
CoolPrompt: Automatic Prompt Optimization
Framework for Large Language Models

Nikita Kulin, Viktor Zhuravlev, Artur Khairullin, Alena Sitkina, Sergey Muravyov
ITMO University

Saint-Petersburg, Russia

{242106,334857,368983,367537}@niuitmo.ru, smuravyov@itmo.ru

Abstract—The effectiveness of Large Language Models (LLMs)
is highly dependent on the design of input prompts. Manual
prompt engineering requires a domain expertise and prompting
techniques knowledge that leads to a complex, time-consuming,
subjective, and often suboptimal process. We introduce Cool-
Prompt as a novel framework for automatic prompt optimiza-
tion. It provides a complete zero-configuration workflow, which
includes automatic task and metric selection, also splits the input
dataset or generates synthetic data when annotations are missing,
and final feedback collection of prompt optimization results. Our
framework provides three new prompt optimization algorithms
ReflectivePrompt and DistillPrompt that have demonstrated ef-
fectiveness compared to similar optimization algorithms, and
a flexible meta-prompting approach called HyPE for rapid
optimization. Competitive and experimental results demonstrate
the effectiveness of CoolPrompt over other solutions.

I. INTRODUCTION

Large Language Models (LLMs) such as GPT-4 [1], Claude

AI, DeepSeek [2], Grok, and LLaMA [3] have revolutionized

artificial intelligence transitioning from task-specific solutions

to general-purpose foundation models [4], [5] and driving their

rapid adoption across research and industry [6]. They have

exhibited unprecedented effectiveness due to their remarkable

performance in natural language understanding [7], text gen-

eration [8], [9], code generation [10], [11], and reasoning

[12]. Meanwhile their operational efficacy is fundamentally

mediated by the quality of prompt design [13], where prompts

serve as computational directives from human to model [14].

Prompt engineering is the practice of designing input in-

structions to elicit desired model behavior and has emerged as

a critical and rapidly evolving discipline [15], [16]. The pro-

cess involves creating prompts, which can include questions,

instructions, or templates that use the embedded knowledge

of the model to maximize performance on a task. Unlike

traditional fine-tuning, prompt engineering does not require

modifying the model’s weights; instead, it leverages the model

as a fixed generalist ’language computer’. Prompt engineering

methods range from simple input templates such as few-

shot techniques [17] to advanced strategies such as Chain-of-

Thought prompting [18], Self-Discover [19], Tree-of-Thoughts

[20], ReAct [21] and etc. [15] Moreover, recent advances have

enabled LLMs to self-generate and iteratively refine their own

prompts through in-context learning and reinforcement signals,

automating aspects of the prompt design process [22].

Manual prompt engineering remains fraught with challenges

that limit its potential, performance, scalability, and accessi-

bility.

1) Designing high-performance prompts typically requires

extensive trial-and-error, deep domain expertise, and

prompting techniques knowledge; therefore the process

is often time-consuming and nonsystematic.

2) Although current LLMs are trained in human-generated

text data, the effectiveness of prompt generation is also

influenced by factors such as input and output format

[23], placement of few-shot examples [24], the use of

key trigger words and tokens [25], [26], and the elimina-

tion of redundant tokens and words [27]. Consequently,

these factors reduce the relative importance of semantic

clarity in human-oriented content and narratives, thus

slowing down the process of manual prompt design.

3) Prompt effectiveness often exhibits poor transferability

across tasks, datasets, and even different LLM architec-

tures [28]–[30], undermining reproducibility and scal-

ability and requiring additional time and resources to

refine prompts.

One of the most profound advances enabled by LLMs is the

development of automatic prompt optimization (autoprompt-

ing), the use of algorithms and optimization strategies to auto-

mate the design, selection, and refinement of prompts supplied

to language models [31]. Autoprompting leverages methods

such as llm-based and planning approaches [30], [32], rein-

forcement learning [33]–[35], evolutionary algorithms [27],

[36], [37], and meta-optimization [36], [38], [39] to optimize

prompts. Studies show that automatic prompt optimization

can achieve higher efficiency, consistency and scalability even

with manual prompting by experts [30]; it reduces human

workload while improving the robustness between tasks and

generalization of prompt strategies.

Despite these advances, current autoprompting methods still

have several drawbacks. First, many current autoprompting

implementations are tailored to proprietary LLMs, making it

difficult to use custom or open-source models for specific

tasks, which reduces the democratization of LLM selection

and usage [30], [37]. Second, the stage of prompt engineering

remains costly, as there is no intuition or universal meth-

ods and strategies in selecting prompting and autoprompting

methods, and the complexity of evaluating the problem for

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 158 --

specific data increases the barrier to prompt engineering [15],

[31]. Third, rapid efficacy system evaluation requires com-

prehensive evaluation methodologies incorporating specialized

testing frameworks, domain-adapted performance metrics, and

statistically significant experimental designs, collectively im-

posing substantial computational and temporal resource re-

quirements [40]. Furthermore, conventional prompt engineer-

ing approaches exhibit limited generalizability in various task

domains and applications [40].
To address these fundamental limitations, we introduce

