ISSN 2305-7254

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

CoolPrompt: Automatic Prompt Optimization
Framework for Large Language Models

Nikita Kulin, Viktor Zhuravlev, Artur Khairullin, Alena Sitkina, Sergey Muravyov
ITMO University
Saint-Petersburg, Russia
{242106,334857,368983,367537} @niuitmo.ru, smuravyov@itmo.ru

Abstract—The effectiveness of Large Language Models (LLMs)
is highly dependent on the design of input prompts. Manual
prompt engineering requires a domain expertise and prompting
techniques knowledge that leads to a complex, time-consuming,
subjective, and often suboptimal process. We introduce Cool-
Prompt as a novel framework for automatic prompt optimiza-
tion. It provides a complete zero-configuration workflow, which
includes automatic task and metric selection, also splits the input
dataset or generates synthetic data when annotations are missing,
and final feedback collection of prompt optimization results. Our
framework provides three new prompt optimization algorithms
ReflectivePrompt and DistillPrompt that have demonstrated ef-
fectiveness compared to similar optimization algorithms, and
a flexible meta-prompting approach called HyPE for rapid
optimization. Competitive and experimental results demonstrate
the effectiveness of CoolPrompt over other solutions.

I. INTRODUCTION

Large Language Models (LLMs) such as GPT-4 [1], Claude
Al, DeepSeek [2], Grok, and LLaMA [3] have revolutionized
artificial intelligence transitioning from task-specific solutions
to general-purpose foundation models [4], [5] and driving their
rapid adoption across research and industry [6]. They have
exhibited unprecedented effectiveness due to their remarkable
performance in natural language understanding [7], text gen-
eration [8], [9], code generation [10], [11], and reasoning
[12]. Meanwhile their operational efficacy is fundamentally
mediated by the quality of prompt design [13], where prompts
serve as computational directives from human to model [14].

Prompt engineering is the practice of designing input in-
structions to elicit desired model behavior and has emerged as
a critical and rapidly evolving discipline [15], [16]. The pro-
cess involves creating prompts, which can include questions,
instructions, or templates that use the embedded knowledge
of the model to maximize performance on a task. Unlike
traditional fine-tuning, prompt engineering does not require
modifying the model’s weights; instead, it leverages the model
as a fixed generalist "language computer’. Prompt engineering
methods range from simple input templates such as few-
shot techniques [17] to advanced strategies such as Chain-of-
Thought prompting [18], Self-Discover [19], Tree-of-Thoughts
[20], ReAct [21] and etc. [15] Moreover, recent advances have
enabled LLMs to self-generate and iteratively refine their own
prompts through in-context learning and reinforcement signals,
automating aspects of the prompt design process [22].

158

Manual prompt engineering remains fraught with challenges
that limit its potential, performance, scalability, and accessi-
bility.

1) Designing high-performance prompts typically requires
extensive trial-and-error, deep domain expertise, and
prompting techniques knowledge; therefore the process
is often time-consuming and nonsystematic.

2) Although current LLMs are trained in human-generated
text data, the effectiveness of prompt generation is also
influenced by factors such as input and output format
[23], placement of few-shot examples [24], the use of
key trigger words and tokens [25], [26], and the elimina-
tion of redundant tokens and words [27]. Consequently,
these factors reduce the relative importance of semantic
clarity in human-oriented content and narratives, thus
slowing down the process of manual prompt design.

3) Prompt effectiveness often exhibits poor transferability
across tasks, datasets, and even different LLM architec-
tures [28]-[30], undermining reproducibility and scal-
ability and requiring additional time and resources to
refine prompts.

One of the most profound advances enabled by LLMs is the
development of automatic prompt optimization (autoprompt-
ing), the use of algorithms and optimization strategies to auto-
mate the design, selection, and refinement of prompts supplied
to language models [31]. Autoprompting leverages methods
such as llm-based and planning approaches [30], [32], rein-
forcement learning [33]-[35], evolutionary algorithms [27],
[36], [37], and meta-optimization [36], [38], [39] to optimize
prompts. Studies show that automatic prompt optimization
can achieve higher efficiency, consistency and scalability even
with manual prompting by experts [30]; it reduces human
workload while improving the robustness between tasks and
generalization of prompt strategies.

Despite these advances, current autoprompting methods still
have several drawbacks. First, many current autoprompting
implementations are tailored to proprietary LLMs, making it
difficult to use custom or open-source models for specific
tasks, which reduces the democratization of LLM selection
and usage [30], [37]. Second, the stage of prompt engineering
remains costly, as there is no intuition or universal meth-
ods and strategies in selecting prompting and autoprompting
methods, and the complexity of evaluating the problem for

ISSN 2305-7254

specific data increases the barrier to prompt engineering [15],
[31]. Third, rapid efficacy system evaluation requires com-
prehensive evaluation methodologies incorporating specialized
testing frameworks, domain-adapted performance metrics, and
statistically significant experimental designs, collectively im-
posing substantial computational and temporal resource re-
quirements [40]. Furthermore, conventional prompt engineer-
ing approaches exhibit limited generalizability in various task
domains and applications [40].

To address these fundamental limitations, we introduce
CoolPrompt, a comprehensive automatic prompt optimization
framework that serves as an alternative to manual prompt
design, providing a complete workflow from task definition
to prompt evaluation. This framework offers a quick start to
prompt optimization with zero expertise and minimal prompt
engineering requirements. CoolPrompt includes automatic
task and metric selection for task assessment, splitting the
input dataset or generating synthetic data when annotations
are missing, and final feedback collection of prompt opti-
mization results. Our framework includes two new innovative
autoprompting algorithms: ReflectivePrompt [41] and Distill-
Prompt [42] that have demonstrated effectiveness compared
to similar solutions and a flexible meta-prompting approach
called HyPE for rapid optimization.

