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Abstract—Recent advances in building large-scale point cloud
computer vision models have enabled a variety of high-capacity
architectures for many computer vision tasks. The task of
training point cloud models (for such tasks as segmentation,
object detection, and other) involves a large amount of accu-
rately labeled training data, which are not always available
for particular scenarios. To mitigate that issue, the training
process was adapted to pretrain these models using existing ones
with a process called knowledge distillation (KD). KD allows to
transfer knowledge (neural network weights) from one network
to another. A special place for KD was found in multimodal
point cloud computer vision models, where an image model (first
modality) is trained on a larger dataset,becomes a teacher to the
point cloud model (second modality) which lack labeled data.
Despite the effectiveness of many KD methods in transferring
knowledge between different modalities, they typically compute
distillation losses at a single spatial scale, underutilizing the
multiscale, multi-head structure of modern image models. In
order to fully utilize these multiscale features, we introduce a
multiscale KD approach to point cloud model pretraining that
incorporates an Atrous Spatial Pyramid Pooling (ASPP) block
to extract multiscale feature tensors and applies a contrastive
loss to align them with point cloud branch representations. The
proposed approach can be used with existing methods to calculate
multiscale tensors extracted from 2D image networks for further
distillation with 3D tensors from the 3D branch. Evaluations
are performed on the nuScenes dataset and show improved
performance over a baseline while maintaining a comparable
parameter count.

I. INTRODUCTION

Point clouds represent a rich geometric information ex-
pressed in a sparse 3D format. Sensors such as LiDAR
perceive environmental information with time-of-flight (TOF)
methods and represent their measurements as point clouds.
This format is crucial for 3D world perception tasks, including
3D object detection, segmentation, and tracking. However,
due to the complex nature of point clouds, the annotation
task, required for models trained in supervised deep learning,
can be tedious, especially if done manually. Moreover, large
environment perception models typically require extensive
datasets due to the high capacity of modern deep learning
architectures [1], [2]. Supervised and self-supervised training
methods can be useful in this context, as they can help pretrain
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models using knowledge distilled from pretrained models,
either within the same modality or across different modalities.

Knowledge distillation from 3D to 2D representation
was first introduced in Learning from 2D [3] which pi-
oneered the 3D-to-2D knowledge distillation process with
the CLppncp function, incorporating semantic information
from a trained 2D model. Self-supervised image-to-LiDAR
distillation for autonomous driving [4] refined this technique
by using pixel—point correspondences to generate superpixels
with SLidR, thus reducing projection errors. Self-Supervised
Image-to-Point Distillation via Semantically Tolerant Con-
trastive Loss [5] further improved the framework with a se-
mantically tolerant contrastive constraint and a class-balancing
loss function. More recently, Segment Any Point Cloud Se-
quences by Distilling Vision Foundation Models [6] employed
Vision Foundation Models (VFMs) for superpixel generation,
reducing the labeling burden. Finally, Olivine [7] proposed to
incorporate both label and class semantics through a modified
contrastive loss function (C'L,)

Despite all advances, the above methods lack multiscale fea-
ture distillation because they rely on single-head architectures.
In this work, we investigate pretraining 3D models with a
multiscale approach.

Our motivation is to improve knowledge distillation perfor-
mance with multiscale feature extraction, thereby accelerating
the training of large 3D models with minimal labeled data.
Furthermore, we aim to simplify the multiscale extraction
module to enhance compatibility with other networks.

Our contribution can be summarized as follows.

o We propose and evaluate multiscale feature extraction
in two ways - with dilated convolution and raw ResNet
layer; outputs;

o We demonstrate the effectiveness of dilated convolution
for achieving multiscale feature maps from ResNet50 for
multiscale feature extraction;

Based on previous achievements in knowledge distillation,
we move forward to explore the multiscale nature of CNN
networks in order to fully utilize 2D feature knowledge. In
order to fully explore CNN features at several scales, we use
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dilated convolution with four projection heads, each one of
them ending up with an upsampling layer. The advantage of
this approach is that the multiscale extraction module can be
seamlessly attached to any network.

