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Abstract—The growing use of 5G networks for critical ser-
vices makes them vulnerable to Distributed Denial of Service
(DDoS) attacks. While numerous Machine Learning (ML)-based
approaches have been proposed, the real-world deployability
of these models remains understudied. This work presents
what is, based on existing literature, the first simulation-driven
methodology to evaluate both the transferability and the oper-
ational feasibility of ML-driven DDoS detection in realistic 5G
Multi-Access Edge Computing (MEC) settings. The study assess
the cross-scenario performance of two state-of-the-art Convolu-
tional Neural Network (CNN) DDoS detection models using three
diverse datasets, including synthetic traffic representative of 5G
environments. Leveraging the full 5G network simulator Simu5G,
the study integrate the better-performing model into an MEC
application to demonstrate a functional end-to-end pipeline from
offline training to live attack mitigation. This approach delivers a
reproducible framework for testing ML-based network defenses
under realistic yet controllable conditions, enabling systematic
evaluation beyond static benchmarks. The results confirm the
feasibility of assessing the practical resilience of ML-driven
DDoS defenses in 5G networks, with several areas identified
for further optimization, including expansion of attack scenarios,
enhancement of model robustness across datasets, and refinement
of deployment strategies within the simulation environment.

Index Terms—5G network simulation, DDoS, dataset genera-
tion, ML-based anomaly detection, Multi-Access Edge Comput-
ing (MEC).

I. INTRODUCTION

Distributed Denial of Service (DDoS) attacks remain a

growing threat to digital infrastructure. In Q4 2024, Cloudflare

reported mitigating the largest recorded botnet-based DDoS at-

tack, involving 13 million devices and peaking at 5.6 Tbps [1].

These attacks are increasingly driven by compromised Internet

of Things (IoT) devices, whose global count is projected to

surpass 18.8 billion in 2024 [2]. 9% of cybersecurity incidents

in European hospitals in 2023 were DDoS attacks [3].

With 5G enabling smart cities, remote healthcare, and

autonomous systems, ensuring its availability is critical [4],

[5]. 5G’s high-speed bandwidth and low-latency connections

also facilitate botnet-driven DDoS attacks. Such volumetric

attacks (e.g., UDP-flooding) aim to exhaust network capacity

[6], affecting not only targeted services but also collateral users

on the same 5G infrastructure [7].

This work was supported in part by the WASP Foundation and the research
project funded by the ELLIIT Foundation.∗Corresponding author

Significant research efforts have targeted efficient DDoS

detection models [8]–[12], and the impact of DDoS on mobile

network performance is also well studied [7], [8], [13], [14].

In contrast to works aimed at producing higher-accuracy

models, this study’s focus is on proposing and demonstrating

a methodology to evaluate an often overlooked aspect of

Machine Learning (ML)-based DDoS detection: how well such

models perform when deployed in realistic 5G environments

and within the resource constraints of an operational setting.

For this initial investigation, this study apply the approach to

a single representative DDoS scenario, high-rate volumetric

UDP flooding, chosen for its impact on both 5G infrastructure

and downstream services, and for its suitability to controlled

simulation. The study focuses on Convolutional Neural Net-

work (CNN) models due to their proven effectiveness in cap-

turing spatial and statistical features from network traffic while

maintaining computational efficiency [15]. Other DDoS types,

such as low-rate or application-layer attacks, are recognized

as important but are outside the scope of this study.
This work explores a practical evaluation pipeline for ML-

based DDoS anomaly detection in 5G networks, focusing

on how well existing high-performing CNN-based detection

models perform when exposed to a synthetic serialized DDoS

dataset with similar construction and features. Using the

Simu5G framework, synthetic 5G data traffic is generated,

a selected detection model is integrated into a Multi-Access

Edge Computing (MEC) application, and both detection per-

formance and network-level effects are analyzed during simu-

lated attacks. Rather than claiming a definitive detection solu-

tion, this study aim is to illustrate a methodology that bridges

offline model evaluation with operational considerations, in-

cluding processing overhead, responsiveness, and feasibility

of real-time deployment. Additionally, the study discusses

current limitations in dataset diversity, DDoS attack profiles,

and mitigation design, and outline how these constraints will

be addressed in future work.
The main contributions of the paper are the following:

1) Develop and demonstrate a simulation-based method-

ology to assess how existing DDoS detection models,

trained initially on benchmark datasets, perform when

evaluated on a synthetically generated 5G traffic dataset.

