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Abstract—The growing use of 5G networks for critical ser-
vices makes them vulnerable to Distributed Denial of Service
(DDoS) attacks. While numerous Machine Learning (ML)-based
approaches have been proposed, the real-world deployability
of these models remains understudied. This work presents
what is, based on existing literature, the first simulation-driven
methodology to evaluate both the transferability and the oper-
ational feasibility of ML-driven DDoS detection in realistic 5G
Multi-Access Edge Computing (MEC) settings. The study assess
the cross-scenario performance of two state-of-the-art Convolu-
tional Neural Network (CNN) DDoS detection models using three
diverse datasets, including synthetic traffic representative of 5G
environments. Leveraging the full 5G network simulator Simu5G,
the study integrate the better-performing model into an MEC
application to demonstrate a functional end-to-end pipeline from
offline training to live attack mitigation. This approach delivers a
reproducible framework for testing ML-based network defenses
under realistic yet controllable conditions, enabling systematic
evaluation beyond static benchmarks. The results confirm the
feasibility of assessing the practical resilience of ML-driven
DDoS defenses in 5G networks, with several areas identified
for further optimization, including expansion of attack scenarios,
enhancement of model robustness across datasets, and refinement
of deployment strategies within the simulation environment.

Index Terms—S5G network simulation, DDoS, dataset genera-
tion, ML-based anomaly detection, Multi-Access Edge Comput-
ing (MEC).

I. INTRODUCTION

Distributed Denial of Service (DDoS) attacks remain a
growing threat to digital infrastructure. In Q4 2024, Cloudflare
reported mitigating the largest recorded botnet-based DDoS at-
tack, involving 13 million devices and peaking at 5.6 Tbps [1].
These attacks are increasingly driven by compromised Internet
of Things (IoT) devices, whose global count is projected to
surpass 18.8 billion in 2024 [2]. 9% of cybersecurity incidents
in European hospitals in 2023 were DDoS attacks [3].

With 5G enabling smart cities, remote healthcare, and
autonomous systems, ensuring its availability is critical [4],
[5]. 5G’s high-speed bandwidth and low-latency connections
also facilitate botnet-driven DDoS attacks. Such volumetric
attacks (e.g., UDP-flooding) aim to exhaust network capacity
[6], affecting not only targeted services but also collateral users
on the same 5G infrastructure [7].
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Significant research efforts have targeted efficient DDoS
detection models [8]—-[12], and the impact of DDoS on mobile
network performance is also well studied [7], [8], [13], [14].
In contrast to works aimed at producing higher-accuracy
models, this study’s focus is on proposing and demonstrating
a methodology to evaluate an often overlooked aspect of
Machine Learning (ML)-based DDoS detection: how well such
models perform when deployed in realistic 5G environments
and within the resource constraints of an operational setting.
For this initial investigation, this study apply the approach to
a single representative DDoS scenario, high-rate volumetric
UDP flooding, chosen for its impact on both 5G infrastructure
and downstream services, and for its suitability to controlled
simulation. The study focuses on Convolutional Neural Net-
work (CNN) models due to their proven effectiveness in cap-
turing spatial and statistical features from network traffic while
maintaining computational efficiency [15]. Other DDoS types,
such as low-rate or application-layer attacks, are recognized
as important but are outside the scope of this study.

This work explores a practical evaluation pipeline for ML-
based DDoS anomaly detection in 5G networks, focusing
on how well existing high-performing CNN-based detection
models perform when exposed to a synthetic serialized DDoS
dataset with similar construction and features. Using the
Simu5G framework, synthetic 5G data traffic is generated,
a selected detection model is integrated into a Multi-Access
Edge Computing (MEC) application, and both detection per-
formance and network-level effects are analyzed during simu-
lated attacks. Rather than claiming a definitive detection solu-
tion, this study aim is to illustrate a methodology that bridges
offline model evaluation with operational considerations, in-
cluding processing overhead, responsiveness, and feasibility
of real-time deployment. Additionally, the study discusses
current limitations in dataset diversity, DDoS attack profiles,
and mitigation design, and outline how these constraints will
be addressed in future work.

