
Modeling a CyberImmune Architecture:
The Case of Open Source Intelligence Systems

Kirill Ivashnev, Dmitry Korzun
Petrozavodsk State University (PetrSU)

Petrozavodsk, Russia

ivashnev@cs.petrsu.ru, dkorzun@cs.karelia.ru

Abstract—Software development with cybersecurity require-
ments attracts much attention in Internet Open-Source Intelli-
gence (OSINT) systems due to high uncertainty, data redundancy,
and unreliability in automated information extraction and anal-
ysis. In this paper, we introduce a method for making “cyber
immune” the architecture for a given OSINT system. Applying
the method a developer analyzes all architectural components
for the vulnerability. A graph-based model is constructed based
on trust level of architectural components and their impact on
security metrics. Then, the most important components can be
protected with specified security mechanisms, leading to the re-
quired CyberImmune architecture. Our method is demonstrated
on a real complicated OSINT system (regular monitoring of open
web news about geospatial territory). A unique property is that
our method can be applied on early phases of system development
when no much knowledge (metrics) is available in respect to code
size and complexity.

I. INTRODUCTION

Software development with cybersecurity requirements at-

tracts much attention in Internet Open-Source Intelligence

(OSINT) systems due to high uncertainty, data redundancy,

and unreliability in automated information extraction and anal-

ysis. An OSINT system constitute a valuable tool for collecting

and analyzing data from online sources. A particular case is

news aggregation platforms capable of thematic classification,

filtering, and summarization [1], [2]. The vast amount of data

processed within an OSINT system leads to high information

overload, which complicates the extraction of relevant and

reliable content [3].

Beyond conventional risks of unauthorized access, data

breaches, and manipulation, particular emphasis must be

placed on the accuracy and contextual relevance of collected

information. An additional challenge arises from the increasing

reliance on the Artificial Intelligence (AI) technology for

the classification, filtering, and aggregation of OSINT data.

Such an OSINT system becomes vulnerable to adversarial

influences, including data poisoning, sample substitution, and

model inversion attacks, which threaten both the reliability of

processing and the integrity of derived insights [4].

Existing protection methods are typically applied at the

operational stage, and architectural vulnerabilities are not

explicitly addressed. An alternative is the CyberImmune de-

velopment approach [5], which implements the well-known

Secure by Design concept. The CyberImmune approach ap-

plies the MILS approach1 to stratify security levels [6] The

CyberImmune approach employs policies from the FLASK

security architecture (Flux Advanced Security Kernel) to en-

force controlled inter-component interactions [7]. Neverthe-

less, methodological foundations for such architectures remain

underdeveloped, and a key unresolved issue lies in establishing

criteria for assessing vulnerable components within a given

system architecture. Notably, assessing the vulnerability is

problematic on early phases of system development, when

no much knowledge (metrics) is available in respect to code

volume and complexity.
The present research aims to address the discussed limi-

tations of existing methods by developing a novel method

for identifying and assessing vulnerable components in the

architecture of a given OSINT system. As a reference case,

we consider a situational monitoring system for some territory

with open-source data and AI modules. The application of the

proposed method to the architecture of this system demon-

strates ability to detect architectural weaknesses. Building on

our earlier work on digital modeling platforms for territory

monitoring and smart services [8], this study extends the

methodology toward security-focused architectural analysis of

AI-driven OSINT systems.
The proposed method identifies vulnerable architectural

components based on their trust level and impact on security

metrics. The identification uses a graph-based model to assess

a given system architecture. The model represents directed

interactions between system components. Then, the most im-

portant components can be protected with developing specified

security mechanisms, leading to the required CyberImmune

architecture. Basically, the method includes the following

steps.

• The architecture of a given OSINT system is represented

using a weighted graph.

• A quantitative vulnerability metric is proposed using

algorithms of data flow analysis.

• Vulnerable components are identified and assessed using

the metric and defined security policies.

The rest of the paper is organized as follows. Section II

provides an overview of work related to OSINT system se-

1The origin of the term “MILS” was an acronym standing for “Multiple
Independent Levels of Security/Safety”. Today it is used as a proper name for
the approach that starts with partitioning the system under design into isolated
compartments, or security domains.

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 112 --

curity, vulnerability assessment methods, and current research

challenges. Section III briefly introduces the CyberImmune

development approach. Section IV describes the assessment

method for identifying vulnerable components in an OSINT

system architecture. Section V analyzes properties of the

proposed method using a reference case—a real complicated

OSINT system for territorial monitoring with AI modules.

Section VI considers method’s implications, including its

limitations, strengths, and scalability. Section VII summarizes

the key findings of this study.

II. RELATED WORK

Understanding the current state of research on OSINT

system security and architectural vulnerability assessment is

essential to position the present study. Existing literature

addresses OSINT vulnerabilities, security requirements, and

research challenges of OSINT development.

