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Abstract—Recent advances in building large-scale point cloud
computer vision models have enabled a variety of high-capacity
architectures for many computer vision tasks. The task of
training point cloud models (for such tasks as segmentation,
object detection, and other) involves a large amount of accu-
rately labeled training data, which are not always available
for particular scenarios. To mitigate that issue, the training
process was adapted to pretrain these models using existing ones
with a process called knowledge distillation (KD). KD allows to
transfer knowledge (neural network weights) from one network
to another. A special place for KD was found in multimodal
point cloud computer vision models, where an image model (first
modality) is trained on a larger dataset,becomes a teacher to the
point cloud model (second modality) which lack labeled data.
Despite the effectiveness of many KD methods in transferring
knowledge between different modalities, they typically compute
distillation losses at a single spatial scale, underutilizing the
multiscale, multi-head structure of modern image models. In
order to fully utilize these multiscale features, we introduce a
multiscale KD approach to point cloud model pretraining that
incorporates an Atrous Spatial Pyramid Pooling (ASPP) block
to extract multiscale feature tensors and applies a contrastive
loss to align them with point cloud branch representations. The
proposed approach can be used with existing methods to calculate
multiscale tensors extracted from 2D image networks for further
distillation with 3D tensors from the 3D branch. Evaluations
are performed on the nuScenes dataset and show improved
performance over a baseline while maintaining a comparable
parameter count.

I. INTRODUCTION

Point clouds represent a rich geometric information ex-

pressed in a sparse 3D format. Sensors such as LiDAR

perceive environmental information with time-of-flight (TOF)

methods and represent their measurements as point clouds.

This format is crucial for 3D world perception tasks, including

3D object detection, segmentation, and tracking. However,

due to the complex nature of point clouds, the annotation

task, required for models trained in supervised deep learning,

can be tedious, especially if done manually. Moreover, large

environment perception models typically require extensive

datasets due to the high capacity of modern deep learning

architectures [1], [2]. Supervised and self-supervised training

methods can be useful in this context, as they can help pretrain

models using knowledge distilled from pretrained models,

either within the same modality or across different modalities.
Knowledge distillation from 3D to 2D representation

was first introduced in Learning from 2D [3] which pi-

oneered the 3D-to-2D knowledge distillation process with

the CLPPNCE function, incorporating semantic information

from a trained 2D model. Self-supervised image-to-LiDAR

distillation for autonomous driving [4] refined this technique

by using pixel–point correspondences to generate superpixels

with SLidR, thus reducing projection errors. Self-Supervised

Image-to-Point Distillation via Semantically Tolerant Con-

trastive Loss [5] further improved the framework with a se-

mantically tolerant contrastive constraint and a class-balancing

loss function. More recently, Segment Any Point Cloud Se-

quences by Distilling Vision Foundation Models [6] employed

Vision Foundation Models (VFMs) for superpixel generation,

reducing the labeling burden. Finally, Olivine [7] proposed to

incorporate both label and class semantics through a modified

contrastive loss function (CLsup)
Despite all advances, the above methods lack multiscale fea-

ture distillation because they rely on single-head architectures.

In this work, we investigate pretraining 3D models with a

multiscale approach.
Our motivation is to improve knowledge distillation perfor-

mance with multiscale feature extraction, thereby accelerating

the training of large 3D models with minimal labeled data.

Furthermore, we aim to simplify the multiscale extraction

module to enhance compatibility with other networks.
Our contribution can be summarized as follows.

• We propose and evaluate multiscale feature extraction

in two ways - with dilated convolution and raw ResNet

layeri outputs;

• We demonstrate the effectiveness of dilated convolution

for achieving multiscale feature maps from ResNet50 for

multiscale feature extraction;

Based on previous achievements in knowledge distillation,

we move forward to explore the multiscale nature of CNN

networks in order to fully utilize 2D feature knowledge. In

order to fully explore CNN features at several scales, we use
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dilated convolution with four projection heads, each one of

them ending up with an upsampling layer. The advantage of

this approach is that the multiscale extraction module can be

seamlessly attached to any network.