The main contributions of the paper are the following:

1) Develop and demonstrate a simulation-based method-
ology to assess how existing DDoS detection models,
trained initially on benchmark datasets, perform when
evaluated on a synthetically generated 5G traffic dataset.

2) Integrate the higher-performing of the evaluated models
into a full MEC-enabled 5G simulation, allowing joint
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assessment of detection accuracy, resource use, and
impact on network traffic dynamics during live attack
scenarios.

3) Highlight key findings on synthetic datasets generation,
detection feasibility, and operational overhead, as well
as the current limitations in the defined attack coverage
and mitigation mechanisms, which collectively define a
roadmap for future works.

The remainder of the paper is structured as follows: Sec-
tion II provides background, followed by the DDoS attack
assumptions, and related work in Sections III and IV. Section
V describes the system model, with results and discussion in
Sections VI and VII. Conclusions and future work are given
in Section VIIIL.

II. BACKGROUND
A. 5G User-Plane Network Topology

The 5G user plane is responsible for forwarding data packets
between UEs and external data networks. As specified in
3GPP TS 23.501, this involves key components such as the
gNodeB (gNB), which provides radio access and handles both
control and user data, and the User Plane Function (UPF),
which enforces traffic policies and manages QoS. In larger
deployments, an Intermediate UPF (iUPF) may be used to
aggregate traffic from multiple gNBs before forwarding to
the core network. Figure 1 illustrates the main user-plane
components and relevant interfaces.

B. Available Datasets

A major challenge in DDoS detection research is the
availability of relevant and high-quality datasets. While many
datasets exist, few focus solely on volumetric DDoS attacks,
which are most relevant for this work. Three primary datasets
were evaluated and the drawbacks and advantages of each
dataset are summarized in Table I. The CICDoS2019 dataset
[13] was used as the performance benchmark in this work.

III. DDOS ASSUMPTIONS

For this study, a threat scenario is considered in which
no dedicated DDoS defenses or detection mechanisms are
present within the 5G network infrastructure. The adversary
is assumed to operate a botnet of compromised cellular IoT
devices, using the 5G network solely as a medium to transport
DDoS packets towards targeted backend Internet services. The
attacker does not have access to, or control over, any part
of the 5G infrastructure itself, such as gNodeBs, User Plane
Functions, or core network components, nor does the scenario
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include any physical-layer attacks or internal compromise. The
adversary’s goal is to maximize attack impact on the external
service while minimizing resource expenditure and avoiding
detection.

This initial focus allows a clear evaluation of ML-based
DDoS detection deployed at the network edge, with the
assumption that the 5G operator is a neutral party until
defensive measures are introduced in the simulation. Other
attack types, such as low-rate or application-layer DDoS, as
well as scenarios involving infrastructure compromise, remain
outside the scope of this study to ensure controlled assessment
of the selected volumetric UDP flooding scenario.

Table II summarizes the key characteristics of the DDoS
scenario.

IV. RELATED WORK

Recent work [17] has reviewed the security challenges and
defense techniques for DDoS attacks in MEC networks. MEC
is increasingly recognized as an advantageous environment for
deploying DDoS detection mechanisms due to its proximity to
end devices and ability to perform early traffic analysis.

In terms of datasets used for DDoS detection research
in MEC contexts, most studies have historically relied
upon established datasets like KDDCUP99, UNSW-NBI15,
CISIDS2017, and CICDDo0S2019. While these are valuable,
they lack the diversity and edge-specific attack patterns, lim-
iting their efficacy for realistic MEC deployments. Zeeshan
et al. [18] demonstrated the benefits of synthesizing more
comprehensive datasets by merging features from UNSW-
NB15 and Bot-IoT, thereby improving model generalization.
However, the focus remained on experimental improvements
rather than practical edge deployment. The necessity for
improved datasets aligns with the trend of leveraging MEC
servers as platforms for real-time DDoS detection.