CoolPrompt allows machine learning and prompt engi-
neers, researchers, and practitioners to take advantage of state-
of-the-art prompt-based optimization without requiring deep
knowledge of the inner workings of LLMs or optimization
algorithms [43]. Beyond its technical contributions, this work
addresses the main challenges of ensuring accessibility when
deploying LLMs, removing expert barriers, and offering intu-
itive interfaces. This standardization is key to democratizing
and accelerating the adoption of LLMs in industries and
research areas where operational engineering knowledge is
limited but the potential for application is high.

Our key contributions are as follows:

1) We present a zero-configuration framework that ad-
vances a wide range of LLMs and automates the full
prompt optimization pipeline as an alternative manual
prompting design, from task definition to automatic
prompt evaluation and feedback.

2) We propose synthetic data generation that eliminates
data bottlenecks in prompt optimization.

3) We propose a wide LLM inference backends choice
using LangChain to democratize access to variety of
models and its optimizations.

4) Our framework-agnostic design supports several opti-
mization strategies for short-term optimizations: meta-
prompting approach HyPE, and for long-term optimiza-
tions: autoprompting algorithms ReflectivePrompt and
DistillPrompt.

5) We conduct comprehensive evaluation across five task
categories, showing consistent improvements over cur-
rent approaches with reduced computational overhead.

The experimental studies show that CoolPrompt achieves
competitive performance on different tasks such as math-

159

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

ematical reasoning, question answering, classification, sum-
marization, and natural language understanding. Its cost-
aware optimization further allows users to tailor performance-
efficiency trade-offs, validating both its practical utility and
generalizability.

II. RELATED WORK
A. Prompting Techniques

Recent developments in prompt engineering have shown
significant advances in prompt design techniques [13]. For
example, Few-shot [17] prompting provides instructive exam-
ples to guide the model. Chain-of-Thought prompting [18] has
proven effective by generating the model’s reasoning process
before arriving at the final answer. Building on this, more ad-
vanced reasoning prompt designs have emerged. Self-Discover
[19] selects pre-existing reasoning chains, adapts them to the
specific task, and applies them directly. Self-Consistency [19]
samples multiple reasoning paths and implements them to
produce the most consistent answer. Tree-of-Thoughts [20]
and Graph-of-Thoughts [44] generate various decomposed
reasoning variations, which are then evaluated and selected,
thus increasing the depth of the exploration. ReAct [21] goes
further by generating reasoning that translates into actions,
while reflecting on previous steps; it is commonly integrated
within Retrieval-Augmented Generation (RAG) [21] pipelines
and agent-based systems.

Recent research has also investigated self-critique meth-
ods to minimize risks of hallucinations such as Chain-of-
Verification [45] and Self-Refine [46], as well as agentic
prompting frameworks that empower LLMs to operate au-
tonomously with tool-use capabilities. In addition, multimodal
prompting techniques have extended prompt engineering be-
yond text to include image [47], [48], audio [49], video [50],
and segmentation prompting [51].

B. Automatic Prompting Algorithms

Currently, a variety of auto-prompting algorithms have been
developed, based on different optimization methods. Specif-
ically, EvoPrompt [52] and PromptBreeder [53] employ an
evolutionary approach, where a large language model (LLM)
serves as a selection, mutation, or recombination operator.
PromptAgent [54] and StablePrompt [55] utilize Reinforce-
ment Learning (RL), optimizing prompts using a reward
model. Solutions such as iPrompt [56] and OPRO [57] are
built on LLMs or foundation models (FM), leveraging meta-
prompts to modify the optimization pipeline. The primary
motivation for exploring autoprompting comes from research
on the Automatic Prompt Engineer [30], where it was demon-
strated that modern LLMs can handle prompt generation and
optimization tasks comparable to or even better than human
experts.

C. Prompt Optimization Libraries

Current prompt optimization solutions offer a variety of
functionalities and optimization modules. AdalFlow [58] pro-
vides an auto-differentiable framework that supports both zero-

ISSN 2305-7254

shot and few-shot prompt optimization, along with rapid con-
struction of LLM, RAG, and Agent pipelines. PromptWizard
[59] enables automatic prompt optimization through prompt
refinement and synthetic data generation. PromptFoo [60] of-
fers prompt evaluation capabilities combined with a testing of
LLM pipelines. Prompt-Promptor [61] optimizes and assesses
candidate prompts using LLM agents. DSPy [62] introduces
a model for prompt expansion and optimization based on
structured approaches. PromptoMatrix [63] showcases an end-
to-end prompt optimization pipeline that employs multiple
strategies and evaluates performance on synthetic data.

In addition, the ecosystem includes numerous other
frameworks, such as Anthropic’s prompt optimization tool,
LangChain Prompt Canvas, and Google’s Al Studio, each fo-
cused on specific aspects of prompt optimization and providing
user-friendly interfaces.

III. COOLPROMPT
A. Architecture Overview

CoolPrompt is a comprehensive framework built on a
Python backend, featuring a complete pipeline for automated
prompt optimization. The system is designed for both direct
usage and seamless integration with other platforms and sys-
tems. The complete framework architecture and user workflow,
spanning from query submission to result generation, are
presented in Fig. 1.

The architecture comprises several core functional modules.

1) PromptTuner is a primary interface class for parameter
configuration and optimization pipeline execution.

2) Evaluator is a module for assessing prompt perfor-
mance in datasets, incorporating multiple metrics for
both classification and generation tasks.