Building upon prior work in knowledge distillation, we

extend the exploration of CNN features across multiple scales

in order to fully exploit 2D feature representations. To achieve

this, we employ dilated convolutions with four projection

heads, each followed by an upsampling layer. The advantage

of this approach is that the multiscale extraction module can

be seamlessly attached to any network.

The remainder of this paper is organized as follows. Section

II reviews knowledge distillation with contrastive loss. Section

III discusses existing techniques for knowledge distillation.

Section IV presents our proposed multiscale feature extraction

method. Section V details the implementation and experimen-

tal results.

II. RELATED WORK

LiDAR-based detection and segmentation networks have

advanced significantly in both size and performance. Recent

approaches include transformers, 3D convolution networks

with large kernels [8] [9], BEV-based methods [10], [11], and

various other techniques which require an enormous amount

of real-world data. This creates challenges when training such

models for specialized tasks, as collecting sufficient labeled

training data becomes infeasible. In general, the larger a model

becomes, the more training data it requires.

To address the issue, various strategies have been proposed

to reduce the dependence on high-quality labeled data. Among

them, self-supervised and weakly supervised methods have

gained popularity because they reduce or eliminate the need

for labeled training data in the LiDAR modality. In self-

supervised methods, feature maps from a teacher model are

used to guide the training of a student model without ground-

truth labels from a training dataset. In weakly supervised meth-

ods, the student exploits weak labels provided by a teacher

model, which can be either another model or the same model at

an earlier training stage. The process of transferring knowledge

from one model to another is called knowledge distillation

(KD). Broadly, KD occurs either at the feature level, where

feature maps are distilled without class information, or at

the semantic level, where class information is incorporated

to match point–pixel pairs not only by geometry but also by

semantic labels.

In computer vision, KD allows pretraining one model with

the knowledge of another model, presumably larger or trained

on a large-scale dataset. In other words, KD compresses the

knowledge of one or more networks into another network. KD

for training computer vision models was first applied in [12]

to distill knowledge from an assembly of neural networks to

a single one by matching soft class probabilities. Since then,

KD has been widely used not only in single modal tasks, but

also in cross-model architectures, transferring knowledge from

one modality to another to enrich the model with additional

information not presented in the first modality.

The most recent advancements in transferring knowledge

in 2D dimension include Generalized Knowledge Distillation

[13], which trains the student on its self-generated output

sequences, feature-based KD methods: [14]–[16]; Similarity-

based Distillation: [17]–[19]; Logit-based Distillation: [20]–

[22].

In extension to 3D knowledge distillation, the most recent

approaches include [23], which relies on a teacher’s semantics

to train a student model, [24], which uses self-distillation in

addition to KD from a teacher model, [25], which transfers

knowledge from one 3D model to another with KD Loss.

Another branch of methods adopts intermediate represen-

tations, such as text [26], [27] and depth (from LiDAR to

monocular camera) [28].

The combination of supervised and self-supervised methods

shows the best performance, which was shown in recent

studies [5], [7]. Supervised methods offer, either weak or

strong labels, for supervised knowledge distillation guidance.

These labels are used to build label-to-point pairs instead

of pixel-to-point. Label-to-point pairs in supervised methods

respect labels of the corresponding points and pixels, which

allows such methods to achieve better performance.

Supervised knowledge distillation with contrastive learning

significantly improved KD performance [7]. Moreover, super-

vised methods work well in reverse order, as demonstrated

in [29] with the training monocular depth detector using 3D

network knowledge.

Another issue with cross-model KD is the mutual sensor cal-

ibration stability. For calculating pixel-to-point pairs, precise

calibration is required to achieve high-quality pairs. However,

that approach is impractical because of instability in real-world

multisensory systems. To mitigate the problem, the authors of

the paper [4] proposed a method for clustering visually coher-

ent regions of images into superpixels. The proposed approach

significantly reduced the dependency of KD on individual

sensor calibration and was widely adapted in future works [7],

[6], [30]. Instead of relying on precise calibration, point-to-

pixel and label-to-point pairs are built with superpixels, which

are more robust to calibration errors. To generate superpixels,

SLIC (Simple Linear Iterative Clustering) [31] was used.

Later, that task was delegated to Visual Foundation Models

(VFM), such as SAM and Dino. In the current work, we also

utilize VFM for superpixel generation while leveraging the

advantages of multiscale feature extraction for KD.