CoolPrompt, a comprehensive automatic prompt optimization

framework that serves as an alternative to manual prompt

design, providing a complete workflow from task definition

to prompt evaluation. This framework offers a quick start to

prompt optimization with zero expertise and minimal prompt

engineering requirements. CoolPrompt includes automatic

task and metric selection for task assessment, splitting the

input dataset or generating synthetic data when annotations

are missing, and final feedback collection of prompt opti-

mization results. Our framework includes two new innovative

autoprompting algorithms: ReflectivePrompt [41] and Distill-

Prompt [42] that have demonstrated effectiveness compared

to similar solutions and a flexible meta-prompting approach

called HyPE for rapid optimization.
CoolPrompt allows machine learning and prompt engi-

neers, researchers, and practitioners to take advantage of state-

of-the-art prompt-based optimization without requiring deep

knowledge of the inner workings of LLMs or optimization

algorithms [43]. Beyond its technical contributions, this work

addresses the main challenges of ensuring accessibility when

deploying LLMs, removing expert barriers, and offering intu-

itive interfaces. This standardization is key to democratizing

and accelerating the adoption of LLMs in industries and

research areas where operational engineering knowledge is

limited but the potential for application is high.
Our key contributions are as follows:

1) We present a zero-configuration framework that ad-

vances a wide range of LLMs and automates the full

prompt optimization pipeline as an alternative manual

prompting design, from task definition to automatic

prompt evaluation and feedback.

2) We propose synthetic data generation that eliminates

data bottlenecks in prompt optimization.

3) We propose a wide LLM inference backends choice

using LangChain to democratize access to variety of

models and its optimizations.

4) Our framework-agnostic design supports several opti-

mization strategies for short-term optimizations: meta-

prompting approach HyPE, and for long-term optimiza-

tions: autoprompting algorithms ReflectivePrompt and

DistillPrompt.

5) We conduct comprehensive evaluation across five task

categories, showing consistent improvements over cur-

rent approaches with reduced computational overhead.

The experimental studies show that CoolPrompt achieves

competitive performance on different tasks such as math-

ematical reasoning, question answering, classification, sum-

marization, and natural language understanding. Its cost-

aware optimization further allows users to tailor performance-

efficiency trade-offs, validating both its practical utility and

generalizability.

II. RELATED WORK

A. Prompting Techniques

Recent developments in prompt engineering have shown

significant advances in prompt design techniques [13]. For

example, Few-shot [17] prompting provides instructive exam-

ples to guide the model. Chain-of-Thought prompting [18] has

proven effective by generating the model’s reasoning process

before arriving at the final answer. Building on this, more ad-

vanced reasoning prompt designs have emerged. Self-Discover

[19] selects pre-existing reasoning chains, adapts them to the

specific task, and applies them directly. Self-Consistency [19]

samples multiple reasoning paths and implements them to

produce the most consistent answer. Tree-of-Thoughts [20]

and Graph-of-Thoughts [44] generate various decomposed

reasoning variations, which are then evaluated and selected,

thus increasing the depth of the exploration. ReAct [21] goes

further by generating reasoning that translates into actions,

while reflecting on previous steps; it is commonly integrated

within Retrieval-Augmented Generation (RAG) [21] pipelines

and agent-based systems.

Recent research has also investigated self-critique meth-

ods to minimize risks of hallucinations such as Chain-of-

Verification [45] and Self-Refine [46], as well as agentic

prompting frameworks that empower LLMs to operate au-

tonomously with tool-use capabilities. In addition, multimodal

prompting techniques have extended prompt engineering be-

yond text to include image [47], [48], audio [49], video [50],

and segmentation prompting [51].

B. Automatic Prompting Algorithms

Currently, a variety of auto-prompting algorithms have been

developed, based on different optimization methods. Specif-

ically, EvoPrompt [52] and PromptBreeder [53] employ an

evolutionary approach, where a large language model (LLM)

serves as a selection, mutation, or recombination operator.

PromptAgent [54] and StablePrompt [55] utilize Reinforce-

ment Learning (RL), optimizing prompts using a reward

model. Solutions such as iPrompt [56] and OPRO [57] are

built on LLMs or foundation models (FM), leveraging meta-

prompts to modify the optimization pipeline. The primary

motivation for exploring autoprompting comes from research

on the Automatic Prompt Engineer [30], where it was demon-

strated that modern LLMs can handle prompt generation and

optimization tasks comparable to or even better than human

experts.

C. Prompt Optimization Libraries

Current prompt optimization solutions offer a variety of

functionalities and optimization modules. AdalFlow [58] pro-

vides an auto-differentiable framework that supports both zero-

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 159 --

shot and few-shot prompt optimization, along with rapid con-

struction of LLM, RAG, and Agent pipelines. PromptWizard

[59] enables automatic prompt optimization through prompt

refinement and synthetic data generation. PromptFoo [60] of-

fers prompt evaluation capabilities combined with a testing of

LLM pipelines. Prompt-Promptor [61] optimizes and assesses

candidate prompts using LLM agents. DSPy [62] introduces

a model for prompt expansion and optimization based on

structured approaches. PromptoMatrix [63] showcases an end-

to-end prompt optimization pipeline that employs multiple

strategies and evaluates performance on synthetic data.

In addition, the ecosystem includes numerous other

frameworks, such as Anthropic’s prompt optimization tool,

LangChain Prompt Canvas, and Google’s AI Studio, each fo-

cused on specific aspects of prompt optimization and providing

user-friendly interfaces.

III. COOLPROMPT

A. Architecture Overview

CoolPrompt is a comprehensive framework built on a

Python backend, featuring a complete pipeline for automated

prompt optimization. The system is designed for both direct

usage and seamless integration with other platforms and sys-

tems. The complete framework architecture and user workflow,

spanning from query submission to result generation, are

presented in Fig. 1.

The architecture comprises several core functional modules.

1) PromptTuner is a primary interface class for parameter

configuration and optimization pipeline execution.