2) Integrate the higher-performing of the evaluated models

into a full MEC-enabled 5G simulation, allowing joint
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Fig. 1. 5G user-plane topology with multiple gNodeBs and key 
interfaces

assessment of detection accuracy, resource use, and

impact on network traffic dynamics during live attack

scenarios.

3) Highlight key findings on synthetic datasets generation,

detection feasibility, and operational overhead, as well

as the current limitations in the defined attack coverage

and mitigation mechanisms, which collectively define a

roadmap for future works.

The remainder of the paper is structured as follows: Sec-

tion II provides background, followed by the DDoS attack

assumptions, and related work in Sections III and IV. Section

V describes the system model, with results and discussion in

Sections VI and VII. Conclusions and future work are given

in Section VIII.

II. BACKGROUND

A. 5G User-Plane Network Topology

The 5G user plane is responsible for forwarding data packets

between UEs and external data networks. As specified in

3GPP TS 23.501, this involves key components such as the

gNodeB (gNB), which provides radio access and handles both

control and user data, and the User Plane Function (UPF),

which enforces traffic policies and manages QoS. In larger

deployments, an Intermediate UPF (iUPF) may be used to

aggregate traffic from multiple gNBs before forwarding to

the core network. Figure 1 illustrates the main user-plane

components and relevant interfaces.

B. Available Datasets

A major challenge in DDoS detection research is the

availability of relevant and high-quality datasets. While many

datasets exist, few focus solely on volumetric DDoS attacks,

which are most relevant for this work. Three primary datasets

were evaluated and the drawbacks and advantages of each

dataset are summarized in Table I. The CICDoS2019 dataset

[13] was used as the performance benchmark in this work.

III. DDOS ASSUMPTIONS

For this study, a threat scenario is considered in which

no dedicated DDoS defenses or detection mechanisms are

present within the 5G network infrastructure. The adversary

is assumed to operate a botnet of compromised cellular IoT

devices, using the 5G network solely as a medium to transport

DDoS packets towards targeted backend Internet services. The

attacker does not have access to, or control over, any part

of the 5G infrastructure itself, such as gNodeBs, User Plane

Functions, or core network components, nor does the scenario

include any physical-layer attacks or internal compromise. The

adversary’s goal is to maximize attack impact on the external

service while minimizing resource expenditure and avoiding

detection.

This initial focus allows a clear evaluation of ML-based

DDoS detection deployed at the network edge, with the

assumption that the 5G operator is a neutral party until

defensive measures are introduced in the simulation. Other

attack types, such as low-rate or application-layer DDoS, as

well as scenarios involving infrastructure compromise, remain

outside the scope of this study to ensure controlled assessment

of the selected volumetric UDP flooding scenario.

Table II summarizes the key characteristics of the DDoS

scenario.

IV. RELATED WORK

Recent work [17] has reviewed the security challenges and

defense techniques for DDoS attacks in MEC networks. MEC

is increasingly recognized as an advantageous environment for

deploying DDoS detection mechanisms due to its proximity to

end devices and ability to perform early traffic analysis.

In terms of datasets used for DDoS detection research

in MEC contexts, most studies have historically relied

upon established datasets like KDDCUP99, UNSW-NB15,

CISIDS2017, and CICDDoS2019. While these are valuable,

they lack the diversity and edge-specific attack patterns, lim-

iting their efficacy for realistic MEC deployments. Zeeshan

et al. [18] demonstrated the benefits of synthesizing more

comprehensive datasets by merging features from UNSW-

NB15 and Bot-IoT, thereby improving model generalization.