Based on the presented analysis, we conclude that the next

step toward enhancing knowledge distillation performance is

to apply it across multiple scales. This can be achieved in

several ways:

• By leveraging multi-head outputs from the image branch;

• By leveraging multi-head outputs from the LiDAR

branch;

• By incorporating attention mechanisms in one or both

branches.

In this work, we show that utilizing the multi-head outputs

of the image network improves knowledge distillation per-
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formance while introducing only minimal weight overhead

compared to the original model.

III. BACKGROUND

The core of most knowledge distillation approaches typi-

cally involves either Mutual Information (MI) or Contrastive

Loss (CL). Among these, contrastive loss has become the most

widely adopted in recent studies. The basic formulation, first

introduced in [32], brings positive matches from two views

closer together while pushing negative pairs farther apart:

LPPNCE = −
∑

(i,j)∈P
log

exp
(

fi·fj
τ

)
∑

(·,k)∈P,k �=j exp
(
fi·fk
τ

)
Where:

• P is the set of positive feature matches between two

views.

• fi is a query feature (e.g., from view 1).

• fj is the positive key (e.g., from view 2).

• fk are negative keys (other points in view 2, except j).

• τ is a temperature scaling factor.

The later approach, firstly demonstrated in Olivine [7], takes

the label information into consideration and uses a modified

version alongside the original one:

Lsup = − 1

Ms

Ms∑
i=1

log

⎡
⎣ 1

|A(i)|
∑

a∈A(i)

exp
(
〈G3D

i , G2D
a 〉/τ

)
∑Ms

j=1 exp
(
〈G3D

i , G2D
j 〉/τ

)
⎤
⎦

Where:

• Ms is the number of pairs of point-pixel sampled in the

batch.

• G3D
i and G2D

a are feature vectors of the 3D point and the

2D pixel, respectively.

• A(i) denotes the set of 2D pixel indices that have the

**same semantic label** as the i-th 3D point.

• |A(i)| is the cardinality (number of elements) of set A(i).
• τ is the temperature scalar for contrastive scaling.

Olivine [7] has successfully used a combination of CL

functions – CLPPNCE and CLSUP . However, that approach

uses results of the last layer of the ResNet50 image backbone

with a simple projection head, which leads to significant

information loss.

IV. POINT CLOUD MODELS FROM DISTILLED KNOWLEDGE

In this section, we examine the process of knowledge

distillation from an image network to a point cloud model.

The procedure is divided into two main parts: pretraining and

fine-tuning. Firstly, we explore the knowledge distillation flow

from the 2D modality to the 3D (Section A). Then, in Section

B we introduce a multiscale feature extraction method based

on ASPP dilation layers, which allows extracting features

on different scales from the 2D network. Finally, in Section

C, we describe the underlying point cloud model baseline

architecture.

A. Image baseline architecture

We utilize ResNet50 network pretrained using MoCov2 [33]

on the ImageNet dataset [34]. The architecture is presented in

Fig. 1. We don’t use any projection heads after the last layer.

Instead, we directly employ the outputs of layer4 in the ASPP

block.

Fig. 1. Underlying resnet50 architecture with disconnected FC part

B. Point cloud baseline architecture

We utilize unmodified U-Net 34 (SR-UNet34) with a pro-

jection layer at the end, which projects point cloud features in

a common feature space with image features.

z3Dfeat = h3D
feat(x)

where z3Dfeat is a projection head with 64 output channels.

Fig. 2 shows the point cloud baseline architecture SR-

UNet34.

Fig. 2. Point cloud baseline SR-UNet34 architecture followed by the 
projection layer

C. Knowledge distillation flow

Firstly, in order to make the proposed approach flexible, the

knowledge distillation flow is conducted in a way that allows

only the final output tensors from the point-cloud model to be

used, depicted as FM class and FM feat. in Fig. 3. Class- and

feature-level projection heads are used in the pretrain mode

only to propagate weight updates back to the model.

We adopt a one-directional knowledge distillation strategy,

but extend it with distinct projection heads for each feature-

map scale, implemented through four parallel projection heads.

Our key hypothesis is that multiscale features, derived from

a single feature map of an image network, can enhance KD

performance in the 2D ⇒ 3D pipeline.