2) Evaluator is a module for assessing prompt perfor-

mance in datasets, incorporating multiple metrics for

both classification and generation tasks.

3) PromptOptimizer is a versatile optimization module

that supports short-term adaptations through prompt en-

gineering techniques with meta-prompts and long-term

automatic prompt optimization algorithms.

4) PromptAssistant is an LLM-based component with

predefined meta-prompts to generate self-improvement

feedback for users.

5) Synthetic Data Generator is an auxiliary module for

synthetic data generation when no input dataset is pro-

vided.

6) Task Detector is an automated task classification com-

ponent for scenarios without explicit user-defined task

specifications.

B. Optimization Workflow

Figure 1 illustrates the sequential workflow steps of the

CoolPrompt framework, which will be described in detail.

During step 1, the user provides a start prompt for optimization

initialization. Additionally, user may explicitly specify the

following task objectives: task type (classification or genera-

tion), evaluation metric, PromptOptimizer configuration, LLM

selection supported via LangChain integration for target LLM,

denoted in Figure1 as LLM, and assistant LLM (denoted in

Figure 1 as LLM-2), problem description, labeled dataset with

target variables, and train-test split ratio.

Step 2 processes user configurations through automated

fallback mechanisms when parameters are unspecified. The

system employs: Task Detector for automatic task classifi-

cation when task type is undefined; predefined task-specific

metrics when evaluation criteria are unspecified; default con-

figured LLM interfaces when no model is selected; LLM-

generated problem descriptions when absent; Synthetic Data

Generator module for dataset creation when unavailable; HyPE

as the default PromptOptimizer; and predefined split ratios for

dataset partitioning.

Steps 3-4 perform dataset validation, triggering synthetic

dataset generation with corresponding labels via the Synthetic

Data Generator when required, followed by train-test sam-

pling. Step 5 evaluates the initial prompt on the training subset.

Step 6 executes prompt optimization through the selected

PromptOptimizer method. Step 7 assesses the final optimized

prompt on test set.

The comparative evaluation between the initial and opti-

mized prompts occurs during Steps 8-9. Step 10 employs

the PromptAssistant component to generate self-improvement

feedback by analyzing start and final prompt performance.

The workflow concludes at Step 11 with delivery of pipeline

results: comprehensive train-test evaluations with metrics and

actionable prompt refinement feedback.

C. Prompt Optimization Methods

1) HyPE: HyPE (Hypothetical Prompt Enhancer) is a rapid

meta-prompting approach for adaptive prompt enhancement

that asks a large language model to generate a hypothetical

instructive prompt which solves the same underlying task

as the user’s query. The design intentionally avoids multi-

round prompt search or ensembles of hand-crafted transfor-

mation rules: instead, HyPE exploits the model’s internal

knowledge of effective prompting patterns to produce an

immediately usable reformulation in one extra forward pass,

giving lightweight, task-adaptive prompt optimization with

minimal engineering.

The idea of HyPE is motivated by the HyDE method

[64], which synthesizes a hypothetical document to improve

the retrieval process. HyPE applies the same idea to prompt

formulation rather than retrieval. Building on this concept,

HyPE stands out from previous prompt optimization tech-

niques. Methods like chain-of-thought prompting require task-

specific exemplars, while automated strategies often depend on

multi-step LLM calls or rule-based transformations, incurring

substantial computational or engineering overhead. In contrast,

HyPE’s single-step generation leverages the model’s inherent,

pretrained understanding of instructional language.

HyPE relies on a single meta-prompt to guide its entire

prompt optimization process, so the meta-prompt’s quality

is critical to the quality of generated prompts. Our current

approach was to design a meta-prompt that directly reflects

the method’s purposes (see Fig. 2)

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 160 --

�

�

�

Fig. 1. CoolPrompt System Architecture and User Workflow

This intrinsic efficiency yields prompts that are both more

generalizable and precise than the original query, effectively

distilling the task’s core requirements into an optimal instruc-

tion for the model itself, without the need for external search

or exemplars.

2) ReflectivePrompt: ReflectivePrompt is an evolutionary-

based prompt optimization method, which is built on the idea

of Reflective Evolution [65]. Using the concepts of textual

gradient [66] and self-reflection [67], it provides remarkable

results in different areas of autoprompting tasks. All the data

required to run the method: a dataset, a description of the

target problem, and an initial user prompt. The remaining

individuals of the first population are created by producing

diverse paraphrases of the user prompt.

ReflectivePrompt implements two evolutionary operators:

crossover and elitist mutation. They both leverage short-

term and long-term reflections to improve their effectiveness.

Crossover creates a new prompt from two parent individuals

using generated short-term reflection. Initially, a set of parent

pairs is sampled according to these rules:

1) Each prompt is selected with probability proportional to

its fitness score.

2) One prompt can be selected in multiple parent pairs.

3) Within each pair, one prompt must have a strictly higher

score than the other.