Recent studies have demonstrated the effectiveness of
ML models in processing and analyzing large-scale network
datasets for DDoS detection. These studies have employed
various approaches for preprocessing and data preparation,
utilizing different model architectures and different datasets.
In [9], the CSE-CIC-IDS2018 AWS was used to train neural
network-based models, while [8] trained Artificial Neural
Networks (ANNs) and LSTMs to capture complex DDoS
traffic patterns. In [10], a deep neural network DNN-based
method was proposed to detect DDoS attacks in Software-
Defined Networking (SDN) environments, demonstrating high
detection accuracy across several datasets.

The LUCID framework, introduced in [12], proposes a
CNN-based solution tailored for resource-constrained envi-
ronments. It achieves a 40x speedup over traditional DL
models while maintaining high detection accuracy. LUCID
uses a dataset-agnostic preprocessing method that converts raw
network traffic into spatial representations, thereby reducing
the need for manual feature engineering. It extracts packet-
level attributes to enable flexible, real-time classification and
has shown high performance across varied network conditions.
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TABLE 1. Comparison oF DDoS DATASETS

Dataset Generation Method

Advantages

Drawbacks

KDDCup1999 [14] | Live capture with simulated attacks

Historically important, large volume

Outdated; contains statistical and structural flaws

UNSW-NBI5 [16] | Live capture with testbed-based attack injection

Better balance of benign and attack traffic

Benign traffic may lack real-world representativeness

CICDoS2019 [13] High-quality traffic captured with realistic attack scenarios

Modern, well-documented

Labeling strategy can be inconsistent

TABLE II. DDoS scENARIO

Aspect Description

Capabilities | Control over a set of cellular IoT devices.

Goals Launch volumetric UDP-based DDoS on public-facing
services.

Constraints No compromise of infrastructure (e.g., gNBs, UPFs);
physical-layer attacks excluded.

The study, [11], introduces a CNN-based model to de-
tect and categorize DDoS attacks. Through the analysis of
processed data from the CICDDoS-2019 dataset, the CNN
effectively learns to distinguish between malicious traffic and
normal activity by identifying important features. Although
XGBoost’s accuracy was higher, CNN still has considerable
potential for automated and flexible attack detection.

While [11] evaluated a CNN-based model trained on 34
selected network features, achieving an accuracy of 83.89%
and an F1 score of 0.723. However, it struggled to detect
certain attack types (e.g., UDPLag, Portmap), highlighting the
need for careful feature selection and dataset balancing to
improve generalization.

In total, five studies, utilizing eight datasets and implement-
ing twelve DL or ML models, were evaluated for comparison
with this work. A summary of prior DDoS detection research
is provided in Table III, which highlights key datasets, tech-
niques, and performance outcomes.

V. METHOD

A simulation-based approach was chosen to safely evaluate
the impact of DDoS attacks on 5G infrastructure and vali-
date ML-based mitigation in a controlled environment. Public
datasets serve as baselines, while new datasets generated with
BoNeSi and Simu5G provide varied traffic for robustness
testing.

The investigation was structured into three main stages:

1) Dataset Generation: Creating synthetic network traffic

using both BoNeSi [19] and Simu5G [20].

2) Model Training and Evaluation: Adapting and bench-
marking ML models ( [12], [11]) using both public and
custom datasets.

3) Deployment in MEC: Testing the models in an MEC
application to assess real-time detection.

Figure 2 shows an architectural overview of this setup. The
goal is to test whether ML models can detect and mitigate
volumetric DDoS attacks in a simulated 5G network, using
only packet-level features and limited compute resources.

A. Dataset Generation Method

Three datasets were utilized to train and evaluate the detec-
tion models in this study. The first dataset, CICDD0S2019-
UDP, is a filtered subset of the publicly available CICD-
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Do0S2019 dataset, containing only UDP flood traffic. It serves
as a reference dataset due to its frequent use in DDoS detection
literature. Traffic was filtered by attack intervals, timestamps,
and IP addresses using the LUCID parser.