However, the focus remained on experimental improvements

rather than practical edge deployment. The necessity for

improved datasets aligns with the trend of leveraging MEC

servers as platforms for real-time DDoS detection.

Recent studies have demonstrated the effectiveness of

ML models in processing and analyzing large-scale network

datasets for DDoS detection. These studies have employed

various approaches for preprocessing and data preparation,

utilizing different model architectures and different datasets.

In [9], the CSE-CIC-IDS2018 AWS was used to train neural

network-based models, while [8] trained Artificial Neural

Networks (ANNs) and LSTMs to capture complex DDoS

traffic patterns. In [10], a deep neural network DNN-based

method was proposed to detect DDoS attacks in Software-

Defined Networking (SDN) environments, demonstrating high

detection accuracy across several datasets.

The LUCID framework, introduced in [12], proposes a

CNN-based solution tailored for resource-constrained envi-

ronments. It achieves a 40x speedup over traditional DL

models while maintaining high detection accuracy. LUCID

uses a dataset-agnostic preprocessing method that converts raw

network traffic into spatial representations, thereby reducing

the need for manual feature engineering. It extracts packet-

level attributes to enable flexible, real-time classification and

has shown high performance across varied network conditions.
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TABLE I. COMPARISON OF DDOS DATASETS

Dataset Generation Method Advantages Drawbacks
KDDCup1999 [14] Live capture with simulated attacks Historically important, large volume Outdated; contains statistical and structural flaws

UNSW-NB15 [16] Live capture with testbed-based attack injection Better balance of benign and attack traffic Benign traffic may lack real-world representativeness

CICDoS2019 [13] High-quality traffic captured with realistic attack scenarios Modern, well-documented Labeling strategy can be inconsistent

TABLE II. DDOS SCENARIO

Aspect Description
Capabilities Control over a set of cellular IoT devices.
Goals Launch volumetric UDP-based DDoS on public-facing

services.
Constraints No compromise of infrastructure (e.g., gNBs, UPFs);

physical-layer attacks excluded.

The study, [11], introduces a CNN-based model to de-

tect and categorize DDoS attacks. Through the analysis of

processed data from the CICDDoS-2019 dataset, the CNN

effectively learns to distinguish between malicious traffic and

normal activity by identifying important features. Although

XGBoost’s accuracy was higher, CNN still has considerable

potential for automated and flexible attack detection.

While [11] evaluated a CNN-based model trained on 34

selected network features, achieving an accuracy of 83.89%

and an F1 score of 0.723. However, it struggled to detect

certain attack types (e.g., UDPLag, Portmap), highlighting the

need for careful feature selection and dataset balancing to

improve generalization.

In total, five studies, utilizing eight datasets and implement-

ing twelve DL or ML models, were evaluated for comparison

with this work. A summary of prior DDoS detection research

is provided in Table III, which highlights key datasets, tech-

niques, and performance outcomes.

V. METHOD

A simulation-based approach was chosen to safely evaluate

the impact of DDoS attacks on 5G infrastructure and vali-

date ML-based mitigation in a controlled environment. Public

datasets serve as baselines, while new datasets generated with

BoNeSi and Simu5G provide varied traffic for robustness

testing.

The investigation was structured into three main stages:

1) Dataset Generation: Creating synthetic network traffic

using both BoNeSi [19] and Simu5G [20].

2) Model Training and Evaluation: Adapting and bench-

marking ML models ( [12], [11]) using both public and

custom datasets.

3) Deployment in MEC: Testing the models in an MEC

application to assess real-time detection.

Figure 2 shows an architectural overview of this setup. The

goal is to test whether ML models can detect and mitigate

volumetric DDoS attacks in a simulated 5G network, using

only packet-level features and limited compute resources.

A. Dataset Generation Method

Three datasets were utilized to train and evaluate the detec-

tion models in this study. The first dataset, CICDDoS2019-
UDP, is a filtered subset of the publicly available CICD-

Fig. 2. The architectural overview of the project

DoS2019 dataset, containing only UDP flood traffic. It serves

as a reference dataset due to its frequent use in DDoS detection

literature. Traffic was filtered by attack intervals, timestamps,

and IP addresses using the LUCID parser.