Building upon prior work in knowledge distillation, we
extend the exploration of CNN features across multiple scales
in order to fully exploit 2D feature representations. To achieve
this, we employ dilated convolutions with four projection
heads, each followed by an upsampling layer. The advantage
of this approach is that the multiscale extraction module can
be seamlessly attached to any network.

The remainder of this paper is organized as follows. Section
II reviews knowledge distillation with contrastive loss. Section
IIT discusses existing techniques for knowledge distillation.
Section IV presents our proposed multiscale feature extraction
method. Section V details the implementation and experimen-
tal results.

II. RELATED WORK

LiDAR-based detection and segmentation networks have
advanced significantly in both size and performance. Recent
approaches include transformers, 3D convolution networks
with large kernels [8] [9], BEV-based methods [10], [11], and
various other techniques which require an enormous amount
of real-world data. This creates challenges when training such
models for specialized tasks, as collecting sufficient labeled
training data becomes infeasible. In general, the larger a model
becomes, the more training data it requires.

To address the issue, various strategies have been proposed
to reduce the dependence on high-quality labeled data. Among
them, self-supervised and weakly supervised methods have
gained popularity because they reduce or eliminate the need
for labeled training data in the LiDAR modality. In self-
supervised methods, feature maps from a teacher model are
used to guide the training of a student model without ground-
truth labels from a training dataset. In weakly supervised meth-
ods, the student exploits weak labels provided by a teacher
model, which can be either another model or the same model at
an earlier training stage. The process of transferring knowledge
from one model to another is called knowledge distillation
(KD). Broadly, KD occurs either at the feature level, where
feature maps are distilled without class information, or at
the semantic level, where class information is incorporated
to match point—pixel pairs not only by geometry but also by
semantic labels.

In computer vision, KD allows pretraining one model with
the knowledge of another model, presumably larger or trained
on a large-scale dataset. In other words, KD compresses the
knowledge of one or more networks into another network. KD
for training computer vision models was first applied in [12]
to distill knowledge from an assembly of neural networks to
a single one by matching soft class probabilities. Since then,
KD has been widely used not only in single modal tasks, but
also in cross-model architectures, transferring knowledge from
one modality to another to enrich the model with additional
information not presented in the first modality.
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The most recent advancements in transferring knowledge
in 2D dimension include Generalized Knowledge Distillation
[13], which trains the student on its self-generated output
sequences, feature-based KD methods: [14]-[16]; Similarity-
based Distillation: [17]-[19]; Logit-based Distillation: [20]—
[22].

In extension to 3D knowledge distillation, the most recent
approaches include [23], which relies on a teacher’s semantics
to train a student model, [24], which uses self-distillation in
addition to KD from a teacher model, [25], which transfers
knowledge from one 3D model to another with KD Loss.

Another branch of methods adopts intermediate represen-
tations, such as text [26], [27] and depth (from LiDAR to
monocular camera) [28].

The combination of supervised and self-supervised methods
shows the best performance, which was shown in recent
studies [5], [7]. Supervised methods offer, either weak or
strong labels, for supervised knowledge distillation guidance.
These labels are used to build label-to-point pairs instead
of pixel-to-point. Label-to-point pairs in supervised methods
respect labels of the corresponding points and pixels, which
allows such methods to achieve better performance.

Supervised knowledge distillation with contrastive learning
significantly improved KD performance [7]. Moreover, super-
vised methods work well in reverse order, as demonstrated
in [29] with the training monocular depth detector using 3D
network knowledge.

Another issue with cross-model KD is the mutual sensor cal-
ibration stability. For calculating pixel-to-point pairs, precise
calibration is required to achieve high-quality pairs. However,
that approach is impractical because of instability in real-world
multisensory systems. To mitigate the problem, the authors of
the paper [4] proposed a method for clustering visually coher-
ent regions of images into superpixels. The proposed approach
significantly reduced the dependency of KD on individual
sensor calibration and was widely adapted in future works [7],
[6], [30]. Instead of relying on precise calibration, point-to-
pixel and label-to-point pairs are built with superpixels, which
are more robust to calibration errors. To generate superpixels,
SLIC (Simple Linear Iterative Clustering) [31] was used.
Later, that task was delegated to Visual Foundation Models
(VEM), such as SAM and Dino. In the current work, we also
utilize VFEM for superpixel generation while leveraging the
advantages of multiscale feature extraction for KD.