The difference in fitness scores is required to determine the

superior and inferior prompts in each parent pair, since the

short-term reflection is focused on identifying qualities and

dissimilarities that yield higher-scoring prompts. Short-term

reflection consists of the model generating reflective analyses

and hints that are then used to achieve better crossover off-

spring. In summary, the set of short-term reflections constitutes

an analytics of the individuals in the current population.
The elitist mutation operator generates new individuals

using the best prompt in the current population and long-

term reflection. This operator enables local search in the area

of the present optimum. Long-term reflection is updated in

each epoch based on its prior version and all short-term

reflections produced in that generation. It contains a distilled

summary of the model reasoning about the current population

and accumulates knowledge across all epochs of evolution by

incorporating its previous state.
3) DistillPrompt: DistillPrompt is a gradient-free automatic

prompt optimization algorithm based on iterative prompt dis-

tillation. The method employs prompt compression, semantic

reformulation, and dynamic example integration to enhance

prompt effectiveness across diverse NLP tasks. This method

is based on the idea of the Tree-of-Thoughts prompting

technique. At each epoch, DistillPrompt uses the best prompt

from the previous iteration according to the target metric. For

the first epoch, the initial user prompt is employed.
The pipeline is as follows: for the first epoch, the initial

user prompt is employed. Then, several variations of the initial

prompt are generated. These diverse modifications are used

to analyze the search space from different perspectives. The

generated variations explore the search area in mostly blind

and inefficient way, and in order to cope with this, the second

step incorporates knowledge embedding. The objective is to

specialize the prompt for the task while preserving its original

formulation as much as possible. To achieve this, several

examples are randomly sampled from the training dataset and

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 161 --

You are an expert prompt engineer. Your only task

is to generate a hypothetical instructive prompt

that would help a large language model effectively

answer the following query. The prompt must solve

the same underlying task as the original query while

being more effective.

HARD CONSTRAINTS

1. LANGUAGE:

- Output MUST be in the EXACT SAME LAN-

GUAGE as the query.

2. CONTENT:

- Output ONLY the hypothetical instructive

prompt - do NOT answer the original query directly.

- The hypothetical prompt must solve the same

task as the oiginal query provided by user.

- If the original query contains any code snippets,

you must include it in final prompt.

3. TECHNICAL PRESERVATION:

- Code blocks must be preserved with original

syntax and formatting.

- Variables, placeholders ({{var}}), and technical

terms kept unchanged.

- Markdown and special formatting replicated

precisely.

YOUR OUTPUT FORMAT

[PROMPT START]<your hypothetical instructive

prompt here>[PROMPT END]

INPUT

User’s query: {QUERY}
Problem description:

{PROBLEM DESCRIPTION}
OUTPUT

Hypothetical Instructive Prompt:

Fig. 2. Final meta-prompt for HyPE

provided to the model to extract some key principles and ideas

that are necessary to solve these training examples. The created

concepts are then embedded in the prompt.

However, there is a risk of the model ”overfitting” to the

given examples and embedding the provided questions and

labels itself rather than generalizing for the whole task. To

mitigate this, the next step involves instruction compression.

The LLM reformulates each prompt into a small number of

sentences, preserving the core content of both the original

formulations and the embedded task-solving principles.

Since the examples from training data were sampled in-

dependently and randomly for each candidate, the resulting

insights may vary. Thus, the natural progression is to merge

the compressed candidates into a single distilled prompt,

accumulating the collective ideas. The final stage generates

the variations of the aggregated prompt, similar to the very

first step, and then the new best prompt is selected from these

newly created candidates.

D. Key Features

1) Interaction With LLMs: CoolPrompt supports compre-

hensive LLM integration, ranging from locally deployed open-

source models to proprietary API-based solutions. For stan-

dardized LLM interfacing, we implemented LangChain due to

its provider-agnostic architecture that abstracts model-specific

implementations, optimization techniques, and API variations.

This design constitutes a critical framework component that

democratizes LLM selection for end-users while eliminating

the need for custom interface adaptation, a notable limitation

present in alternative prompt optimization libraries.

2) Prompt Improvement Feedback: Beyond prompt opti-

mization capabilities, CoolPrompt enhances methodological

transparency by providing users with constructive feedback

containing actionable suggestions and composition insights.

This functionality is implemented through the PromptAssistant

module, which performs a comparative analysis between initial

and optimized prompt versions. PromptAssistant generates an

interpretation of prompt optimization results, thereby con-

tributing to the development of users’ technical proficiency

in prompt engineering and to exploration of ”efficient prompt

pattern”.

3) Synthetic Data Generator: Modern LLMs have demon-

strated remarkable efficacy in the resolution of instructional

tasks, allowing the generation of synthetic data complete

with target annotations. CoolPrompt takes advantage of this

capability to address critical bottlenecks in prompt evaluation.

The generation process comprises the following steps: First, a

problem description which was parsed from an initial prompt

is included into a standardized meta-prompt with instructions

to provide dataset samples in input-output formats. Second,

received samples are expanded by generating hypothetical

edge cases using another meta-prompt. Finally, PromptAssis-

tant validates a dataset by selecting the most relevant samples.

In order to control the sample size, we use structured output

formatting.

4) Task Detector: Task Detector is a specialized component

or module designed to work in conjunction with LLMs. Its

primary function is to analyze the input of a user prompt and

automatically identify the intent and the specific type of task

the user wants the LLM to perform.

Instead of manual setup by user, LLM, which could be as

target LLM, as PromptAssistant, identifies a task problem that

uses for specifying a target metric.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

A comparison was conducted among automatic prompt opti-

mization frameworks: CoolPrompt, Promptomatix, AdalFlow,

and Promptify, with a manual zero-shot prompt used as the

baseline and as a start prompt for optimization processes. The

experiment was performed on five benchmark datasets:

1) Question Answering: SQuAD 2

2) Mathematical Reasoning: GSM8K

3) Text Generation: CommonGen

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 162 --

4) Classification: AG News

5) Summarization: XSum

The metrics were selected according to the dataset tasks:

BERTScore for SQuAD, CommonGen and XSum; EM (Ex-

act Match) for GSM8K; F1 Macro for AG News.