3) PromptOptimizer is a versatile optimization module
that supports short-term adaptations through prompt en-
gineering techniques with meta-prompts and long-term
automatic prompt optimization algorithms.

4) PromptAssistant is an LLM-based component with
predefined meta-prompts to generate self-improvement
feedback for users.

5) Synthetic Data Generator is an auxiliary module for
synthetic data generation when no input dataset is pro-
vided.

6) Task Detector is an automated task classification com-
ponent for scenarios without explicit user-defined task
specifications.

B. Optimization Workflow

Figure 1 illustrates the sequential workflow steps of the
CoolPrompt framework, which will be described in detail.
During step 1, the user provides a start prompt for optimization
initialization. Additionally, user may explicitly specify the
following task objectives: task type (classification or genera-
tion), evaluation metric, PromptOptimizer configuration, LLM
selection supported via LangChain integration for target LLM,
denoted in Figurel as LLM, and assistant LLM (denoted in

160

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

Figure 1 as LLM-2), problem description, labeled dataset with
target variables, and train-test split ratio.

Step 2 processes user configurations through automated
fallback mechanisms when parameters are unspecified. The
system employs: Task Detector for automatic task classifi-
cation when task type is undefined; predefined task-specific
metrics when evaluation criteria are unspecified; default con-
figured LLM interfaces when no model is selected; LLM-
generated problem descriptions when absent; Synthetic Data
Generator module for dataset creation when unavailable; HyPE
as the default PromptOptimizer; and predefined split ratios for
dataset partitioning.

Steps 3-4 perform dataset validation, triggering synthetic
dataset generation with corresponding labels via the Synthetic
Data Generator when required, followed by train-test sam-
pling. Step 5 evaluates the initial prompt on the training subset.
Step 6 executes prompt optimization through the selected
PromptOptimizer method. Step 7 assesses the final optimized
prompt on test set.

The comparative evaluation between the initial and opti-
mized prompts occurs during Steps 8-9. Step 10 employs
the PromptAssistant component to generate self-improvement
feedback by analyzing start and final prompt performance.
The workflow concludes at Step 11 with delivery of pipeline
results: comprehensive train-test evaluations with metrics and
actionable prompt refinement feedback.

C. Prompt Optimization Methods

1) HyPE: HyPE (Hypothetical Prompt Enhancer) is a rapid
meta-prompting approach for adaptive prompt enhancement
that asks a large language model to generate a hypothetical
instructive prompt which solves the same underlying task
as the user’s query. The design intentionally avoids multi-
round prompt search or ensembles of hand-crafted transfor-
mation rules: instead, HyPE exploits the model’s internal
knowledge of effective prompting patterns to produce an
immediately usable reformulation in one extra forward pass,
giving lightweight, task-adaptive prompt optimization with
minimal engineering.

The idea of HyPE is motivated by the HyDE method
[64], which synthesizes a hypothetical document to improve
the retrieval process. HyPE applies the same idea to prompt
formulation rather than retrieval. Building on this concept,
HyPE stands out from previous prompt optimization tech-
niques. Methods like chain-of-thought prompting require task-
specific exemplars, while automated strategies often depend on
multi-step LLM calls or rule-based transformations, incurring
substantial computational or engineering overhead. In contrast,
HyPE’s single-step generation leverages the model’s inherent,
pretrained understanding of instructional language.

HyPE relies on a single meta-prompt to guide its entire
prompt optimization process, so the meta-prompt’s quality
is critical to the quality of generated prompts. Our current
approach was to design a meta-prompt that directly reflects
the method’s purposes (see Fig. 2)

ISSN 2305-7254

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

PromptTuner

Setup Configuration

| Task

Prompt Optimizer

>‘ Task Objecti ‘

| Dataset

Metrics

| Other Settings ‘

Client Response

o ‘ Evaluation Metrics
1 h

(Prompt Improvement ‘
Feedback |

‘ Final Prompt

"

LM [

- —li/‘/)

|

CoolPrompt

Optimization Run Evaluator Prompt Optimizer
Collect or Generate
Dataset
v
Train-Test split |
g
‘Evaluate Start Prompt on’
Train .
Run Prompt Optimizer
" Evaluate Optimized)
Prompt on Train

HyPE |

\/ Classification metrics |

L4 | Generation metrics | ReflectivePrompt |
DistillPrompt |
Judge LLM

LLM-2

Syntetic Data Generator Task Detector

Feedback Run
Detector Core

LLM-2 |

‘Evaluate Start Prompt on'
Test |

|

" Evaluate Optimized
Prompt on Test

I

Generate a prompt
improvement feedback
with Judge LLM

[10

Fig. 1. CoolPrompt System Architecture and User Workflow

This intrinsic efficiency yields prompts that are both more
generalizable and precise than the original query, effectively
distilling the task’s core requirements into an optimal instruc-
tion for the model itself, without the need for external search
or exemplars.

2) ReflectivePrompt: ReflectivePrompt is an evolutionary-
based prompt optimization method, which is built on the idea
of Reflective Evolution [65]. Using the concepts of textual
gradient [66] and self-reflection [67], it provides remarkable
results in different areas of autoprompting tasks. All the data
required to run the method: a dataset, a description of the
target problem, and an initial user prompt. The remaining
individuals of the first population are created by producing
diverse paraphrases of the user prompt.

ReflectivePrompt implements two evolutionary operators:
crossover and elitist mutation. They both leverage short-
term and long-term reflections to improve their effectiveness.
Crossover creates a new prompt from two parent individuals
using generated short-term reflection. Initially, a set of parent
pairs is sampled according to these rules:

1) Each prompt is selected with probability proportional to
its fitness score.