Based on the presented analysis, we conclude that the next
step toward enhancing knowledge distillation performance is
to apply it across multiple scales. This can be achieved in
several ways:

o By leveraging multi-head outputs from the image branch;

o By leveraging multi-head outputs from the LiDAR
branch;

o By incorporating attention mechanisms in one or both
branches.

In this work, we show that utilizing the multi-head outputs
of the image network improves knowledge distillation per-
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formance while introducing only minimal weight overhead
compared to the original model.

III. BACKGROUND

The core of most knowledge distillation approaches typi-
cally involves either Mutual Information (MI) or Contrastive
Loss (CL). Among these, contrastive loss has become the most
widely adopted in recent studies. The basic formulation, first
introduced in [32], brings positive matches from two views
closer together while pushing negative pairs farther apart:

o (42)

Lrpnep == ) logz exp (55
(i.5)eP (- k)EP kA PP 77
Where:
e P is the set of positive feature matches between two
views.

o f; is a query feature (e.g., from view 1).

o f; is the positive key (e.g., from view 2).

o f}. are negative keys (other points in view 2, except j).

e T is a temperature scaling factor.

The later approach, firstly demonstrated in Olivine [7], takes
the label information into consideration and uses a modified
version alongside the original one:

exp ((G3°,G3°)/7)

log
sup ; M,
M, Z (z)l EZA() St exp ((G3°,G2P) /1)
Where:
e M, is the number of pairs of point-pixel sampled in the
batch.

o G3P and G?P are feature vectors of the 3D point and the
2D pixel, respectively.

o A(7) denotes the set of 2D pixel indices that have the
**same semantic label** as the i-th 3D point.

o |A(7)] is the cardinality (number of elements) of set A(%).

o 7 is the temperature scalar for contrastive scaling.

Olivine [7] has successfully used a combination of CL
functions — CLppncp and C'Lgy p. However, that approach
uses results of the last layer of the ResNet50 image backbone
with a simple projection head, which leads to significant
information loss.

IV. POINT CLOUD MODELS FROM DISTILLED KNOWLEDGE

In this section, we examine the process of knowledge
distillation from an image network to a point cloud model.
The procedure is divided into two main parts: pretraining and
fine-tuning. Firstly, we explore the knowledge distillation flow
from the 2D modality to the 3D (Section A). Then, in Section
B we introduce a multiscale feature extraction method based
on ASPP dilation layers, which allows extracting features
on different scales from the 2D network. Finally, in Section
C, we describe the underlying point cloud model baseline
architecture.
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A. Image baseline architecture

We utilize ResNet50 network pretrained using MoCov2 [33]
on the ImageNet dataset [34]. The architecture is presented in
Fig. 1. We don’t use any projection heads after the last layer.
Instead, we directly employ the outputs of layer4 in the ASPP
block.
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Fig. 1. Underlying resnet50 architecture with disconnected FC part

B. Point cloud baseline architecture

We utilize unmodified U-Net 34 (SR-UNet34) with a pro-
jection layer at the end, which projects point cloud features in
a common feature space with image features.

h’feat( )
3D

where 2%, is a projection head with 64 output channels.
Fig. 2 shows the point cloud baseline architecture SR-
UNet34.

Zfeat

Residual connections

Point Conv 7x7x7 Conv 3x3x3 Conv 3x3x3 Conv 7x7x7 (Conv 3x3x3 Projection
Cloud 128 256 512 Head

Fig. 2. Point cloud baseline SR-UNet34 architecture followed by the
projection layer

C. Knowledge distillation flow

Firstly, in order to make the proposed approach flexible, the
knowledge distillation flow is conducted in a way that allows
only the final output tensors from the point-cloud model to be
used, depicted as FM class and FM feat. in Fig. 3. Class- and
feature-level projection heads are used in the pretrain mode
only to propagate weight updates back to the model.

We adopt a one-directional knowledge distillation strategy,
but extend it with distinct projection heads for each feature-
map scale, implemented through four parallel projection heads.
Our key hypothesis is that multiscale features, derived from
a single feature map of an image network, can enhance KD
performance in the 2D = 3D pipeline.