For each task in the evaluation experiment, we provided

a training and validation data split of 30 samples from the

original dataset with a train split ratio of 0.2. We chose

the usage of original dataset because not every automatic

optimization framework is capable for the generating syntetic

data.

We evaluated each method in the comparison in 3 runs in

order to obtain more objective results due to probabilistic LLM

output generation, where Table I presents the average results

across all runs. Prompt optimization methods DistillPrompt

and ReflectivePrompt were run with a number of epochs of

5 and for the second method the prompt population size

of 10. LLM run with the following generation parameters:

temperature was 0.7 and maximum number of new tokens was

3500.

Temperature controls the randomness of the generated text,

where low temperatures produce deterministic text and high

temperatures foster greater creativity and diversity. We set

temperature to 0.7 to ensure a variety of LLM responses and

optimization runs.

Maximum number of new tokens constrains the limitation

a size of generated tokens. In order to avoid overly restricting

the model, we set this limit to 3500 tokens.

B. Results

Table I presents the average results across all runs. Cool-

Prompt demonstrated competitive metric scores across all

datasets, outperforming the manual zero-shot prompt and

surpassing other algorithms on average.

C. Competitive Analysis

Table II presents a comprehensive feature comparison be-

tween CoolPrompt and other frameworks, which includes the

main key features for automatic prompt optimization.

V. DISCUSSION

According results presented in Table I, CoolPrompt demon-

strated competitive performance efficiency on the majority

of benchmark tasks. The model’s responses on the GSM8K

and AG News datasets were evaluated based on exact match

accuracy against the ground truth labels. On these datasets, the

results obtained using CoolPrompt are comparable to those of

other frameworks. For generative tasks, the prompts generated

by CoolPrompt yielded superior results compared to other

libraries.

The competitive analysis in Table II indicates that the most

similar framework is Promptomatix, which is distinguished by

its more limited options for selecting custom models compared

to CoolPrompt. It is also worth mentioning the implemented

criterion for the automatic selection of evaluation metrics. The

current version of CoolPrompt supports the selection of vari-

ous metrics, depending on previously chosen or automatically

detected task type, with F1 and BertScore selected by default

as the most representative metrics for providing a balanced

assessment between model responses and target outputs.

VI. FUTURE WORK

This section outlines the current state and future develop-

ment prospects of the CoolPrompt, designed for automatic

prompt optimization in NLP tasks. CoolPrompt has several

limitations and directions for further research to deal with

them.
LLM Type. Instructive LLMs are considered the most

suitable for the library’s operation. The use of non-instructive

models is considered inefficient due to their low respon-

siveness to instructions. Reasoning models present a distinct

challenge due to increased computational costs, adversely

affecting optimization speed. Their integration requires addi-

tional experimental research aimed at maximizing optimization

efficiency and minimizing redundant generation.
Advanced Validation. CoolPrompt implements a stan-

dard set of evaluation metrics: for classification tasks (accu-

racy, recall, precision, F1); for text generation tasks (BLEU,

ROUGE, METEOR, BERTScore). However, to adequately

assess language model responses against specific criteria such

as relevance, completeness, and toxicity, the implementation

of specialized metrics that demonstrate high correlation with

human evaluation (e.g., similar to the G-Eval metric [68]) is

necessary.
Generalization to Other Modalities. The current library

implementation is limited to the textual modality. Nonethe-

less, prompt engineering methods are applied in multimodal

tasks, including Image Retrieval, Visual Question Answering

(Visual QA), and Image Captioning. A promising direction for

development is the research and creation of automatic prompt

engineering algorithms adapted for multimodal domains.
Speed vs Quality Balance. To ensure high response speed,

meta-prompting methods are employed; however, these are

inferior in optimization effectiveness compared to slower,

iterative algorithms. Finding the optimal compromise between

operational speed and the quality of generated prompts is

a non-trivial task requiring dedicated research to develop a

balanced solution.
Synthetic Data Quality. The reliability and relevance of

synthetic data generated during the optimization process are

critically dependent on two factors: the competence of the as-

sistant model and the precision of the task formulation. When

operating within highly specialized domains (e.g., medicine,

jurisprudence, biology), the model must utilize the correspond-

ing terminology. Failure to meet this condition can lead to

errors in data labeling, factual inaccuracies (hallucinations), or

the generation of trivial examples lacking useful information.

VII. CONCLUSION

In this work, we have shown CoolPrompt a zero-

configuration framework that automates the full prompt opti-

mization pipeline as an alternative manual prompting design,

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 163 --

TABLE I. AUTOMATIC PROMPT OPTIMIZATION LIBRARIES PERFORMANCE ACROSS
TASKS

Dataset Metric Manual 0-shot Prompt Promptify AdalFlow Promptomatix CoolPrompt

SQuAD 2 BertScore 0.875 0.905 0.920 0.918 0.934
GSM8K EM 0.527 0.615 0.753 0.728 0.732
CommonGen BertScore 0.871 0.885 0.904 0.902 0.913
AG News F1 0.705 0.841 0.722 0.858 0.858
XSum BertScore 0.823 0.233 0.841 0.857 0.872

TABLE II. FEATURE COMPARISON BETWEEN AUTOMATIC OPTIMIZATION
LIBRARIES

Framework Auto Data Auto Task Custom Model Usage Zero Config Feedback

Promptify × × × × ×
AdalFlow × × × × ×
Promptomatix � � × � �
CoolPrompt � � � � �

demonstrating competitive effectiveness across diverse tasks.