Prior studies have identified major risks, including unau-

thorized access and dissemination of sensitive information,

breaches of user privacy [9], including identity theft, finan-

cial fraud [10], malware propagation, data alteration and the

distribution of misleading or false information [11]. Assessing

the reliability and credibility of OSINT data presents a signif-

icant challenge, as publicly available sources can be biased,

incomplete, or deliberately misleading.

Studies also address the requirements for OSINT systems,

the implementation of which can mitigate the aforementioned

threats. Proposed measures include traditional information

security mechanisms such as data encryption [12], access

control and backups [13], as well as proactive monitoring and

threat detection strategies [14]. These approaches are often

reactive, focus on individual data elements rather than inter-

component interactions and provide limited protection against

architectural vulnerabilities. In our solution, we propose iden-

tifying and assessing vulnerable OSINT components at the

architectural level and quantifying risk.

Recent surveys highlight key research trends in AI-OSINT,

including model robustness against adversarial attacks [15],

the integration of explainable AI to improve transparency

and trust [16], and the ethical and social implications of

large-scale OSINT deployment [17]. A particularly press-

ing issue is the lack of experimental validation: few works

provide reproducible studies or controlled testbeds to assess

robustness, security, and explainability of AI-driven OSINT.

Emerging directions such as digital twins and simulation-based

evaluation offer promising opportunities to bridge this gap

and enable systematic verification of system reliability under

realistic conditions [3].

III. BACKGROUND

The CyberImmune development approach [5] implements

the Secure by Design concept. An example of risk analysis,

description of the security concept, and system architecture

design can be found in [18]. The CyberImmune approach

needs identification and assessing the vulnerability of archi-

tectural components. In this section, we apply the following

formalization based on set theory, discrete mathematics, and

logical implication technique.

The CyberImmune approach is applied stepwise in soft-

ware development. Step 1. Define the security concept of

the system. Let A = {a1, a2, . . . , aNA
} be a set of NA

critical system assets, F = {f1, f2, . . . , fNF
} be a set of NF

functional requirements, and E = {e1, e2, . . . , eNE} be a set

of NE undesirable events (risks, threats) that may compromise

the assets. The outcome of this stage is to identify elements

demanding particular focus during the developmental process.

Step 2. Define the security goals and security assumptions

to specify desired protection outcomes and the conditions

under which they can be achieved. Let G = {g1, g2, . . . , gNG}
denote a set of NG security goals that the system architecture

must ensure. Each security goal is formulated for NAE =
NANE asset–event pairs, i.e.,

gi = gi(a, e) ∀a ∈ A, ∀e ∈ E for i = 1, 2, . . . NG.

Let H = {h1, h2, . . . , hNH
} denote a set of NH security

assumptions (hypotheses) that considered as security goals for

external systems. Each security assumption is formulated for

NAE asset–event pairs, i.e.,

hi = hi(a, e) ∀a ∈ A, ∀e ∈ E for i = 1, 2, . . . NH.

The following property must be satisfied in the security

concept,

∀g ∈ G ∃Hg ⊆ H s.t. Hg ⇒ g, (1)

i.e., for each goal, there are assumptions that support achieving

the goal.

Step 3. Design the system architecture based on separating

the security domains. Domains correspond to system compo-

nents and trust zones. Domains are classified into three cate-

gories: a) trusted domains DTR, ensuring high data integrity;

b) integrity-enhancing domains DIN, providing security poli-

cies; and c) untrusted domains DUN, assumed potentially

compromised. In the system, the trusted computing base

(TCB) and untrusted computing base (UCB) are combined,

D = DTR ∪DIN ∪DUN. (2)

The architecture represents interactions among domains, spec-

ifying permitted and prohibited communications in the form

of security policies.

Step 4. Classify the security domains according to their

complexity and code size, i.e.,

γ(d)→ {SS,MM,CL}. (3)

Each security domain d ∈ D belongs to one of the three

classes: SS (simple, small), MM (medium), CL (complex,

large). Domains for TCB are considered as simple and small.

This rule supports verification and reduces potential architec-

tural vulnerabilities.

Step 5. Construct the thread model of potential attacks

against the security goals. Let S = {s1(g), s2(g), . . . , sNS
(g)}

denote a set of NS negative scenarios for g ∈ G. Any scenario

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 113 --

s(g) provides a rationale for architectural policy decisions,

particularly in selecting TCB domains.

Step 6. Refine the architectural policy based on domain

classification. CL domains are to be decomposed, and code

is to be relocated outside TCB when feasible.

An example is considered further in Section V. The de-

scribed procedure results in the architecture augmented with

security domains (2) and their complexity classes (3). Based

on this knowledge, the most important components can be

protected with developing additional security mechanisms.