D. Multiscale feature extraction

To improve the performance of knowledge distillation, we

propose a multiscale feature extraction method. This approach

employs four dilated convolution layers organized as an ASPP

block, enabling feature extraction across multiple scales.

Here and later, we use fDIM and zDIM to identify individ-

ual layers and feature maps accordingly. For image tensors, we

ISSN 2305-7254________________________________________PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 153 ----------------------------------------------------------------------------



Fig. 3. Knowledge distillation process for point cloud model training. 
Operator + stands for feature map concatenation. CLsup and CLP 
PNCE stand for supervised and unsupervised knowledge distillation 
contrastive learning functions

use IC×H×W , and PC×H×W×D for point clouds. hDIM (x)
identifies a projection function for an input x.

ResNet50 baseline image feature extraction network is

followed by 4 dilation heads with dilation rates 1, 6, 12, and

18. The whole pipeline can be described as follows.

After ResNet50 layer4, we obtain a single feature map:

z2D = f2D(x)

Where:

• f2D is ResNet50 encoder (layer4 output).

• z2D is a feature map received from the encoder.

In the feature extraction stage, we apply 4 dilated convolu-

tion on the feature map received from the previous step:

z2Dd1 = h2D
d1 (x)

z2Dd2 = h2D
d2 (x)

z2Dd3 = h2D
d3 (x)

z2Dd4 = h2D
d4 (x)

where

• z2Ddi are feature maps obtained after the dilation layer i.
• h2D

di are dilated layers.

All dilated convolution is performed in a pyramidal feature

network pipeline, as depicted in Fig. 4.

In order to receive global features, we follow the original

pipeline from [35]:

z2Dgp = h2D
gp (x)

where

• z2Dgp is a pooled feature map

• h2D
gp is a global average pooling layer implemented via

AdaptiveAvgPool(1).

After performing feature extraction on all dilated convolu-

tion layers, a single feature tensor is built:

zconc = [z2Dd1 , z2Dd2 , z2Dd3 , z2Dd4 , z2Dgp ] ∈ R4×C×W×H

The concatenated feature tensor has dimensions 4 times

scaled down from their original sizes.

In order to receive both class-level and feature-level feature

maps, we follow the original pipeline with two identical heads

trained with CLPPNCE and CLSUP , respectively:

z2Dclass = h2D
class(zconc)

z2Dfeat = h2D
feat(zconc)

where

• h2D
class - class-level projection head.

• h2D
feat - feature-level projection head.

The projection heads project feature maps in a common

feature space with the U-Net 34 output tensor.

In order to use weak labels obtained from vFM, an up-

sampling layer is used to restore the concatenated tensor

to the original size of an image (416x224) with a bilinear

interpolation.

All steps are implemented in the ASPP block, which is

depicted in Fig. 4. ASPP block is completely detached from

the ResNet50 network, making it easily transferable to other

architectures.

Fig. 4. ASPP block adapted to knowledge distillation

E. Ablation study

In the ablation study, we performed pretraining without the

ASPP block, directly bypassing connections from ResNet50

layers to projection heads before computing the contrastive

loss.

To further explore the potential of multiscale feature extrac-

tion for knowledge distillation, we also implemented a variant

without dilated layers for comparison. In this setting, we use

feature maps from layers 1, 2, 3, and 4 of ResNet-50, each

followed by class-level and feature-level projection heads. We

illustrate the complete in Fig. 5.
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Fig. 5. Direct usage of ResNet internal layers for knowledge distillation

Both class level and feature level in the naive approach

are obtained directly from internal ResNet50 layers with the

subsequent projection and upsampling layers being applied.

After extraction features from layers 1, 2, 3 and 4, both

class-level and feature-level projection heads are applied:

z2Dfeat = h3D
class(x)

z2Dclass = h3D
feat(x)

where

• h3D
class - class-level projection head.

• h3D
feat - feature-level projection head.

• z2Dfeat - feature-level projection head output.

• z2Dclass - class-level projection head output.

• x - input image tensor.

V. EXPERIMENTS

We evaluated our method on the nuScenes dataset [2], a

large-scale multimodal dataset widely used in autonomous

driving research. Our reported metrics are mIoU, frequency-

weighted IoU (fmIoU) as well for the pretrained model and

the fine-tuned one with 1%, 5%, 10%, 25%, and 100 % of the

nuScenes dataset.