CoolPrompt represents a significant advancement in the field

of automatic prompt optimization. We proposed the end-to-

end prompt optimization pipeline with following key features

as a wide LLM inference backends, syntetic data generation,

task prediction, a bundle of optimization algorithms, and sys-

tematic prompt evaluation. Our evaluation results demonstrate

competitive effectiveness across various tasks.

The principles embedded within automation, efficiency, and

accessibility it as a key tool for the next generation of LLM-

based applications. CoolPrompt plays a particularly important

role in the context of the continuous evolution of language

models, fostering broader participation in AI development and

accelerating the adoption of these technologies across various

subject domains and user communities by removing barriers

in prompt design.

REFERENCES

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, and et al., Gpt-4
technical report, https://arXiv.org/abs/2303.08774.

[2] A. Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu, C. Zhao, C. Deng,
C. Zhang, C. Ruan et al., “Deepseek-v3 technical report,” CoRR, 2024.

[3] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, and
et al., Llama: open and efficient foundation language models,
https://arXiv.org/abs/2302.13971.

[4] M. N. Vivekananda, P. A. Shidlyali, and V. V. Malgi, Advancing artificial
intelligence: insights into the applications and challenges of large
language models. IEEE, 2025.

[5] S. Yang, O. Nachum, Y. Du, J. Wei, P. Abbeel, and D. Schuurmans,
Foundation models for decision making: problems, methods, and oppor-
tunities, https://arXiv.org/abs/2303.04129.

[6] Z. Zhao, W. Fan, J. Li, Y. Liu, X. Mei, Y. Wang, Z. Wen, F. Wang,
X. Zhao, J. Tang, and et al., Recommender systems in the era of large
language models (llms). IEEE, 2024, vol. 36, no. 11.

[7] N. Karanikolas, E. Manga, N. Samaridi, E. Tousidou, and M. Vassi-
lakopoulos, Large language models versus natural language understand-
ing and generation. PCI, 2023.

[8] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, and et al., “Language
models are few-shot learners,” Advances in neural information process-
ing systems, vol. 33, pp. 1877–1901, 2020.

[9] G. Bao, Y. Zhao, Z. Teng, L. Yang, and Y. Zhang, Fast-DetectGPT:
efficient zero-shot detection of machine-generated text via conditional
probability curvature. ICLR, 2023.

[10] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan, H. Ed-
wards, Y. Burda, N. Joseph, G. Brockman, and et al., Evaluating large
language models trained on code, https://arXiv.org/abs/2107.03374.

[11] K. Zhang, J. Li, G. Li, X. Shi, and Z. Jin, CodeAgent: enhancing code
generation with tool-integrated agent systems for real-world repo-level
coding challenges, L.-W. Ku, A. Martins, and V. Srikumar, Eds.
Bangkok, Thailand: Association for Computational Linguistics, Aug.
2024. [Online]. Available: https://aclanthology.org/2024.acl-long.737/

[12] A. Lewkowycz, A. Andreassen, D. Dohan, E. Dyer, H. Michalewski,
V. Ramasesh, A. Slone, C. Anil, I. Schlag, T. Gutman-Solo, and
et al., “Solving quantitative reasoning problems with language models,”
Advances in neural information processing systems, vol. 35, pp. 3843–
3857, 2022.

[13] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-
train, prompt, and predict: a systematic survey of prompting methods in
natural language processing,” ACM computing surveys, vol. 55, no. 9,
pp. 1–35, 2023.

[14] S. Kadavath, T. Conerly, A. Askell, T. Henighan, D. Drain, E. Perez,
N. Schiefer, Z. Hatfield-Dodds, N. DasSarma, E. Tran-Johnson et al.,
“Language models (mostly) know what they know,” CoRR, 2022.

[15] S. Vatsal and H. Dubey, A survey of prompt engineering
methods in large language models for different NLP tasks,
https://arXiv.org/abs/2407.12994.

[16] S. Schulhoff, M. Ilie, N. Balepur, K. Kahadze, A. Liu, C. Si, Y. Li,
A. Gupta, H. Han, S. Schulhoff et al., “The prompt report: a systematic
survey of prompting techniques,” CoRR, 2024.

[17] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a
few examples: a survey on few-shot learning,” ACM computing surveys
(csur), vol. 53, no. 3, pp. 1–34, 2020.

[18] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V.
Le, D. Zhou, and et al., “Chain-of-thought prompting elicits reasoning
in large language models,” Advances in neural information processing
systems, vol. 35, pp. 24 824–24 837, 2022.

[19] P. Zhou, J. Pujara, X. Ren, X. Chen, H.-T. Cheng, Q. V. Le, E. Chi,
D. Zhou, S. Mishra, and H. S. Zheng, “Self-discover: large language
models self-compose reasoning structures,” Advances in Neural Infor-
mation Processing Systems, vol. 37, pp. 126 032–126 058, 2024.

[20] S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and
K. Narasimhan, “Tree of thoughts: deliberate problem solving with large
language models,” Advances in neural information processing systems,
vol. 36, pp. 11 809–11 822, 2023.

[21] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao,
React: synergizing reasoning and acting in language models. ICLR,
2023.

[22] Z. Li, Y. Du, J. Hu, X. Wan, and A. Gao, Self-instructed derived
prompt generation meets in-context learning: unlocking new potential of
black-box LLMs, W. Che, J. Nabende, E. Shutova, and M. T. Pilehvar,

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 164 --

Eds. Vienna, Austria: Association for Computational Linguistics, Jul.
2025. [Online]. Available: https://aclanthology.org/2025.acl-long.92/

[23] S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi,
and L. Zettlemoyer, Rethinking the role of demonstrations: what makes
in-context learning work?, https://arXiv.org/abs/2202.12837.