One prompt can be selected in multiple parent pairs.
Within each pair, one prompt must have a strictly higher

score than the other.

2)
3)

The difference in fitness scores is required to determine the
superior and inferior prompts in each parent pair, since the
short-term reflection is focused on identifying qualities and
dissimilarities that yield higher-scoring prompts. Short-term
reflection consists of the model generating reflective analyses

161

and hints that are then used to achieve better crossover off-
spring. In summary, the set of short-term reflections constitutes
an analytics of the individuals in the current population.

The elitist mutation operator generates new individuals
using the best prompt in the current population and long-
term reflection. This operator enables local search in the area
of the present optimum. Long-term reflection is updated in
each epoch based on its prior version and all short-term
reflections produced in that generation. It contains a distilled
summary of the model reasoning about the current population
and accumulates knowledge across all epochs of evolution by
incorporating its previous state.

3) DistillPrompt: DistillPrompt is a gradient-free automatic
prompt optimization algorithm based on iterative prompt dis-
tillation. The method employs prompt compression, semantic
reformulation, and dynamic example integration to enhance
prompt effectiveness across diverse NLP tasks. This method
is based on the idea of the Tree-of-Thoughts prompting
technique. At each epoch, DistillPrompt uses the best prompt
from the previous iteration according to the target metric. For
the first epoch, the initial user prompt is employed.

The pipeline is as follows: for the first epoch, the initial
user prompt is employed. Then, several variations of the initial
prompt are generated. These diverse modifications are used
to analyze the search space from different perspectives. The
generated variations explore the search area in mostly blind
and inefficient way, and in order to cope with this, the second
step incorporates knowledge embedding. The objective is to
specialize the prompt for the task while preserving its original
formulation as much as possible. To achieve this, several
examples are randomly sampled from the training dataset and

ISSN 2305-7254

You are an expert prompt engineer. Your only task
is to generate a hypothetical instructive prompt
that would help a large language model effectively
answer the following query. The prompt must solve
the same underlying task as the original query while
being more effective.
HARD CONSTRAINTS
1. LANGUAGE:

- Output MUST be in the EXACT SAME LAN-
GUAGE as the query.
2. CONTENT:

- Output ONLY the hypothetical instructive
prompt - do NOT answer the original query directly.

- The hypothetical prompt must solve the same
task as the oiginal query provided by user.

- If the original query contains any code snippets,
you must include it in final prompt.
3. TECHNICAL PRESERVATION:

- Code blocks must be preserved with original
syntax and formatting.

- Variables, placeholders ({{var}}), and technical
terms kept unchanged.

- Markdown and special formatting replicated
precisely.
YOUR OUTPUT FORMAT
[PROMPT_START]<your hypothetical instructive
prompt here>[PROMPT_END]
INPUT
User’s query: {QUERY}
Problem
{PROBLEM_DESCRIPTION}
OUTPUT
Hypothetical Instructive Prompt:

description:

Fig. 2. Final meta-prompt for HyPE

provided to the model to extract some key principles and ideas
that are necessary to solve these training examples. The created
concepts are then embedded in the prompt.

However, there is a risk of the model “overfitting” to the
given examples and embedding the provided questions and
labels itself rather than generalizing for the whole task. To
mitigate this, the next step involves instruction compression.
The LLM reformulates each prompt into a small number of
sentences, preserving the core content of both the original
formulations and the embedded task-solving principles.

Since the examples from training data were sampled in-
dependently and randomly for each candidate, the resulting
insights may vary. Thus, the natural progression is to merge
the compressed candidates into a single distilled prompt,
accumulating the collective ideas. The final stage generates
the variations of the aggregated prompt, similar to the very
first step, and then the new best prompt is selected from these
newly created candidates.

162

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

D. Key Features

1) Interaction With LLMs: CoolPrompt supports compre-
hensive LLM integration, ranging from locally deployed open-
source models to proprietary API-based solutions. For stan-
dardized LLM interfacing, we implemented LangChain due to
its provider-agnostic architecture that abstracts model-specific
implementations, optimization techniques, and API variations.
This design constitutes a critical framework component that
democratizes LLM selection for end-users while eliminating
the need for custom interface adaptation, a notable limitation
present in alternative prompt optimization libraries.

2) Prompt Improvement Feedback: Beyond prompt opti-
mization capabilities, CoolPrompt enhances methodological
transparency by providing users with constructive feedback
containing actionable suggestions and composition insights.
This functionality is implemented through the PromptAssistant
module, which performs a comparative analysis between initial
and optimized prompt versions. PromptAssistant generates an
interpretation of prompt optimization results, thereby con-
tributing to the development of users’ technical proficiency
in prompt engineering and to exploration of “efficient prompt
pattern”.

3) Synthetic Data Generator: Modern LLMs have demon-
strated remarkable efficacy in the resolution of instructional
tasks, allowing the generation of synthetic data complete
with target annotations. CoolPrompt takes advantage of this
capability to address critical bottlenecks in prompt evaluation.
The generation process comprises the following steps: First, a
problem description which was parsed from an initial prompt
is included into a standardized meta-prompt with instructions
to provide dataset samples in input-output formats. Second,
received samples are expanded by generating hypothetical
edge cases using another meta-prompt. Finally, PromptAssis-
tant validates a dataset by selecting the most relevant samples.
In order to control the sample size, we use structured output
formatting.

4) Task Detector: Task Detector is a specialized component
or module designed to work in conjunction with LLMs. Its
primary function is to analyze the input of a user prompt and
automatically identify the intent and the specific type of task
the user wants the LLM to perform.