To generate the second dataset, named BoNeSi+Simu5G,

malicious traffic was created using BoNeSi running within

a virtual Kali Linux environment. Each attack simulation

involved five bots transmitting UDP packets at data rates

between 25 and 45 Mbps, with varying packet sizes and

sampling rates (see Table IV). Captured packets were parsed

into feature data using the LUCID PyShark-based parser.

Benign traffic for this dataset was separately generated using

Simu5G.

The third dataset, Mixed Simu5G, was entirely generated

within the Simu5G simulator in OMNeT++ [21]. Benign

user equipment (UEs) employed low-rate UDP applications

(UdpBasicApp, VideoStreamClient), whereas mali-

cious UEs generated higher-rate UDP traffic by increasing

packet sizes and reducing transmission intervals. Traffic was

captured at the network’s central router. Simulations ran for

6000 seconds, producing several gigabytes of raw data.

All data processing and simulations were performed on a

standard Linux laptop (Lenovo IdeaPad Yoga, 16 GB RAM,

Intel i5). Dataset generation scripts and network configurations

are publicly accessible on GitHub for reproducibility1.

1https://github.com/karkha-0/LearingAtTheEdge-DDoSimu5G
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TABLE III. SUMMARY OF RELATED WORK ON DDOS DETECTION

Study Dataset Used Techniques Evaluated Best Performing Model Accuracy
[9] CSE-CIC-IDS2018 (AWS) Neural Networks (Keras) Neural Network 99.98%

[10] InSDN Deep Neural Networks (DNNs) in SDN DNN 99.98%

[10] CICIDS2018 Deep Neural Networks (DNNs) in SDN DNN 100%

[10] Kaggle DDoS Deep Neural Networks (DNNs) in SDN DNN 99.99%

[8] CICDDoS-2019 ANNs, LSTMs, SVM, Logistic Regression, Random Forests, Decision Trees ANN 85.1%

[8] CICDDoS-2019 ANNs, LSTMs, SVM, Logistic Regression, Random Forests, Decision Trees LSTM 98%

[11] CICDDoS-2019 KNN, CNN, XGBoost, SGD, Naive Bayes XGBoost 89.29%

[12] ISCX2012, CIC2017, CSECIC2018 CNN-Based Lightweight Detection CNN (Lucid) 98.88%

TABLE IV. BONESI MALICIOUS DATA GENERATION SETTING

BoNeSi Configuration Attack 1 Attack 2 Attack 3
# Bots 5 5 5
Goal Total Data rate (Mbps / bot) 25 35 45
Goal Total Data rate (B/s) / bot 3125000 4375000 5625000
Packet Size [B] 512 1024 1400
Sampling Rate 6104 4272 4018
Total Data Rate [Mbps] 125 175 225

B. Experimental Setup

1) DDoS Detection Model: Two open-source DDoS de-

tection frameworks, the LUCID framework [12] and a 1D-

CNN model from [11] (referred to as the Mohak model), were

selected due to their proven performance and publicly avail-

able implementations. Their implementations were obtained

from official GitHub repositories2 3 and adapted for binary

classification (benign vs. malicious).

LUCID’s parser (lucid_dataset_parser.py) was

used to preprocess both CICDDoS2019 and the newly gen-

erated datasets. Only UDP-flood packets from known attacker

IPs during the labeled intervals (10:53–11:03, 12:45–13:09)

[13] were retained. PCAP files were batch-processed into

balanced and normalized HDF5 datasets.

The LUCID CNN model applies Conv2D and Global-

MaxPooling2D layers with ReLU activation, followed by a

sigmoid-activated dense layer. Minor modifications were made

to configure the DOS2019_FLOWS dictionary for experiment-

specific IPs.

The Mohak model was refactored from its original Jupyter

notebook format into a modular Conv1dModel function for

compatibility with the LUCID preprocessing pipeline. It uses

two Conv1D layers followed by dense layers, with the final

layer adapted for binary output.