[24] Y. Lu, M. Bartolo, A. Moore, S. Riedel, and P. Stenetorp, Fantastically
ordered prompts and where to find them: overcoming few-shot prompt
order sensitivity. ACL, 2022.

[25] S. M. Xie, A. Raghunathan, P. Liang, and T. Ma, An explanation of
in-context learning as implicit bayesian inference. ICLR, 2022.

[26] T. Shin, Y. Razeghi, R. L. Logan IV, E. Wallace, and S. Singh, Auto-
Prompt: eliciting knowledge from language models with automatically
generated prompts. EMNLP, 2020.

[27] J. Wang, Z. Hu, and L. Bing, Evolving prompts in-context: an open-
ended, self-replicating perspective. ICML, 2025.

[28] Y. Zhang, Y. Dong, S. Zhang, T. Min, H. Su, and J. Zhu, Exploring
the transferability of visual prompting for multimodal large language
models. IEEE, 2024.

[29] Y. Su, X. Wang, Y. Qin, C.-M. Chan, Y. Lin, H. Wang, K. Wen,
Z. Liu, P. Li, J. Li, L. Hou, M. Sun, and J. Zhou, On
transferability of prompt tuning for natural language processing.
Association for Computational Linguistics, 2022. [Online]. Available:
http://dx.doi.org/10.18653/v1/2022.naacl-main.290

[30] Y. Zhou, A. I. Muresanu, Z. Han, K. Paster, S. Pitis, H. Chan, and J. Ba,
Large language models are human-level prompt engineers. NIPS, 2022.

[31] W. Li, X. Wang, W. Li, and B. Jin, “A survey of automatic prompt
engineering: an optimization perspective,” arXiv e-prints, pp. arXiv–
2502, 2025.

[32] S. Yang, Y. Wu, Y. Gao, Z. Zhou, B. Zhu, X. Sun, J.-G. Lou,
Z. Ding, A. Hu, Y. Fang et al., AMPO: automatic multi-branched prompt
optimization. Association for Computational Linguistics, 2024.

[33] X. Wang, C. Li, Z. Wang, F. Bai, H. Luo, J. Zhang, N. Jojic, E. Xing, and
Z. Hu, PromptAgent: strategic planning with language models enables
expert-level prompt optimization. ICLR, 2023.

[34] M. Deng, J. Wang, C.-P. Hsieh, Y. Wang, H. Guo, T. Shu,
M. Song, E. Xing, and Z. Hu, RLPrompt: optimizing discrete text
prompts with reinforcement learning, Y. Goldberg, Z. Kozareva, and
Y. Zhang, Eds. Abu Dhabi, United Arab Emirates: Association
for Computational Linguistics, Dec. 2022. [Online]. Available:
https://aclanthology.org/2022.emnlp-main.222/

[35] T. Zhang, X. Wang, D. Zhou, D. Schuurmans, and J. E. Gonzalez,
TEMPERA: test-time prompt editing via reinforcement learning. ICLR,
2023.

[36] C. Singh, J. X. Morris, J. Aneja, A. M. Rush, and J. Gao, Explaining
patterns in data with language models via interpretable autoprompting,
https://arXiv.org/abs/2210.01848.

[37] Q. Guo, R. Wang, J. Guo, B. Li, K. Song, X. Tan, G. Liu, J. Bian, and
Y. Yang, EvoPrompt: connecting LLMs with evolutionary algorithms
yields powerful prompt optimizers, https://arXiv.org/abs/2309.08532.

[38] C. Yang, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou, and X. Chen,
Large language models as optimizers. ICLR, 2023.

[39] R. Pryzant, D. Iter, J. Li, Y. T. Lee, C. Zhu, and M. Zeng, Auto-
matic prompt optimization with ”gradient descent” and beam search.
EMNLP, 2023.

[40] Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen,
X. Yi, C. Wang, Y. Wang, and et al., “A survey on evaluation of
large language models,” ACM transactions on intelligent systems and
technology, vol. 15, no. 3, pp. 1–45, 2024.

[41] V. N. Zhuravlev, A. R. Khairullin, E. A. Dyagin, A. N. Sitkina, and
N. I. Kulin, “Reflectiveprompt: reflective evolution in autoprompting
algorithms,” in press, https://arxiv.org/abs/2508.18870.

[42] ——, “Automatic prompt optimization with prompt distillation,” unpub-
lished, https://arxiv.org/abs/2508.18992.

[43] O. Baclic, M. Tunis, K. Young, C. Doan, H. Swerdfeger, and J. Schon-
feld, “Challenges and opportunities for public health made possible
by advances in natural language processing,” Canada Communicable
Disease Report, vol. 46, no. 6, p. 161, 2020.

[44] M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, M. Podstawski,
L. Gianinazzi, J. Gajda, T. Lehmann, H. Niewiadomski, P. Nyczyk,
and et al., Graph of thoughts: solving elaborate problems with large
language models. AAAI, 2024, vol. 38, no. 16.

[45] S. Dhuliawala, M. Komeili, J. Xu, R. Raileanu, X. Li, A. Celikyilmaz,
and J. Weston, Chain-of-Verification reduces hallucination in large
language models, 2023.