To generate the second dataset, named BoNeSi+Simu5SG,
malicious traffic was created using BoNeSi running within
a virtual Kali Linux environment. Each attack simulation
involved five bots transmitting UDP packets at data rates
between 25 and 45 Mbps, with varying packet sizes and
sampling rates (see Table IV). Captured packets were parsed
into feature data using the LUCID PyShark-based parser.
Benign traffic for this dataset was separately generated using
Simu5G.

The third dataset, Mixed Simu5G, was entirely generated
within the Simu5G simulator in OMNeT++ [21]. Benign
user equipment (UEs) employed low-rate UDP applications
(UdpBasicApp, VideoStreamClient), whereas mali-
cious UEs generated higher-rate UDP traffic by increasing
packet sizes and reducing transmission intervals. Traffic was
captured at the network’s central router. Simulations ran for
6000 seconds, producing several gigabytes of raw data.

All data processing and simulations were performed on a
standard Linux laptop (Lenovo IdeaPad Yoga, 16 GB RAM,
Intel i5). Dataset generation scripts and network configurations
are publicly accessible on GitHub for reproducibility’.

Thttps://github.com/karkha-0/Learing AtTheEdge-DDoSimu5G
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TABLE III. SummMary oF ReLaTED Work oN DDoS DEeTECTION

Study | Dataset Used Techniques Evaluated Best Performing Model | Accuracy
91 CSE-CIC-IDS2018 (AWS) Neural Networks (Keras) Neural Network 99.98%
[10] InSDN Deep Neural Networks (DNNs) in SDN DNN 99.98%
[10] CICIDS2018 Deep Neural Networks (DNNs) in SDN DNN 100%
[10] Kaggle DDoS Deep Neural Networks (DNNs) in SDN DNN 99.99%
[8] CICDDoS-2019 ANNs, LSTMs, SVM, Logistic Regression, Random Forests, Decision Trees | ANN 85.1%
8] CICDDoS-2019 ANNs, LSTMs, SVM, Logistic Regression, Random Forests, Decision Trees | LSTM 98%

[11] CICDDoS-2019 KNN, CNN, XGBoost, SGD, Naive Bayes XGBoost 89.29%
[12] ISCX2012, CIC2017, CSECIC2018 | CNN-Based Lightweight Detection CNN (Lucid) 98.88%

TABLE IV. BoNESI MALICIOUS DATA GENERATION SETTING

BoNeSi Configuration Attack 1 | Attack 2 | Attack 3
# Bots 5 5 5
Goal Total Data rate (Mbps / bot) 25 35 45
Goal Total Data rate (B/s) / bot 3125000 | 4375000 | 5625000
Packet Size [B] 512 1024 1400
Sampling Rate 6104 4272 4018
Total Data Rate [Mbps] 125 175 225

B. Experimental Setup

1) DDoS Detection Model: Two open-source DDoS de-
tection frameworks, the LUCID framework [12] and a 1D-
CNN model from [11] (referred to as the Mohak model), were
selected due to their proven performance and publicly avail-
able implementations. Their implementations were obtained
from official GitHub repositories> 3 and adapted for binary
classification (benign vs. malicious).

LUCID’s parser (lucid_dataset_parser.py) was
used to preprocess both CICDDoS2019 and the newly gen-
erated datasets. Only UDP-flood packets from known attacker
IPs during the labeled intervals (10:53-11:03, 12:45-13:09)
[13] were retained. PCAP files were batch-processed into
balanced and normalized HDF5 datasets.

The LUCID CNN model applies Conv2D and Global-
MaxPooling2D layers with ReLU activation, followed by a
sigmoid-activated dense layer. Minor modifications were made
to configure the DOS2019_FLOWS dictionary for experiment-
specific IPs.