Instead of manual setup by user, LLM, which could be as
target LLM, as PromptAssistant, identifies a task problem that
uses for specifying a target metric.

IV. EXPERIMENTAL EVALUATION
A. Experimental Setup

A comparison was conducted among automatic prompt opti-
mization frameworks: CoolPrompt, Promptomatix, AdalFlow,
and Promptify, with a manual zero-shot prompt used as the
baseline and as a start prompt for optimization processes. The
experiment was performed on five benchmark datasets:

1) Question Answering: SQuAD_2

2) Mathematical Reasoning: GSM8SK
3) Text Generation: CommonGen

ISSN 2305-7254

4) Classification: AG News
5) Summarization: XSum

The metrics were selected according to the dataset tasks:
BERTScore for SQuAD, CommonGen and XSum; EM (Ex-
act Match) for GSMS8K; F1 Macro for AG News.

For each task in the evaluation experiment, we provided
a training and validation data split of 30 samples from the
original dataset with a train split ratio of 0.2. We chose
the usage of original dataset because not every automatic
optimization framework is capable for the generating syntetic
data.

We evaluated each method in the comparison in 3 runs in
order to obtain more objective results due to probabilistic LLM
output generation, where Table I presents the average results
across all runs. Prompt optimization methods DistillPrompt
and ReflectivePrompt were run with a number of epochs of
5 and for the second method the prompt population size
of 10. LLM run with the following generation parameters:
temperature was 0.7 and maximum number of new tokens was
3500.

Temperature controls the randomness of the generated text,
where low temperatures produce deterministic text and high
temperatures foster greater creativity and diversity. We set
temperature to 0.7 to ensure a variety of LLM responses and
optimization runs.

Maximum number of new tokens constrains the limitation
a size of generated tokens. In order to avoid overly restricting
the model, we set this limit to 3500 tokens.

B. Results

Table I presents the average results across all runs. Cool-
Prompt demonstrated competitive metric scores across all
datasets, outperforming the manual zero-shot prompt and
surpassing other algorithms on average.

C. Competitive Analysis

Table II presents a comprehensive feature comparison be-
tween CoolPrompt and other frameworks, which includes the
main key features for automatic prompt optimization.

V. DISCUSSION

According results presented in Table I, CoolPrompt demon-
strated competitive performance efficiency on the majority
of benchmark tasks. The model’s responses on the GSM8K
and AG News datasets were evaluated based on exact match
accuracy against the ground truth labels. On these datasets, the
results obtained using CoolPrompt are comparable to those of
other frameworks. For generative tasks, the prompts generated
by CoolPrompt yielded superior results compared to other
libraries.

The competitive analysis in Table II indicates that the most
similar framework is Promptomatix, which is distinguished by
its more limited options for selecting custom models compared
to CoolPrompt. It is also worth mentioning the implemented
criterion for the automatic selection of evaluation metrics. The

163

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

current version of CoolPrompt supports the selection of vari-
ous metrics, depending on previously chosen or automatically
detected task type, with F1 and BertScore selected by default
as the most representative metrics for providing a balanced
assessment between model responses and target outputs.

VI. FUTURE WORK

This section outlines the current state and future develop-
ment prospects of the CoolPrompt, designed for automatic
prompt optimization in NLP tasks. CoolPrompt has several
limitations and directions for further research to deal with
them.

LLM Type. Instructive LLMs are considered the most
suitable for the library’s operation. The use of non-instructive
models is considered inefficient due to their low respon-
siveness to instructions. Reasoning models present a distinct
challenge due to increased computational costs, adversely
affecting optimization speed. Their integration requires addi-
tional experimental research aimed at maximizing optimization
efficiency and minimizing redundant generation.

Advanced Validation. CoolPrompt implements a stan-
dard set of evaluation metrics: for classification tasks (accu-
racy, recall, precision, F1); for text generation tasks (BLEU,
ROUGE, METEOR, BERTScore). However, to adequately
assess language model responses against specific criteria such
as relevance, completeness, and toxicity, the implementation
of specialized metrics that demonstrate high correlation with
human evaluation (e.g., similar to the G-Eval metric [68]) is
necessary.

Generalization to Other Modalities. The current library
implementation is limited to the textual modality. Nonethe-
less, prompt engineering methods are applied in multimodal
tasks, including Image Retrieval, Visual Question Answering
(Visual QA), and Image Captioning. A promising direction for
development is the research and creation of automatic prompt
engineering algorithms adapted for multimodal domains.

Speed vs Quality Balance. To ensure high response speed,
meta-prompting methods are employed; however, these are
inferior in optimization effectiveness compared to slower,
iterative algorithms. Finding the optimal compromise between
operational speed and the quality of generated prompts is
a non-trivial task requiring dedicated research to develop a
balanced solution.

Synthetic Data Quality. The reliability and relevance of
synthetic data generated during the optimization process are
critically dependent on two factors: the competence of the as-
sistant model and the precision of the task formulation. When
operating within highly specialized domains (e.g., medicine,
jurisprudence, biology), the model must utilize the correspond-
ing terminology. Failure to meet this condition can lead to
errors in data labeling, factual inaccuracies (hallucinations), or
the generation of trivial examples lacking useful information.