[46] A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe,
U. Alon, N. Dziri, S. Prabhumoye, Y. Yang, and et al., “Self-refine:
iterative refinement with self-feedback,” Advances in Neural Information
Processing Systems, vol. 36, pp. 46 534–46 594, 2023.

[47] S. Hakimov and D. Schlangen, Images in language space: exploring the
suitability of large language models for vision & language tasks. ACL,
2023.

[48] J. Oppenlaender, “A taxonomy of prompt modifiers for text-to-image
generation,” Behaviour & Information Technology, vol. 43, no. 15, pp.
3763–3776, 2024.

[49] S. Wang, C.-H. Yang, J. Wu, and C. Zhang, Can whisper perform speech-
based in-context learning? IEEE, 2024.

[50] T. Brooks, B. Peebles, C. Holmes, W. DePue, Y. Guo, L. Jing,
D. Schnurr, J. Taylor, T. Luhman, E. Luhman, and et al., “Video
generation models as world simulators,” OpenAI Blog, vol. 1, no. 8,
p. 1, 2024.

[51] L. Tang, P.-T. Jiang, H. Xiao, and B. Li, “Towards training-free open-
world segmentation via image prompt foundation models,” International
Journal of Computer Vision, vol. 133, no. 1, pp. 1–15, 2025.

[52] Q. Guo, R. Wang, J. Guo, B. Li, K. Song, X. Tan, G. Liu, J. Bian,
and Y. Yang, “Connecting large language models with evolutionary
algorithms yields powerful prompt optimizers,” CoRR, 2023.

[53] C. Fernando, D. Banarse, H. Michalewski, S. Osindero, and
T. Rocktäschel, “Promptbreeder: self-referential self-improvement via
prompt evolution,” arXiv e-prints, pp. arXiv–2309, 2023.

[54] X. Wang, C. Li, Z. Wang, F. Bai, H. Luo, J. Zhang, N. Jojic, E. P.
Xing, and Z. Hu, “Promptagent: strategic planning with language models
enables expert-level prompt optimization,” CoRR, 2023.

[55] M. Kwon, G. Kim, J. Kim, H. Lee, and J. Kim, StablePrompt: automatic
prompt tuning using reinforcement learning for large language models.
Association for Computational Linguistics (ACL), 2024.

[56] C. Singh, J. X. Morris, J. Aneja, A. M. Rush, and J. Gao, “Explaining
patterns in data with language models via interpretable autoprompting,”
arXiv e-prints, pp. arXiv–2210, 2022.

[57] J. Hong, N. Lee, and J. Thorne, ORPO: monolithic preference
optimization without reference model, Y. Al-Onaizan, M. Bansal,
and Y.-N. Chen, Eds. Miami, Florida, USA: Association for
Computational Linguistics, Nov. 2024. [Online]. Available: https:
//aclanthology.org/2024.emnlp-main.626/

[58] L. Yin and Z. Wang, “Llm-autodiff: auto-differentiate any llm workflow,”
arXiv e-prints, pp. arXiv–2501, 2025.

[59] E. Agarwal, J. Singh, V. Dani, R. Magazine, T. Ganu, and
A. Nambi, PromptWizard: task-aware prompt optimization framework,
https://arxiv.org/abs/2405.18369.

[60] Promptfoo, Promptfoo: LLM evals & red teaming,
https://github.com/promptfoo/promptfoo.

[61] J. Shen, J. J. Dudley, J. Zheng, B. Byrne, and P. O. Kristensson,
“Promptor: a conversational and autonomous prompt generation agent
for intelligent text entry techniques,” CoRR, 2023.

[62] K. Opsahl-Ong, M. J. Ryan, J. Purtell, D. Broman, C. Potts, M. Zaharia,
and O. Khattab, Optimizing instructions and demonstrations for
multi-stage language model programs, Y. Al-Onaizan, M. Bansal,
and Y.-N. Chen, Eds. Miami, Florida, USA: Association for
Computational Linguistics, Nov. 2024. [Online]. Available: https:
//aclanthology.org/2024.emnlp-main.525/

[63] R. Murthy, M. Zhu, L. Yang, J. Qiu, J. Tan, S. Heinecke,
C. Xiong, S. Savarese, and H. Wang, Promptomatix: an auto-
matic prompt optimization framework for large language models,
https://arxiv.org/abs/2507.14241.

[64] L. Gao, X. Ma, J. Lin, and J. Callan, “Precise zero-shot dense retrieval
without relevance labels,” in Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
2023, pp. 1762–1777.

[65] H. Ye, J. Wang, Z. Cao, F. Berto, C. Hua, H. Kim, J. Park, and G. Song,
“Reevo: large language models as hyper-heuristics with reflective evo-
lution,” Advances in neural information processing systems, vol. 37, pp.
43 571–43 608, 2024.

[66] Y. Li, X. Hu, X. Qu, L. Li, and Y. Cheng, Test-time preference
optimization: on-the-fly alignment via iterative textual feedback.
ICML, 2025. [Online]. Available: https://openreview.net/forum?id=
ArifAHrEVD

[67] L. Zhao, Y. Wang, Q. Liu, M. Wang, W. Chen, Z. Sheng, and
S. Wang, Evaluating large language models through role-guide and

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 165 --

self-reflection: a comparative study. ICLR, 2025. [Online]. Available:
https://openreview.net/forum?id=E36NHwe7Zc

[68] Y. Liu, D. Iter, Y. Xu, S. Wang, R. Xu, and C. Zhu, G-

Eval: NLG evaluation using GPT-4 with better human alignment,
https://arxiv.org/abs/2303.16634.

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 166 --