The Mohak model was refactored from its original Jupyter
notebook format into a modular Conv1dModel function for
compatibility with the LUCID preprocessing pipeline. It uses
two ConvlD layers followed by dense layers, with the final
layer adapted for binary output.

Each model was independently trained, validated, and
tested on three different datasets: CICDDo0S2019-UDP,
BoNeSi+Simu5G, and Mixed Simu5G. The data was split into
training, validation, and test sets using the LUCID parser’s
default configuration, following an 80-10-10 split.

2) MEC Application: To enable real-time evaluation,
models were integrated into a custom MEC application
(PredictMec) in SimuS5G. The application predictions were
triggered at fixed intervals (30s, 45s, 60s). This choice was
driven by two factors: (i) the current Simu5G MEC frame-

Zhttps://github.com/doriguzzi/lucid-ddos
3https://github.com/mohak 1/Detection-and-Classification-of-Distributed-
DoS-Attacks-using-Machine-Learning
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work triggers Python-based inference synchronously, making
it more practical to schedule predictions at fixed simulation
times, and (ii) fixed intervals ensured consistent and com-
parable measurements across runs. More advanced triggering
mechanisms are possible, such as dynamic detection windows
that adapt to sudden spikes or anomalous trends in network
load. While such an approach would be more responsive in
operational settings, it was left for future work in order to
focus on demonstrating the end-to-end feasibility of the testing
framework.

Three 60-second simulation scenarios were run:

1) Baseline (no attack): Validates normal performance.

2) Attack only: Measures network stress under DDoS
without defense.

3) Attack + MEC prediction: Evaluates detection and
mitigation impact.

All scenarios used the same network setup, with minor vari-
ations. For the MEC implementation, the MecAppBase class
in the Simu5G source was extended to include PredictMec,
which handles scheduled predictions and UE communication.
MEC ran the model as a Python script at the edge. Simulation
parameters are shown in Table V.

Due to simulator limitations, packets exceeding specific data
rates were fragmented and dropped during the parsing process.
To avoid this, attack traffic was capped. Prediction windows
were implemented to limit analysis to recent packets. Since
traffic was captured at the router, manual filtering was required
to exclude irrelevant flows (e.g., remote server traffic). A more
robust setup would capture only inbound packets.

The attack mitigation mechanism was implemented as an
increase in the packet send interval for suspected attackers
rather than full packet blocking. This approach was selected
to minimize invasive modifications to the Simu5G forwarding
pipeline while still enabling a measurable reduction in attack
traffic; it also allowed for testing the model’s full detection
loop without risking simulator instability from mid-flow packet
drops. This simplified mitigation does not clear queued or in-
flight packets. Future work will implement more robust, dy-
namic, and load-responsive blocking strategies at the gNodeB
or UPF level to better reflect real-world operational defenses.

Resource usage (CPU, memory, runtime) was logged for
each prediction. These metrics provide insight into the effi-
ciency of different models and MEC configurations.
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TABLE V. SmmuratioN PArRaMETERS UseD FOR EacH CONFIGURATION

UE messageLength
UE sendInterval

uniform(16B, 512B)
exponential(1s)

uniform(16B, 512B)
exponential(1s)

Simulation Par 1 Baseline — No Attack Baseline — With Attack Experiment — With Prediction and Blocking
# UEs 8 8 8
# VidUEs 2 2 2
# malUEs 0 5 5
# malVidUEs 0 5 5

uniform(16B, 512B)
exponential(1s)

videoServer sendInterval 0.1s 0.1s 0.1s
videoServer PacketLen 1024 B 1024 B 1024 B
videoServer videoSize 200 MiB 200 MiB 200 MiB
malUE messageLength 1024 B 1024 B 1024 B
malUE sendInterval exponential(0.09s) exponential(0.09s) exponential(0.09s)
malVidUE messageLength 2048 B 2048 B 2048 B
malVidUE sendInterval exponential(0.09s) exponential(0.09s) exponential(0.09s)
Prediction Times 60s 60s 30s, 45s, 60s
Prediction Time Window 10s 10s 10s
VI. RESULTS matrix further supports its effectiveness. This suggests that the

This section presents results on model performance during
training, generalization to new datasets, and the impact of
MEC-based deployment on network behavior.