VII. CONCLUSION

In this work, we have shown CoolPrompt a zero-
configuration framework that automates the full prompt opti-
mization pipeline as an alternative manual prompting design,

ISSN 2305-7254

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

TABLE I. AUTOMATIC PROMPT OPTIMIZATION LIBRARIES PERFORMANCE ACROSS

TASKS
Dataset Metric Manual 0-shot Prompt Promptify AdalFlow Promptomatix = CoolPrompt
SQuAD_2 BertScore 0.875 0.905 0.920 0.918 0.934
GSMS8K EM 0.527 0.615 0.753 0.728 0.732
CommonGen BertScore 0.871 0.885 0.904 0.902 0.913
AG News F1 0.705 0.841 0.722 0.858 0.858
XSum BertScore 0.823 0.233 0.841 0.857 0.872
TABLE II. FEATURE COMPARISON BETWEEN AUTOMATIC OPTIMIZATION
LIBRARIES

Framework Auto Data Auto Task Custom Model Usage Zero Config Feedback

Promptify X X X X X

AdalFlow X X X X X

Promptomatix v v X v v

CoolPrompt v v v v v

demonstrating competitive effectiveness across diverse tasks.
CoolPrompt represents a significant advancement in the field
of automatic prompt optimization. We proposed the end-to-
end prompt optimization pipeline with following key features
as a wide LLM inference backends, syntetic data generation,
task prediction, a bundle of optimization algorithms, and sys-
tematic prompt evaluation. Our evaluation results demonstrate
competitive effectiveness across various tasks.

The principles embedded within automation, efficiency, and
accessibility it as a key tool for the next generation of LLM-
based applications. CoolPrompt plays a particularly important
role in the context of the continuous evolution of language
models, fostering broader participation in Al development and
accelerating the adoption of these technologies across various
subject domains and user communities by removing barriers
in prompt design.

REFERENCES
[11 J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, and et al., Gpt-4
technical report, https://arXiv.org/abs/2303.08774.
A. Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu, C. Zhao, C. Deng,
C. Zhang, C. Ruan et al., “Deepseek-v3 technical report,” CoRR, 2024.
H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Roziere, N. Goyal, E. Hambro, F. Azhar, and
et al., Llama: open and efficient foundation language models,
https://arXiv.org/abs/2302.13971.
M. N. Vivekananda, P. A. Shidlyali, and V. V. Malgi, Advancing artificial
intelligence: insights into the applications and challenges of large
language models. 1EEE, 2025.
S. Yang, O. Nachum, Y. Du, J. Wei, P. Abbeel, and D. Schuurmans,
Foundation models for decision making: problems, methods, and oppor-
tunities, https://arXiv.org/abs/2303.04129.
Z. Zhao, W. Fan, J. Li, Y. Liu, X. Mei, Y. Wang, Z. Wen, F. Wang,
X. Zhao, J. Tang, and et al., Recommender systems in the era of large
language models (llms). 1EEE, 2024, vol. 36, no. 11.
N. Karanikolas, E. Manga, N. Samaridi, E. Tousidou, and M. Vassi-
lakopoulos, Large language models versus natural language understand-
ing and generation. PCI, 2023.
T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, and et al., “Language
models are few-shot learners,” Advances in neural information process-
ing systems, vol. 33, pp. 1877-1901, 2020.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

164

G. Bao, Y. Zhao, Z. Teng, L. Yang, and Y. Zhang, Fast-DetectGPT:
efficient zero-shot detection of machine-generated text via conditional
probability curvature. ICLR, 2023.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan, H. Ed-
wards, Y. Burda, N. Joseph, G. Brockman, and et al., Evaluating large
language models trained on code, https://arXiv.org/abs/2107.03374.

K. Zhang, J. Li, G. Li, X. Shi, and Z. Jin, CodeAgent: enhancing code
generation with tool-integrated agent systems for real-world repo-level
coding challenges, L.-W. Ku, A. Martins, and V. Srikumar, Eds.
Bangkok, Thailand: Association for Computational Linguistics, Aug.
2024. [Online]. Available: https://aclanthology.org/2024.acl-long.737/
A. Lewkowycz, A. Andreassen, D. Dohan, E. Dyer, H. Michalewski,
V. Ramasesh, A. Slone, C. Anil, I. Schlag, T. Gutman-Solo, and
et al., “Solving quantitative reasoning problems with language models,”
Advances in neural information processing systems, vol. 35, pp. 3843—
3857, 2022.

P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-
train, prompt, and predict: a systematic survey of prompting methods in
natural language processing,” ACM computing surveys, vol. 55, no. 9,
pp. 1-35, 2023.

S. Kadavath, T. Conerly, A. Askell, T. Henighan, D. Drain, E. Perez,
N. Schiefer, Z. Hatfield-Dodds, N. DasSarma, E. Tran-Johnson et al.,
“Language models (mostly) know what they know,” CoRR, 2022.

S. Vatsal and H. Dubey, A survey of prompt engineering
methods in large language models for different NLP tasks,
https://arXiv.org/abs/2407.12994.

S. Schulhoff, M. Ilie, N. Balepur, K. Kahadze, A. Liu, C. Si, Y. Li,
A. Gupta, H. Han, S. Schulhoff ef al., “The prompt report: a systematic
survey of prompting techniques,” CoRR, 2024.

Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a
few examples: a survey on few-shot learning,” ACM computing surveys
(csur), vol. 53, no. 3, pp. 1-34, 2020.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V.
Le, D. Zhou, and et al., “Chain-of-thought prompting elicits reasoning
in large language models,” Advances in neural information processing
systems, vol. 35, pp. 24 824-24 837, 2022.

P. Zhou, J. Pujara, X. Ren, X. Chen, H.-T. Cheng, Q. V. Le, E. Chi,
D. Zhou, S. Mishra, and H. S. Zheng, “Self-discover: large language
models self-compose reasoning structures,” Advances in Neural Infor-
mation Processing Systems, vol. 37, pp. 126 032-126 058, 2024.

