailed evaluations of latency,
memory usage, and scalability to reinforce claims of
lightweight, real-time deployment.

IX. CoNCLUSION

We present a token-level variance-based framework for
detecting hallucinations in language model outputs. By
analyzing log-probability variance across multiple stochastic
generations, we show that hallucinated tokens exhibit higher
variance, especially in smaller models like GPT-Neo and
Falcon, while larger models such as Mistral 7B produce more
stable outputs.

The method is reference-free, requires no retraining, and is
model-agnostic, allowing easy integration into evaluation
pipelines. Token-level analyses—including heatmaps, variance
distributions, and divergence metrics—highlight correlations
between model size, sampling strategies, and hallucination
behavior.

Limitations include reduced detection quality for short or
deterministic outputs and reliance on variance thresholds,
which may miss subtle errors. Future improvements could
combine variance with external factuality signals, extend to
multilingual or domain-specific tasks, and optimize efficiency
for real-time deployment.

Overall, this lightweight and interpretable framework provides
a scalable tool for diagnosing and mitigating hallucinations,
contributing toward more reliable and trustworthy language
model outputs.
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