A. Model Performance on CICDD0S2019-UDP

Both the LUCID and Mohak CNN models were first eval-
uated on the CICDDo0S2019 UDP-flood test set:

e LUCID CNN achieved a validation accuracy of 96.98%
and an F1-score of 0.9686. The confusion matrix confirms
balanced performance with most benign and malicious
packets correctly classified.

e Mohak CNN reached 94.99% validation accuracy with
an Fl-score of 0.9470.

Results confirmed the models’ effectiveness on the UDP-
flood traffic. Table VI summarizes the results and shows that
the Mohak CNN model achieved a higher F1-score and accu-
racy when classifying the UDP traffic from the CICDDo0S2019
dataset compared to the entire mixed dataset, likely due to
simpler features and clearer patterns. In contrast, the LUCID
CNN did not improve on the UDP data, suggesting it was less
able to leverage simpler patterns or fewer features.

B. Generalization to New Datasets

Models were trained, validated, and tested separately on the
BoNeSi+Simu5G and Mixed Simu5G datasets. The models
exhibited varying levels of generalization performance on
these new datasets.

LUCID CNN classified all traffic as benign in both new
datasets (Fl-score: 0), showing poor generalization. This in-
dicates that the model tuning was overly specialized to the
original CICDDo0S2019 dataset features, limiting its ability
to generalize to the different traffic characteristics and attack
patterns in the simulated datasets. Consequently, LUCID CNN
was not considered further for MEC deployment.

The Mohak CNN also performed poorly on the
BoNeSi+Simu5G  dataset (Fl-score: 0.0055, accuracy:
49.2%), but in contrast, it demonstrated strong generalization
capability when evaluated on the Mixed Simu5G dataset
(F1-score: 0.8976, accuracy: 88.5%). The balanced confusion
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features learned from CICDDoS2019-UDP were sufficiently
general to detect attacks in a dataset generated by Simu5SG,
with high accuracy. While the BoNeSi+Simu5G dataset,
specifically Bonsei DDoS traffic, was significantly different
in features from the CICDDo0S2019 dataset, this caused the
model to perform poorly.

A summary of these findings is provided in Table VII.

C. MEC Impact on Network Behavior

This section present the measured network metrics for
each simulation run, as well as the performance of the MEC
application hardware.

1) Network Load Results: The average incoming data rate
at the UPF varied slightly between each simulation run, as
shown in Table VIII. However, this measurement was the mean
over 60s, and doesn’t reflect MEC’s performance.

Figure 3a shows the expected baseline reading of the
incoming data rate to the UPF with no attack. Figure 3b
shows the same reading at the UPF, but with the incoming
attack starting to ramp up at about 8s. The Mohak model
setup (Figure 4) shows a slight decrease in network load. By
comparing the incoming data rate in the first 30 seconds and
the last 30 seconds, the data rate decreased from 623675.2 bps
to 601692 bps.

2) MEC Behavior, Prediction Times and HW Resource
Usage: As shown in Table VIII, all runs resulted in some false
positives. Even in the baseline scenario with no DDoS attack
traffic, benign UEs were incorrectly identified as malicious
at the 60-second prediction. Additionally, during experimental
runs, some malicious UEs were repeatedly flagged across
multiple prediction intervals, meaning they were detected as
malicious more than once. This double detection explains
why, for example, the Mohak experiment shows a total of 15
predictions despite the combined count of true positives and
false positives being only 11.