S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and
K. Narasimhan, “Tree of thoughts: deliberate problem solving with large
language models,” Advances in neural information processing systems,
vol. 36, pp. 11809-11822, 2023.

S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao,
React: synergizing reasoning and acting in language models. 1CLR,
2023.

Z. Li, Y. Du, J. Hu, X. Wan, and A. Gao, Self-instructed derived
prompt generation meets in-context learning: unlocking new potential of
black-box LLMs, W. Che, J. Nabende, E. Shutova, and M. T. Pilehvar,

ISSN 2305-7254

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Eds. Vienna, Austria: Association for Computational Linguistics, Jul.
2025. [Online]. Available: https://aclanthology.org/2025.acl-long.92/

S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi,
and L. Zettlemoyer, Rethinking the role of demonstrations: what makes
in-context learning work?, https://arXiv.org/abs/2202.12837.

Y. Lu, M. Bartolo, A. Moore, S. Riedel, and P. Stenetorp, Fantastically
ordered prompts and where to find them: overcoming few-shot prompt
order sensitivity. ACL, 2022.

S. M. Xie, A. Raghunathan, P. Liang, and T. Ma, An explanation of

in-context learning as implicit bayesian inference. 1CLR, 2022.

T. Shin, Y. Razeghi, R. L. Logan 1V, E. Wallace, and S. Singh, Auto-
Prompt: eliciting knowledge from language models with automatically
generated prompts. EMNLP, 2020.

J. Wang, Z. Hu, and L. Bing, Evolving prompts in-context: an open-
ended, self-replicating perspective. 1CML, 2025.

Y. Zhang, Y. Dong, S. Zhang, T. Min, H. Su, and J. Zhu, Exploring
the transferability of visual prompting for multimodal large language

models. 1EEE, 2024.
Y. Su, X. Wang, Y. Qin, C.-M. Chan, Y. Lin, H. Wang, K. Wen,
Z. Liu, P. Li, J. Li, L. Hou, M. Sun, and J. Zhou, On

transferability of prompt tuning for natural language processing.
Association for Computational Linguistics, 2022. [Online]. Available:
http://dx.doi.org/10.18653/v1/2022.naacl-main.290

Y. Zhou, A. 1. Muresanu, Z. Han, K. Paster, S. Pitis, H. Chan, and J. Ba,
Large language models are human-level prompt engineers. NIPS, 2022.
W. Li, X. Wang, W. Li, and B. Jin, “A survey of automatic prompt
engineering: an optimization perspective,” arXiv e-prints, pp. arXiv—
2502, 2025.

S. Yang, Y. Wu, Y. Gao, Z. Zhou, B. Zhu, X. Sun, J.-G. Lou,
Z.Ding, A. Hu, Y. Fang et al., AMPO: automatic multi-branched prompt
optimization. Association for Computational Linguistics, 2024.

X. Wang, C. Li, Z. Wang, F. Bai, H. Luo, J. Zhang, N. Jojic, E. Xing, and
Z. Hu, PromptAgent: strategic planning with language models enables
expert-level prompt optimization. 1CLR, 2023.

M. Deng, J. Wang, C.-P. Hsieh, Y. Wang, H. Guo, T. Shu,
M. Song, E. Xing, and Z. Hu, RLPrompt: optimizing discrete text
prompts with reinforcement learning, Y. Goldberg, Z. Kozareva, and
Y. Zhang, Eds. Abu Dhabi, United Arab Emirates: Association
for Computational Linguistics, Dec. 2022. [Online]. Available:
https://aclanthology.org/2022.emnlp-main.222/

T. Zhang, X. Wang, D. Zhou, D. Schuurmans, and J. E. Gonzalez,
TEMPERA: test-time prompt editing via reinforcement learning. ICLR,
2023.

C. Singh, J. X. Morris, J. Aneja, A. M. Rush, and J. Gao, Explaining
patterns in data with language models via interpretable autoprompting,
https://arXiv.org/abs/2210.01848.

Q. Guo, R. Wang, J. Guo, B. Li, K. Song, X. Tan, G. Liu, J. Bian, and
Y. Yang, EvoPrompt: connecting LLMs with evolutionary algorithms
yields powerful prompt optimizers, https://arXiv.org/abs/2309.08532.
C. Yang, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou, and X. Chen,
Large language models as optimizers. ICLR, 2023.

R. Pryzant, D. Iter, J. Li, Y. T. Lee, C. Zhu, and M. Zeng, Auto-
matic prompt optimization with ”gradient descent” and beam search.
EMNLP, 2023.

Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen,
X. Yi, C. Wang, Y. Wang, and et al., “A survey on evaluation of
large language models,” ACM transactions on intelligent systems and
technology, vol. 15, no. 3, pp. 145, 2024.

V. N. Zhuravlev, A. R. Khairullin, E. A. Dyagin, A. N. Sitkina, and
N. I. Kulin, “Reflectiveprompt: reflective evolution in autoprompting
algorithms,” in press, https://arxiv.org/abs/2508.18870.

——, “Automatic prompt optimization with prompt distillation,” unpub-
lished, https://arxiv.org/abs/2508.18992.

0. Baclic, M. Tunis, K. Young, C. Doan, H. Swerdfeger, and J. Schon-
feld, “Challenges and opportunities for public health made possible
by advances in natural language processing,” Canada Communicable
Disease Report, vol. 46, no. 6, p. 161, 2020.

M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, M. Podstawski,
L. Gianinazzi, J. Gajda, T. Lehmann, H. Niewiadomski, P. Nyczyk,
and et al., Graph of thoughts: solving elaborate problems with large
language models. AAAI, 2024, vol. 38, no. 16.