Each model was independently trained, validated, and

tested on three different datasets: CICDDoS2019-UDP,

BoNeSi+Simu5G, and Mixed Simu5G. The data was split into

training, validation, and test sets using the LUCID parser’s

default configuration, following an 80-10-10 split.

2) MEC Application: To enable real-time evaluation,

models were integrated into a custom MEC application

(PredictMec) in Simu5G. The application predictions were

triggered at fixed intervals (30s, 45s, 60s). This choice was

driven by two factors: (i) the current Simu5G MEC frame-

2https://github.com/doriguzzi/lucid-ddos
3https://github.com/mohak1/Detection-and-Classification-of-Distributed-

DoS-Attacks-using-Machine-Learning

work triggers Python-based inference synchronously, making

it more practical to schedule predictions at fixed simulation

times, and (ii) fixed intervals ensured consistent and com-

parable measurements across runs. More advanced triggering

mechanisms are possible, such as dynamic detection windows

that adapt to sudden spikes or anomalous trends in network

load. While such an approach would be more responsive in

operational settings, it was left for future work in order to

focus on demonstrating the end-to-end feasibility of the testing

framework.

Three 60-second simulation scenarios were run:

1) Baseline (no attack): Validates normal performance.

2) Attack only: Measures network stress under DDoS

without defense.

3) Attack + MEC prediction: Evaluates detection and

mitigation impact.

All scenarios used the same network setup, with minor vari-

ations. For the MEC implementation, the MecAppBase class

in the Simu5G source was extended to include PredictMec,

which handles scheduled predictions and UE communication.

MEC ran the model as a Python script at the edge. Simulation

parameters are shown in Table V.

Due to simulator limitations, packets exceeding specific data

rates were fragmented and dropped during the parsing process.

To avoid this, attack traffic was capped. Prediction windows

were implemented to limit analysis to recent packets. Since

traffic was captured at the router, manual filtering was required

to exclude irrelevant flows (e.g., remote server traffic). A more

robust setup would capture only inbound packets.

The attack mitigation mechanism was implemented as an

increase in the packet send interval for suspected attackers

rather than full packet blocking. This approach was selected

to minimize invasive modifications to the Simu5G forwarding

pipeline while still enabling a measurable reduction in attack

traffic; it also allowed for testing the model’s full detection

loop without risking simulator instability from mid-flow packet

drops. This simplified mitigation does not clear queued or in-

flight packets. Future work will implement more robust, dy-

namic, and load-responsive blocking strategies at the gNodeB

or UPF level to better reflect real-world operational defenses.

Resource usage (CPU, memory, runtime) was logged for

each prediction. These metrics provide insight into the effi-

ciency of different models and MEC configurations.
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TABLE V. SIMULATION PARAMETERS USED FOR EACH CONFIGURATION

Simulation Parameter Baseline – No Attack Baseline – With Attack Experiment – With Prediction and Blocking
# UEs 8 8 8

# VidUEs 2 2 2

# malUEs 0 5 5

# malVidUEs 0 5 5

UE messageLength uniform(16B, 512B) uniform(16B, 512B) uniform(16B, 512B)

UE sendInterval exponential(1s) exponential(1s) exponential(1s)

videoServer sendInterval 0.1s 0.1s 0.1s

videoServer PacketLen 1024 B 1024 B 1024 B

videoServer videoSize 200 MiB 200 MiB 200 MiB

malUE messageLength 1024 B 1024 B 1024 B

malUE sendInterval exponential(0.09s) exponential(0.09s) exponential(0.09s)

malVidUE messageLength 2048 B 2048 B 2048 B

malVidUE sendInterval exponential(0.09s) exponential(0.09s) exponential(0.09s)

Prediction Times 60s 60s 30s, 45s, 60s

Prediction Time Window 10s 10s 10s

VI. RESULTS

This section presents results on model performance during

training, generalization to new datasets, and the impact of

MEC-based deployment on network behavior.