For the teacher model, we adopt a pretrained ResNet50

from [7]. However, instead of original projection heads for

semantic-level and class-level features, we utilize the ASPP

module with 4 dilated heads followed by upsampling layers

with the scale of 4.

For a student model, we use the same Sparse Residual 3D

U-Net 34 (SR-UNet34) [4] followed by a projection head with

channel size 64 to match the output dimensions of the image

and the LiDAR branches in the common feature space.

The training process consists of two stages:

• Pretraining task with 50 epochs in total;

• Finetuning training with another 100 epochs using Li-

DAR data only.

Experiments were conducted using a single Nvidia A5000

gpu with 24Gb VRAM and batch sizes 11 for pretraining and

71 for funetuning accordingly.

For the pretraining task, we follow the original pipeline and

perform pretraining task for 50 epochs. Having said that, we

freeze the image model completely leaving the ASPP block

trainable only.

In the fine-tuning stage, we train the 3D network using 1%,

5%, 10%, 25%, and 100% of the nuScenes data. In addition

to the different stages of the fine-tuning scenario, we also

utilize Linear Probing (LP). In the LP scenario, we train a

segmentation head solely without modifying backbone weights

leaving them in the frozen state. At the same time, during the

fine-tuning stage, all of the weights are updated.

For weak label generation, we also utilize SEEM (Segment

Everything All at Once) VFM [36]. Examples of generated

weak labels are presented in Fig. 6 (a shows the original

image and b the generated one). In other words, weak labels

are semantic masks that contain class information for every

pixel in the images and represent ground-truth information

for the 3D branch. Each variation of color in the pictures

represents superpixels, generated by VFM. Later, this semantic

information is used to calculate the contrastive loss with

respect to the semantic information - CLsup.

(a) (b)

Fig. 6. Examples of weak labels used in CLsup loss. Colors

were strengthened for better visualization quality. a) represents

the original picture and b) stands for clusters generated by

VFM

Fig. 7 shows TSNE embedded class-level features for the

original CLPPNCE method taken from the work [3] (a),

modified method with CLsup from [7] (b), and the proposed

method with multiscale feature extraction (c). Fig 7. c) demon-

strates the greatest distance of semantic clusters from each

other in the low-dimensional space.

(a) (b) (c)

Fig. 7. TSNE visualization for embedded class-level features

obtained from h3D
sem head in the output layer, image a) shows

TSNE for CLPPNCE [7], image b) shows TSNE for CLsup

[7], and image c) demonstrates TSNE for the proposed method

(multiscale CL). Each color represents an individual semantic

label

The fine-tuning results are presented in Table I. The last

two rows represent the fine-tuning metrics for the multi-

scale feature extraction and naive approaches, respectively.
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LP column stands for Linear Probing, where we train a

simple classifier with the frozen backbone. Other columns

represent percentages of nuScenes data used for fine-tuning.

The proposed method proves the advantages of multi-scale

feature extraction from an image network for KD purposes.

The results presented in the table outperform the baseline ar-

chitecture. At the same time, the naive approach demonstrates

the ineffectiveness of feature generation from different stages

of the ResNet50 network, which can be explained by the poor

feature information in the earliest ResNet layers.

The class-level results on 1% of the training data for

ASPP and naive approaches are reported in Table II. The

table demonstrates that the proposed approach consistently

outperforms OLIVINE for all nuScenes classes. The multi-

scale feature extraction block was used for both the class-

level and feature-level branches, while in a second scenario

(naive approach) we used identical MLP projection heads for

both branches. The low quality results for the last row can be

explained by the lack of useful semantic information in the

early layers of the ResNet50 network. The multi-scale feature

extraction row, on the contrary, demonstrates that semantic

features obtained from the feature map from the last layer of

the ResNet50 network, passed through dilation layers carry

more useful semantic information. The room for improvement

can be found in modifying classification heads to enhance

results on small or infrequently observed such objects as

’bycicle’, ’trailer’, and ’construction vehicle’.