S. Dhuliawala, M. Komeili, J. Xu, R. Raileanu, X. Li, A. Celikyilmaz,
and J. Weston, Chain-of-Verification reduces hallucination in large
language models, 2023.

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

165

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe,
U. Alon, N. Dziri, S. Prabhumoye, Y. Yang, and et al., “Self-refine:
iterative refinement with self-feedback,” Advances in Neural Information
Processing Systems, vol. 36, pp. 46 53446594, 2023.

S. Hakimov and D. Schlangen, Images in language space: exploring the
suitability of large language models for vision & language tasks. ACL,
2023.

J. Oppenlaender, “A taxonomy of prompt modifiers for text-to-image
generation,” Behaviour & Information Technology, vol. 43, no. 15, pp.
3763-3776, 2024.

S. Wang, C.-H. Yang, J. Wu, and C. Zhang, Can whisper perform speech-
based in-context learning? 1EEE, 2024.

T. Brooks, B. Peebles, C. Holmes, W. DePue, Y. Guo, L. Jing,
D. Schnurr, J. Taylor, T. Luhman, E. Luhman, and et al., “Video
generation models as world simulators,” OpenAl Blog, vol. 1, no. 8,
p- 1, 2024.

L. Tang, P-T. Jiang, H. Xiao, and B. Li, “Towards training-free open-
world segmentation via image prompt foundation models,” International
Journal of Computer Vision, vol. 133, no. 1, pp. 1-15, 2025.

Q. Guo, R. Wang, J. Guo, B. Li, K. Song, X. Tan, G. Liu, J. Bian,
and Y. Yang, “Connecting large language models with evolutionary
algorithms yields powerful prompt optimizers,” CoRR, 2023.

C. Fernando, D. Banarse, H. Michalewski, S. Osindero, and
T. Rocktidschel, “Promptbreeder: self-referential self-improvement via
prompt evolution,” arXiv e-prints, pp. arXiv—2309, 2023.

X. Wang, C. Li, Z. Wang, F. Bai, H. Luo, J. Zhang, N. Jojic, E. P.
Xing, and Z. Hu, “Promptagent: strategic planning with language models
enables expert-level prompt optimization,” CoRR, 2023.

M. Kwon, G. Kim, J. Kim, H. Lee, and J. Kim, StablePrompt: automatic
prompt tuning using reinforcement learning for large language models.
Association for Computational Linguistics (ACL), 2024.

C. Singh, J. X. Morris, J. Aneja, A. M. Rush, and J. Gao, “Explaining
patterns in data with language models via interpretable autoprompting,”
arXiv e-prints, pp. arXiv-2210, 2022.

J. Hong, N. Lee, and J. Thorne, ORPO: monolithic preference
optimization without reference model, Y. Al-Onaizan, M. Bansal,
and Y.-N. Chen, Eds. Miami, Florida, USA: Association for
Computational Linguistics, Nov. 2024. [Online]. Available: https:
//aclanthology.org/2024.emnlp-main.626/

L. Yin and Z. Wang, “Llm-autodiff: auto-differentiate any 1lm workflow,”
arXiv e-prints, pp. arXiv—2501, 2025.
E. Agarwal, J. Singh, V. Dani, R. Magazine, T. Ganu, and

A. Nambi, PromptWizard: task-aware prompt optimization framework,
https://arxiv.org/abs/2405.18369.
Promptfoo, Promptfoo: LILM
https://github.com/promptfoo/promptfoo.
J. Shen, J. J. Dudley, J. Zheng, B. Byrne, and P. O. Kristensson,
“Promptor: a conversational and autonomous prompt generation agent
for intelligent text entry techniques,” CoRR, 2023.

K. Opsahl-Ong, M. J. Ryan, J. Purtell, D. Broman, C. Potts, M. Zaharia,
and O. Khattab, Optimizing instructions and demonstrations for
multi-stage language model programs, Y. Al-Onaizan, M. Bansal,
and Y.-N. Chen, Eds. Miami, Florida, USA: Association for
Computational Linguistics, Nov. 2024. [Online]. Available: https:
//aclanthology.org/2024.emnlp-main.525/

R. Murthy, M. Zhu, L. Yang, J. Qiu, J. Tan, S. Heinecke,
C. Xiong, S. Savarese, and H. Wang, Promptomatix: an auto-
matic prompt optimization framework for large language models,
https://arxiv.org/abs/2507.14241.

L. Gao, X. Ma, J. Lin, and J. Callan, “Precise zero-shot dense retrieval
without relevance labels,” in Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
2023, pp. 1762-1777.

H. Ye, J. Wang, Z. Cao, F. Berto, C. Hua, H. Kim, J. Park, and G. Song,
“Reevo: large language models as hyper-heuristics with reflective evo-
lution,” Advances in neural information processing systems, vol. 37, pp.
43571-43 608, 2024.

Y. Li, X. Hu, X. Qu, L. Li, and Y. Cheng, Test-time preference
optimization: on-the-fly alignment via iterative textual feedback.
ICML, 2025. [Online]. Available: https://openreview.net/forum?id=
ArifAHrEVD

L. Zhao, Y. Wang, Q. Liu, M. Wang, W. Chen, Z. Sheng, and
S. Wang, Evaluating large language models through role-guide and

evals & red teaming,

ISSN 2305-7254 PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

self-reflection: a comparative study. 1CLR, 2025. [Online]. Available: Eval: NLG evaluation using GPT-4 with better human alignment,
https://openreview.net/forum?id=E36NHwe7Zc https://arxiv.org/abs/2303.16634.
[68] Y. Liu, D. Iter, Y. Xu, S. Wang, R. Xu, and C. Zhu, G-

166