A. Model Performance on CICDDoS2019-UDP

Both the LUCID and Mohak CNN models were first eval-

uated on the CICDDoS2019 UDP-flood test set:

• LUCID CNN achieved a validation accuracy of 96.98%

and an F1-score of 0.9686. The confusion matrix confirms

balanced performance with most benign and malicious

packets correctly classified.

• Mohak CNN reached 94.99% validation accuracy with

an F1-score of 0.9470.

Results confirmed the models’ effectiveness on the UDP-

flood traffic. Table VI summarizes the results and shows that

the Mohak CNN model achieved a higher F1-score and accu-

racy when classifying the UDP traffic from the CICDDoS2019

dataset compared to the entire mixed dataset, likely due to

simpler features and clearer patterns. In contrast, the LUCID

CNN did not improve on the UDP data, suggesting it was less

able to leverage simpler patterns or fewer features.

B. Generalization to New Datasets

Models were trained, validated, and tested separately on the

BoNeSi+Simu5G and Mixed Simu5G datasets. The models

exhibited varying levels of generalization performance on

these new datasets.

LUCID CNN classified all traffic as benign in both new

datasets (F1-score: 0), showing poor generalization. This in-

dicates that the model tuning was overly specialized to the

original CICDDoS2019 dataset features, limiting its ability

to generalize to the different traffic characteristics and attack

patterns in the simulated datasets. Consequently, LUCID CNN

was not considered further for MEC deployment.

The Mohak CNN also performed poorly on the

BoNeSi+Simu5G dataset (F1-score: 0.0055, accuracy:

49.2%), but in contrast, it demonstrated strong generalization

capability when evaluated on the Mixed Simu5G dataset

(F1-score: 0.8976, accuracy: 88.5%). The balanced confusion

matrix further supports its effectiveness. This suggests that the

features learned from CICDDoS2019-UDP were sufficiently

general to detect attacks in a dataset generated by Simu5G,

with high accuracy. While the BoNeSi+Simu5G dataset,

specifically Bonsei DDoS traffic, was significantly different

in features from the CICDDoS2019 dataset, this caused the

model to perform poorly.

A summary of these findings is provided in Table VII.

C. MEC Impact on Network Behavior

This section present the measured network metrics for

each simulation run, as well as the performance of the MEC

application hardware.

1) Network Load Results: The average incoming data rate

at the UPF varied slightly between each simulation run, as

shown in Table VIII. However, this measurement was the mean

over 60s, and doesn’t reflect MEC’s performance.

Figure 3a shows the expected baseline reading of the

incoming data rate to the UPF with no attack. Figure 3b

shows the same reading at the UPF, but with the incoming

attack starting to ramp up at about 8s. The Mohak model

setup (Figure 4) shows a slight decrease in network load. By

comparing the incoming data rate in the first 30 seconds and

the last 30 seconds, the data rate decreased from 623675.2 bps

to 601692 bps.

2) MEC Behavior, Prediction Times and HW Resource
Usage: As shown in Table VIII, all runs resulted in some false

positives. Even in the baseline scenario with no DDoS attack

traffic, benign UEs were incorrectly identified as malicious

at the 60-second prediction. Additionally, during experimental

runs, some malicious UEs were repeatedly flagged across

multiple prediction intervals, meaning they were detected as

malicious more than once. This double detection explains

why, for example, the Mohak experiment shows a total of 15

predictions despite the combined count of true positives and

false positives being only 11.

Table IX presents analysis time and hardware usage for each

ML model. These results serve as a useful reference for future

researchers comparing MEC implementations and ML models.
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TABLE VI. VALIDATION PERFORMANCE OF MOHAK AND LUCID MODELS ON CICDDOS2019-UDP

Model Evaluation Scenario Dataset F1-score Accuracy
Mohak Expected Performance CICDDoS2019 0.7131 0.8392
Mohak Actual Performance CICDDoS2019-UDP 0.9470 0.9499
Lucid Expected Performance CICDDoS2019 0.9939 0.9947
Lucid Actual Performance CICDDoS2019-UDP 0.9686 0.9698

TABLE VII. PREDICTION PERFORMANCE OF TRAINED MODELS ON NEWLY 
GENERATED SIMULATED DATASETS

Model Dataset F1-score Accuracy
Mohak bonesi + Simu5G 0.0055 0.4922
Mohak Mixed Simu5G 0.8976 0.8846
Lucid bonesi + Simu5G 0 0.5123
Lucid Mixed Simu5G 0 0.3790

(a) The baseline reading on the incoming data rate on the PPP
interface on the UPF, with no attack ongoing.