D. Multiscale feature extraction

To improve the performance of knowledge distillation, we
propose a multiscale feature extraction method. This approach
employs four dilated convolution layers organized as an ASPP
block, enabling feature extraction across multiple scales.

Here and later, we use f?7M and 2PM to identify individ-
ual layers and feature maps accordingly. For image tensors, we
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Fig. 3. Knowledge distillation process for point cloud model training.
Operator + stands for feature map concatenation. CLsyp and CLP
PNCE stand for supervised and unsupervised knowledge distillation
contrastive learning functions

use Ioxmxw, and Poxgxwxp for point clouds. hP1M (x)
identifies a projection function for an input z.

ResNet50 baseline image feature extraction network is
followed by 4 dilation heads with dilation rates 1, 6, 12, and
18. The whole pipeline can be described as follows.

After ResNet50 layer4, we obtain a single feature map:

Z2D _ sz({E)

Where:
o f2P is ResNet50 encoder (layer4 output).
o 22D is a feature map received from the encoder.
In the feature extraction stage, we apply 4 dilated convolu-

tion on the feature map received from the previous step:

zit = ht (x)
zan = hgg (@)
zag = hgs (x)
it = hgy (z)
where
o 22D are feature maps obtained after the dilation layer i.

o h2P are dilated layers.

All dilated convolution is performed in a pyramidal feature
network pipeline, as depicted in Fig. 4.

In order to receive global features, we follow the original
pipeline from [35]:

2D =10

where
. 235 is a pooled feature map
. hgf is a global average pooling layer implemented via
AdaptiveAvgPool(1).
After performing feature extraction on all dilated convolu-
tion layers, a single feature tensor is built:

__[.2D _2D _2D _2D _2D AXCxW xH
Zconc = [zdl »2d2 ) 2d3 » Rda 7zgp ] €R

The concatenated feature tensor has dimensions 4 times
scaled down from their original sizes.

In order to receive both class-level and feature-level feature
maps, we follow the original pipeline with two identical heads
trained with CLppycop and C'Lgyp, respectively:

2D _ 12D
Zelass — hclass (Zconc)
2D 2D
Zfeat - h’feat(zconc)
where
2D .
o hij.ss - class-level projection head.

. h}eDat - feature-level projection head.

The projection heads project feature maps in a common
feature space with the U-Net 34 output tensor.

In order to use weak labels obtained from vFM, an up-
sampling layer is used to restore the concatenated tensor
to the original size of an image (416x224) with a bilinear
interpolation.

All steps are implemented in the ASPP block, which is
depicted in Fig. 4. ASPP block is completely detached from
the ResNet50 network, making it easily transferable to other
architectures.

154

Conv 3x3 Conv 3x3 Conv 3x3 Conv 3x3
rate: 1 rate: 6 rate: 12 rate: 18
I I O O O I L] L]
1] ] ] L]
[1]
[
Concat \[ J
Unified
tensor Proj. head Upsample
L5 feat-level —> P P
Nx64 416x224
cPt;o;:c,T:\?eL Upsample
Nx64. 416x224

Fig. 4. ASPP block adapted to knowledge distillation

E. Ablation study

In the ablation study, we performed pretraining without the
ASPP block, directly bypassing connections from ResNet50
layers to projection heads before computing the contrastive
loss.

To further explore the potential of multiscale feature extrac-
tion for knowledge distillation, we also implemented a variant
without dilated layers for comparison. In this setting, we use
feature maps from layers 1, 2, 3, and 4 of ResNet-50, each
followed by class-level and feature-level projection heads. We
illustrate the complete in Fig. 5.
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Fig. 5. Direct usage of ResNet internal layers for knowledge distillation

Both class level and feature level in the naive approach
are obtained directly from internal ResNet50 layers with the
subsequent projection and upsampling layers being applied.

After extraction features from layers 1, 2, 3 and 4, both
class-level and feature-level projection heads are applied:

Zfeat = hiclass (@)
zglgss = h?‘?at(x)
where
o B3P, - class-level projection head.
. h3£at - feature-level projection head.