VI. CONCLUSION

We introduced a novel method for knowledge distillation

that employs multiscale distillation heads connected to a

ResNet50 network. The key contribution is that the proposed

multiscale multi-scale feature extraction block can be con-

nected to a wide range of architectures and seamlessly adapted

to other designs. To validate this method, we compared both

the naive and dilated approaches, showing a clear advantage

of dilation heads over plain ResNet-50 output layers.

In addition to the multi-scale feature extraction method,

we evaluated a naive variant consisting solely of ResNet-50

layers. The comparison demonstrated the superior performance

of the multi-scale feature extraction architecture for multiscale

knowledge distillation both on class-level, as well as feature

level.

In future work, it may be worthwhile to explore KD

with different layers of a student network to achieve greater

performance. Moreover, it would be useful to explore feature

separation technique for separating different spatial scales

from each other as well as to investigate the influence of

knowledge distillation on ViT-based architectures.
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TABLE I. COMPARISON OF VARIOUS PRETRAINING TECHNIQUES FOR SEMANTIC SEGMENTATION USING FINE-TUNING (FT) AND 
LINEAR PROBING (LP). METRICS ARE MIOU (%)

Initialization LP 1% 5% 10% 25% 100%
nuScenes-lidarseg

Random Init – 8.10 30.30 47.84 56.15 74.66
PointContrast [32] 21.90 32.50 – – – –
DepthContrast [37] 22.10 31.70 – – – –
PPKT [3] 35.90 37.80 53.74 60.25 67.14 74.52
SLidR [38] 38.80 38.30 52.49 59.84 66.91 74.79
ST-SLidR [5] 40.48 40.75 54.69 60.75 67.70 75.14
HVDistill [30] 39.50 42.70 56.60 62.90 69.30 76.60
Seal [6] 44.95 45.84 55.64 62.97 68.41 75.60
OLIVINE [7] 47.30 46.12 57.51 63.04 69.39 76.13
Ours (Multi-Scale Feature Extraction) 49.7 47.8 58.2 64.1 70.5 76.7
Ours (Basic Approach) 46.16 46.01 56.32 61.02 67.43 75.92

TABLE II. PER-CLASS RESULTS ON THE NUSCENES-LIDARSEG DATASET USING ONLY 1% OF THE LABELED DATA FOR FINE-TUNING 
USING ASPP BLOCK. IOU SCORES ARE REPORTED FOR EACH CATEGORY. THE HIGHEST SCORES ARE MARKED AS BOLD
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e

v
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et
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n

m
Io

U

Random 0.0 0.0 8.1 65.0 0.1 6.6 21.0 9.0 9.3 25.8 89.5 14.8 41.7 48.7 72.4 73.3 30.3
PointCont. [32] 0.0 1.0 5.6 67.4 0.0 3.3 31.6 5.6 12.1 30.8 91.7 21.9 48.4 50.8 75.0 74.6 32.5
DepthCont. [37] 0.0 0.6 6.5 64.7 0.2 5.1 29.0 9.5 12.1 29.9 90.3 17.8 44.4 49.5 73.5 74.0 31.7
PPKT [3] 0.0 2.2 20.7 75.4 1.2 13.2 45.6 8.5 17.5 38.4 92.5 19.2 52.3 56.8 80.1 80.9 37.8
SLidR [4] 0.0 1.8 15.4 73.1 1.9 19.9 47.2 17.1 14.5 34.5 92.0 27.1 53.6 61.0 79.8 82.3 38.3
ST-SLidR [5] 0.0 2.7 16.0 74.5 3.2 25.4 50.9 20.0 17.7 40.2 92.0 30.7 54.2 61.1 80.5 82.9 40.8
OLIVINE [7] 0.0 6.7 55.6 82.7 10.3 26.8 57.8 23.1 18.8 47.3 93.9 32.4 55.8 62.4 82.0 82.3 46.1
Ours (Basic Approach) 0.0 5.4 47.4 75.2 9.3 23.2 55.1 21.6 17.3 44.9 92.2 31.1 51.2 60.4 80.4 80.7 43.5
Ours (Multi-Scale
Feature Extraction) 0.0 7.0 56.1 84.4 11.2 26.9 58.9 24.2 19.8 48.5 94.2 33.8 57.2 64.2 83.7 83.6 47.2
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