Table IX presents analysis time and hardware usage for each
ML model. These results serve as a useful reference for future
researchers comparing MEC implementations and ML models.
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TABLE VI. Vaupation PErrorMaNCE OF MoHAK AND LUCID MobeLs on CICDDo0S2019-UDP

Model Evaluation Scenario Dataset F1-score Accuracy
Mohak Expected Performance CICDD0S2019 0.7131 0.8392
Mohak Actual Performance CICDDo0S2019-UDP 0.9470 0.9499
Lucid Expected Performance CICDDo0S2019 0.9939 0.9947
Lucid Actual Performance CICDDo0S2019-UDP 0.9686 0.9698

TABLE VII. PrepictioN PERFORMANCE OF TRAINED MODELS ON NEWLY
GENERATED SIMULATED DATASETS

Model | Dataset Fl-score | Accuracy
Mohak | bonesi + Simu5G | 0.0055 0.4922
Mohak | Mixed Simu5G 0.8976 0.8846
Lucid bonesi + Simu5G | 0 0.5123
Lucid Mixed Simu5G 0 0.3790
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TABLE VIII. MEC PrepictioN AND NETWORK RESULTS

Result Baseline Baseline Experiment
(No Attack) (With Attack) | (Mohak)

UE Throughput [Mean] | 1513.3 bps 2286.6 bps 929 bps

VidUE End-to-End De- 123 ms 121 ms 120 ms

lay [Mean]

UPF Incoming Data | 20.39 kbps 766.42 kbps 612.63

rate [Mean] kbps

Total Predictions 5 15

True Positives 6

False Positives 5 4 5

False Positive Rate (%) | 100 50 45

TABLE IX. Tue MEC’s aND ML MODEL’S PREDICTION TIMES AND

HARDWARE RESOURCE USAGE

Result Experiment (Mohak)
Ist Prediction Time [s] 10

2nd Prediction Time [s] 13

3rd Prediction Time [s] 14

CPU Usage 95-100%

Memory Usage [GB] 0.640

VII. DISCUSSION
A. Dataset Generation and Utility

Two datasets were generated to evaluate whether synthetic
traffic created in simulation can realistically be used not only
for offline model training, but also for operational deployment
testing in a MEC-enabled 5G environment. The first dataset
combined benign Simu5G traffic with BoNeSi-generated high-
rate UDP flood attacks. The second, “Mixed Simu5G”, was
created entirely within Simu5G, with both benign and mali-
cious traffic originating from simulated UEs.

An important objective of this stage was to investigate
whether synthetic datasets generated within a 5G simulator
could closely replicate the key traffic characteristics of the
benchmark CICDOS2019 dataset (filtered to UDP traffic),
such that the resulting detector performance would be com-
parable. In this sense, the dataset creation process itself is
an integral part of the proposed methodology, as it enables a
unified framework where datasets for both training and realis-
tic deployment evaluation can be produced under controlled,
reproducible conditions.

In the presented experiments, the Mixed Simu5G dataset
achieved behavior broadly consistent with CICDDo0S2019-
UDP for one of the models tested (Mohak CNN), indi-
cating that the synthetic generation process can yield us-
able approximations of benchmark datasets. In contrast, the
BoNeSi+Simu5G dataset led to poor detection results, suggest-
ing that differences in packet timing, structure, or statistical
feature distributions can significantly affect transferability.
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These outcomes both validate the feasibility of the approach
and highlight the need for more advanced synthetic traffic
generation methods to consistently match benchmark datasets.

B. Generalization of Detection Models

The LUCID CNN performed well on the CICDD0S2019-
UDP dataset but failed on the new synthetic traffic, indicating
model overfitting to the original training dataset. Mohak’s
CNN also failed on BoNeSi+Simu5G but succeeded on the
Mixed SimuSG dataset. This highlights a key point: models
trained on one dataset may not perform very well even when
trained on a similar dataset.

It is important to clarify that the generalization experiments
here are not simply a conventional cross-dataset test, but rather
an assessment of how well benchmark-trained models respond
to datasets synthetically generated within the simulation envi-
ronment to resemble the benchmark’s statistical and structural
properties. In other words, the goal was to test whether
the synthetic dataset generation process could create realistic
traffic patterns that both reflect benchmark characteristics and
can be used for operational deployment evaluation. While the
Mixed Simu5G dataset showed such alignment for the Mohak
model, the BoNeSi+Simu5G dataset did not, underlining the
variability in reproducing feature distributions and motivating
future optimization of the dataset generation strategies.