. szat - feature-level projection head output.
o 22D . - class-level projection head output.

e x - input image tensor.

V. EXPERIMENTS

We evaluated our method on the nuScenes dataset [2], a
large-scale multimodal dataset widely used in autonomous
driving research. Our reported metrics are mloU, frequency-
weighted IoU (fmloU) as well for the pretrained model and
the fine-tuned one with 1%, 5%, 10%, 25%, and 100 % of the
nuScenes dataset.

For the teacher model, we adopt a pretrained ResNet50
from [7]. However, instead of original projection heads for
semantic-level and class-level features, we utilize the ASPP
module with 4 dilated heads followed by upsampling layers
with the scale of 4.

For a student model, we use the same Sparse Residual 3D
U-Net 34 (SR-UNet34) [4] followed by a projection head with
channel size 64 to match the output dimensions of the image
and the LiDAR branches in the common feature space.

The training process consists of two stages:

o Pretraining task with 50 epochs in total;

o Finetuning training with another 100 epochs using Li-

DAR data only.

Experiments were conducted using a single Nvidia A5000
gpu with 24Gb VRAM and batch sizes 11 for pretraining and
71 for funetuning accordingly.

For the pretraining task, we follow the original pipeline and
perform pretraining task for 50 epochs. Having said that, we
freeze the image model completely leaving the ASPP block
trainable only.
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In the fine-tuning stage, we train the 3D network using 1%,
5%, 10%, 25%, and 100% of the nuScenes data. In addition
to the different stages of the fine-tuning scenario, we also
utilize Linear Probing (LP). In the LP scenario, we train a
segmentation head solely without modifying backbone weights
leaving them in the frozen state. At the same time, during the
fine-tuning stage, all of the weights are updated.

For weak label generation, we also utilize SEEM (Segment
Everything All at Once) VFM [36]. Examples of generated
weak labels are presented in Fig. 6 (a shows the original
image and b the generated one). In other words, weak labels
are semantic masks that contain class information for every
pixel in the images and represent ground-truth information
for the 3D branch. Each variation of color in the pictures
represents superpixels, generated by VFM. Later, this semantic
information is used to calculate the contrastive loss with
respect to the semantic information - CLgy,,.

(b)

Fig. 6. Examples of weak labels used in C'Ly,), loss. Colors
were strengthened for better visualization quality. a) represents
the original picture and b) stands for clusters generated by
VFM

Fig. 7 shows TSNE embedded class-level features for the
original CLppnycp method taken from the work [3] (a),
modified method with C'L,,,;, from [7] (b), and the proposed
method with multiscale feature extraction (c). Fig 7. ¢) demon-
strates the greatest distance of semantic clusters from each
other in the low-dimensional space.

(a) (b) (©

Fig. 7. TSNE visualization for embedded class-level features
obtained from h3L) head in the output layer, image a) shows
TSNE for CLppncE [7], image b) shows TSNE for C' Ly,
[7], and image c) demonstrates TSNE for the proposed method
(multiscale C'L). Each color represents an individual semantic

label

The fine-tuning results are presented in Table I. The last
two rows represent the fine-tuning metrics for the multi-
scale feature extraction and naive approaches, respectively.
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LP column stands for Linear Probing, where we train a
simple classifier with the frozen backbone. Other columns
represent percentages of nuScenes data used for fine-tuning.
The proposed method proves the advantages of multi-scale
feature extraction from an image network for KD purposes.
The results presented in the table outperform the baseline ar-
chitecture. At the same time, the naive approach demonstrates
the ineffectiveness of feature generation from different stages
of the ResNet50 network, which can be explained by the poor
feature information in the earliest ResNet layers.

The class-level results on 1% of the training data for
ASPP and naive approaches are reported in Table II. The
table demonstrates that the proposed approach consistently
outperforms OLIVINE for all nuScenes classes. The multi-
scale feature extraction block was used for both the class-
level and feature-level branches, while in a second scenario
(naive approach) we used identical MLP projection heads for
both branches. The low quality results for the last row can be
explained by the lack of useful semantic information in the
early layers of the ResNet50 network. The multi-scale feature
extraction row, on the contrary, demonstrates that semantic
features obtained from the feature map from the last layer of
the ResNet50 network, passed through dilation layers carry
more useful semantic information. The room for improvement
can be found in modifying classification heads to enhance
results on small or infrequently observed such objects as

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

"bycicle’, ’trailer’, and ’construction vehicle’.