(b) The baseline reading, with attacking UEs, on the incoming data
rate on the ppp-interface on the UPF.

Fig. 3. The incoming data rate at the UPF with no predictions during the 
simulation

Fig. 4. The incoming data rate at the UPF with predictions at 30, 45 and 60 
seconds. The Mohak model is used to predict

TABLE VIII. MEC PREDICTION AND NETWORK RESULTS

Result Baseline
(No Attack)

Baseline
(With Attack)

Experiment
(Mohak)

UE Throughput [Mean] 1513.3 bps 2286.6 bps 929 bps

VidUE End-to-End De-
lay [Mean]

123 ms 121 ms 120 ms

UPF Incoming Data
rate [Mean]

20.39 kbps 766.42 kbps 612.63
kbps

Total Predictions 5 8 15

True Positives 0 4 6

False Positives 5 4 5

False Positive Rate (%) 100 50 45

TABLE IX. THE MEC’S AND ML MODEL’S PREDICTION TIMES AND 
HARDWARE RESOURCE USAGE

Result Experiment (Mohak)
1st Prediction Time [s] 10
2nd Prediction Time [s] 13
3rd Prediction Time [s] 14
CPU Usage 95–100%
Memory Usage [GB] 0.640

VII. DISCUSSION

A. Dataset Generation and Utility

Two datasets were generated to evaluate whether synthetic

traffic created in simulation can realistically be used not only

for offline model training, but also for operational deployment

testing in a MEC-enabled 5G environment. The first dataset

combined benign Simu5G traffic with BoNeSi-generated high-

rate UDP flood attacks. The second, “Mixed Simu5G”, was

created entirely within Simu5G, with both benign and mali-

cious traffic originating from simulated UEs.

An important objective of this stage was to investigate

whether synthetic datasets generated within a 5G simulator

could closely replicate the key traffic characteristics of the

benchmark CICDOS2019 dataset (filtered to UDP traffic),

such that the resulting detector performance would be com-

parable. In this sense, the dataset creation process itself is

an integral part of the proposed methodology, as it enables a

unified framework where datasets for both training and realis-

tic deployment evaluation can be produced under controlled,

reproducible conditions.

In the presented experiments, the Mixed Simu5G dataset

achieved behavior broadly consistent with CICDDoS2019-

UDP for one of the models tested (Mohak CNN), indi-

cating that the synthetic generation process can yield us-

able approximations of benchmark datasets. In contrast, the

BoNeSi+Simu5G dataset led to poor detection results, suggest-

ing that differences in packet timing, structure, or statistical

feature distributions can significantly affect transferability.
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These outcomes both validate the feasibility of the approach

and highlight the need for more advanced synthetic traffic

generation methods to consistently match benchmark datasets.

B. Generalization of Detection Models

The LUCID CNN performed well on the CICDDoS2019-

UDP dataset but failed on the new synthetic traffic, indicating

model overfitting to the original training dataset. Mohak’s

CNN also failed on BoNeSi+Simu5G but succeeded on the

Mixed Simu5G dataset. This highlights a key point: models

trained on one dataset may not perform very well even when

trained on a similar dataset.

It is important to clarify that the generalization experiments

here are not simply a conventional cross-dataset test, but rather

an assessment of how well benchmark-trained models respond

to datasets synthetically generated within the simulation envi-

ronment to resemble the benchmark’s statistical and structural

properties. In other words, the goal was to test whether

the synthetic dataset generation process could create realistic

traffic patterns that both reflect benchmark characteristics and

can be used for operational deployment evaluation. While the

Mixed Simu5G dataset showed such alignment for the Mohak

model, the BoNeSi+Simu5G dataset did not, underlining the

variability in reproducing feature distributions and motivating

future optimization of the dataset generation strategies.