C. MEC Prediction and Implementation Gaps

MEC integration showed potential but suffered from issues:

o Predictions were based on static time intervals rather than
dynamic traffic features.

e Some UEs were misclassified due to overly simplistic
criteria (e.g., only packet length).

o Repeated predictions occurred due to queued messages
in INET’s UdpBasicApp.

Comparing the ML results to the MEC predictions reveals a
significant disparity. The ML models performed much worse
when deployed in the MEC, due to several underlying factors.
First, the prediction accuracy improved, and the UPF bitrate
decreased when the packet sizes of benign UEs were reduced
or those of malicious UEs were increased. This indicates that
the model primarily relied on packet length as its distinguish-
ing feature. Second, including source—destination bitrate in the
model would likely improve detection, due to the fragmenta-
tion behavior of IPv4. Finally, as noted in Section VI, the MEC
repeatedly flagged double-flagged malicious UEs, likely due
to the INET UdpBasicApp, which queues messages. Even
after a UE was silenced, pending messages continued to be
sent. This issue could be addressed by blocking UEs at the
base station or UPF level rather than relying on silencing.

D. Simulation Constraints

The simulation itself has significant limitations as the num-
ber of devices, benign or otherwise, had to be kept fairly low
due to hardware constraints. Especially the malicious UEs
required a lot of CPU to run effectively. In this work, the
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botnet consisted of only ten devices, whereas real botnets are
typically much larger.

Furthermore, rather than outright blocking malicious de-
vices, the MEC implementation mitigated their impact by
increasing the UEs’ send intervals to very high values, ef-
fectively suppressing attack traffic within the current frame-
work. This practical simplification was chosen to demonstrate
the method’s feasibility. However, it reduces realism since
real MEC-based defenses would typically rely on adaptive
prediction intervals and more robust mitigation strategies,
such as selective blocking or traffic filtering at the gNB/UPFE.
Exploring these alternatives represents an important direction
for future work.

VIII. CONCLUSIONS AND FUTURE WORK

This work presented a simulation-driven approach for
evaluating the transferability and operational feasibility of
ML-based DDoS detection models in realistic 5G MEC en-
vironments. In the defined experiments, the dataset produced
with Simu5G aligned reasonably well with one of the eval-
uated CNN models, supporting effective detection, whereas
the BoNeSi-generated dataset differed significantly from the
CICDDoS2019 benchmark used for model training, leading
to reduced performance. This outcome illustrates both the
potential and the challenges of generating synthetic traffic that
accurately reflects established benchmark datasets.

Future optimization will focus on creating synthetic datasets
that are suitable for evaluating models under deployment con-
ditions while closely resembling benchmark datasets in their
key statistical and structural properties. To achieve this, future
work shall explore advanced traffic-generation and feature-
modeling techniques, complemented by comparison metrics
such as statistical similarity indices, and feature-distribution
matching to ensure equivalence to benchmark datasets.

In parallel, refinements to the current implementation, par-
ticularly in attack mitigation mechanisms, will be pursued to
enable dynamic and fine-grained responses. Such enhance-
ments will allow a more precise assessment of mitigation
effects on critical 5G performance metrics.

While this study focused on high-rate UDP flooding as
a test case, the methodology developed here can be applied
to other attack types. Future extensions will include, a more
comprehensive attack scenario coverage and the generation of
synthetic dataset variants for low-rate and application-layer
DDoS traffic, enabling the evaluation of ML-based detection
models across a broader spectrum of threat scenarios in
realistic 5G deployments.

Overall, the study confirms the feasibility of using a con-
trolled simulation-based framework to assess not only the per-
formance of ML-based DDoS defenses but also their readiness
for operational deployment, providing a reproducible method
for evaluating robust, adaptive, and resource-aware network
protection strategies.
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