VI. CONCLUSION

We introduced a novel method for knowledge distillation
that employs multiscale distillation heads connected to a
ResNet50 network. The key contribution is that the proposed
multiscale multi-scale feature extraction block can be con-
nected to a wide range of architectures and seamlessly adapted
to other designs. To validate this method, we compared both
the naive and dilated approaches, showing a clear advantage
of dilation heads over plain ResNet-50 output layers.

In addition to the multi-scale feature extraction method,
we evaluated a naive variant consisting solely of ResNet-50
layers. The comparison demonstrated the superior performance
of the multi-scale feature extraction architecture for multiscale
knowledge distillation both on class-level, as well as feature
level.

In future work, it may be worthwhile to explore KD
with different layers of a student network to achieve greater
performance. Moreover, it would be useful to explore feature
separation technique for separating different spatial scales
from each other as well as to investigate the influence of
knowledge distillation on ViT-based architectures.
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TABLE I. COMPARISON OF VARIOUS PRETRAINING TECHNIQUES FOR SEMANTIC SEGMENTATION USING FINE-TUNING (FT) AND
LINEAR PROBING (LP). METRICS ARE MIOU (%)

Initialization LP 1% 5% 10% 25% 100%
nuScenes-lidarseg

Random Init - 8.10 30.30 47.84 56.15  74.66
PointContrast [32] 21.90 32.50 - - - -

DepthContrast [37] 22.10 31.70 - - - -

PPKT [3] 3590 37.80 53.74 6025 67.14 7452
SLidR [38] 38.80 3830 5249 59.84 6691 74.79
ST-SLidR [5] 40.48 40.75 54.69 60.75 67.70 75.14
HVDistill [30] 39.50 4270 56.60 6290 69.30  76.60
Seal [6] 4495 4584 55.64 6297 6841  75.60
OLIVINE [7] 4730 46.12 57.51 63.04 69.39 76.13
Ours (Multi-Scale Feature Extraction) 49.7 47.8 58.2 64.1 70.5 76.7
Ours (Basic Approach) 46.16 46.01 5632 61.02 6743 7592

TABLE II. PER-CLASS RESULTS ON THE NUSCENES-LIDARSEG DATASET USING ONLY 1% OF THE LABELED DATA FOR FINE-TUNING
USING ASPP BLOCK. IOU SCORES ARE REPORTED FOR EACH CATEGORY. THE HIGHEST SCORES ARE MARKED AS BOLD

. ()
< =] = ; - o =

5 L “>’. = g § = E = § g g 'é =

2 S . 2 s 3 & 5 ) . 5 z 3 g b 2
Method E f £ 5 § &8 & T % & £ 2 % 5 & ? %
Random 0.0 0.0 8.1 65.0 0.1 6.6 21.0 9.0 9.3 258 89.5 148 417 487 724 733 303
PointCont. [32] 00 10 56 674 00 33 31.6 5.6 12.1 30.8 91.7 219 484 508 750 746 325
DepthCont. [37] 00 06 65 64.7 0.2 5.1 290 95 121 299 903 178 444 495 735 740 317
PPKT [3] 0.0 22 207 754 1.2 13.2 456 8.5 17.5 384 925 192 523 568 80.1 809 378
SLidR [4] 0.0 1.8 154 73.1 1.9 199 472 17.1 145 345 920 271 536 610 79.8 823 383
ST-SLidR [5] 0.0 27 160 745 32 254 509 200 177 402 920 307 542 61.1 80.5 829 408
OLIVINE [7] 00 6.7 556 8.7 103 268 578 23.1 188 473 939 324 558 624 820 823 46.1
Ours (Basic Approach) 0.0 54 474 752 93 232 551 21.6 173 449 922 31.1 512 604 804 80.7 435
Ours (Multi-Scale
Feature Extraction) 00 7.0 561 844 112 269 589 242 198 485 942 338 572 642 837 83.6 472
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