C. MEC Prediction and Implementation Gaps

MEC integration showed potential but suffered from issues:

• Predictions were based on static time intervals rather than

dynamic traffic features.

• Some UEs were misclassified due to overly simplistic

criteria (e.g., only packet length).

• Repeated predictions occurred due to queued messages

in INET’s UdpBasicApp.

Comparing the ML results to the MEC predictions reveals a

significant disparity. The ML models performed much worse

when deployed in the MEC, due to several underlying factors.

First, the prediction accuracy improved, and the UPF bitrate

decreased when the packet sizes of benign UEs were reduced

or those of malicious UEs were increased. This indicates that

the model primarily relied on packet length as its distinguish-

ing feature. Second, including source–destination bitrate in the

model would likely improve detection, due to the fragmenta-

tion behavior of IPv4. Finally, as noted in Section VI, the MEC

repeatedly flagged double-flagged malicious UEs, likely due

to the INET UdpBasicApp, which queues messages. Even

after a UE was silenced, pending messages continued to be

sent. This issue could be addressed by blocking UEs at the

base station or UPF level rather than relying on silencing.

D. Simulation Constraints

The simulation itself has significant limitations as the num-

ber of devices, benign or otherwise, had to be kept fairly low

due to hardware constraints. Especially the malicious UEs

required a lot of CPU to run effectively. In this work, the

botnet consisted of only ten devices, whereas real botnets are

typically much larger.
Furthermore, rather than outright blocking malicious de-

vices, the MEC implementation mitigated their impact by

increasing the UEs’ send intervals to very high values, ef-

fectively suppressing attack traffic within the current frame-

work. This practical simplification was chosen to demonstrate

the method’s feasibility. However, it reduces realism since

real MEC-based defenses would typically rely on adaptive

prediction intervals and more robust mitigation strategies,

such as selective blocking or traffic filtering at the gNB/UPF.

Exploring these alternatives represents an important direction

for future work.

VIII. CONCLUSIONS AND FUTURE WORK

This work presented a simulation-driven approach for

evaluating the transferability and operational feasibility of

ML-based DDoS detection models in realistic 5G MEC en-

vironments. In the defined experiments, the dataset produced

with Simu5G aligned reasonably well with one of the eval-

uated CNN models, supporting effective detection, whereas

the BoNeSi-generated dataset differed significantly from the

CICDDoS2019 benchmark used for model training, leading

to reduced performance. This outcome illustrates both the

potential and the challenges of generating synthetic traffic that

accurately reflects established benchmark datasets.
Future optimization will focus on creating synthetic datasets

that are suitable for evaluating models under deployment con-

ditions while closely resembling benchmark datasets in their

key statistical and structural properties. To achieve this, future

work shall explore advanced traffic-generation and feature-

modeling techniques, complemented by comparison metrics

such as statistical similarity indices, and feature-distribution

matching to ensure equivalence to benchmark datasets.
In parallel, refinements to the current implementation, par-

ticularly in attack mitigation mechanisms, will be pursued to

enable dynamic and fine-grained responses. Such enhance-

ments will allow a more precise assessment of mitigation

effects on critical 5G performance metrics.
While this study focused on high-rate UDP flooding as

a test case, the methodology developed here can be applied

to other attack types. Future extensions will include, a more

comprehensive attack scenario coverage and the generation of

synthetic dataset variants for low-rate and application-layer

DDoS traffic, enabling the evaluation of ML-based detection

models across a broader spectrum of threat scenarios in

realistic 5G deployments.
Overall, the study confirms the feasibility of using a con-

trolled simulation-based framework to assess not only the per-

formance of ML-based DDoS defenses but also their readiness

for operational deployment, providing a reproducible method

for evaluating robust, adaptive, and resource-aware network

protection strategies.
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