The domain separation and classification would benefit

from quantitative assessment. The next section describes the

proposed method for identifying vulnerable components in a

given system architecture.

IV. OUR METHOD FOR IDENTIFYING VULNERABLE

SYSTEM COMPONENTS

The CyberImmune approach does not provide a mathemat-

ical model and formal procedure for identifying vulnerable

components based on quantitative assessment models. In fact,

experts develop security protection model (based on available

code metrics and engineering reasoning)

(A,F,E,G(A,E), H(A,E), S(G), D)

to describe critical assets A, functional requirements F , un-

desirable events E, security goals G, security assumptions H ,

negative scenarios S, and untrusted and trusted domains D.

The model satisfies (1), separates the computing base into

untrusted and trusted (2), and shows the complexity and size

of the domains (3).

A. Graph-based architectural model

Since security domains d ∈ D one-to-one correspond to

system components (modules), the system architecture can be

represented as a directed graph Garh = (D,L), where D
corresponds to nodes of the graph and L denotes the set of

links (control and data flows between components).

Classification (3) needs knowledge on complexity and size

of the computing base. To address this, link weights wl =
w(d1, d2) for l = (d1, d2) ∈ L are introduced based on such

categorical data flow characteristics as operational efficiency,

data volume, and priority level, see Table I.

TABLE I. CATEGORIAL ESTIMATE OF DATA STREAMS

Category Description
Operational efficiency: set boundaries 0 < αvfr < αfrq < αrar ≤ 1

Very Frequent (VF) Updated in real time, in the background, with
minimal delay.

Frequent (F) Updated every few hours.
Rare (R) Updated in specific cases.

Data Volume: set boundaries 0 < βrqt < βrsp ≤ 1
Request (D1) Data request, e.g., API or Modbus.
Response Data (D2) Data of varying size.

Priority Levels: set boundaries 0 < γlow < γhgh ≤ 1
Priority Level L1 Minimal transmission delay - data retrieval from

storage, authentication.
Priority Level L2 Delays acceptable during data update - calcula-

tions, classification, or unavailability of external
data sources.

On early phases of system development no much knowledge

is available in respect to the code size and complexity. An ex-

pert can estimate weight using categorical characteristics with

the following rules. In advance, the expert heuristically selects

boundary values α (efficiency), β (volume), and γ (priority)

to model the categories of data flows, see Table I. Then for

each l ∈ L the expert selects: a) αl from given boundary

parameters {αvfr, αfrq, αrar}, b) βl from {βrqt, βrsp}, and c) γl
from {γlow, γhgh}.

The fixed boundary parameters are normalized. The total

link weight is estimated as the product

wl = αlβlγl for l ∈ L, 0 < wl ≤ 1. (4)

According to (4) higher weight is assigned to more critical

data stream.

B. Domain Classification Model

To implement (3), we employ graph centrality character-

istics. Our model assumption is that the vulnerability of

a component d ∈ D depends on the structural complexity

of the system and on the code volume of d. Well-known

graph centrality metrics are considered possible assets for the

vulnerability [19].

In particular, let the closeness centrality be interpreted

as measure of domain accessibility based on the weighted

shortest path length.

Ccls(d) =
1∑

d′ �=d

ρ(d, d′)
, d ∈ D, (5)

where ρ(d, d′) denotes the weighted shortest path length

between nodes d and d′. The interpretation supports the

observation that domains with higher accessibility in the

system topology are likely to play more significant role in data

transmission. Therefore, those domains correspond to critical

components in terms of meeting functional requirements and

maintaining stability.

In addition, we consider the betweenness centrality, which

measures the share of domain involvement in data transmission

between other components.

Cbtw(d) =
∑

d′ �=d �=d′′

σd′d′′(d)

σd′d′′
, d ∈ D, (6)

where σd′d′′ is the total number of weighted paths between

components d′ and d′′ and σd′d′′(d) is the number of the paths

d′ → d′′ passing through d.

Let us introduce the composed asset based on metrics (5)

and (6).

C(d) = λ1

∑
l∈L(d)

wl+λ2Cbtw(d)+λ3Cbtw(d), d ∈ D, (7)

where the coefficients λ1 > 0, λ2 > 0, λ3 > 0 define the

relative contribution of each factor.

Metric (7) combines the local load of d, the routing influ-

ence, and the accessibility. The contribution coefficients are set

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 114 --

empirically according to the system use scenario. Examples of

empirical values are provided in Section V-B.

Classification (3) is implemented using a threshold function

for (7).

κ(d) =

⎧⎪⎨
⎪⎩
SS, C(d) < θ1

MM, θ1 ≤ C(d) < θ2

CL, C(d) ≥ θ2

(8)

where the thresholds θ1 and θ2 define the boundaries of

complexity levels. The thresholds can be set either empirically

or using expert consideration (e.g., as the 33rd and 66th

percentiles of the C(d) distribution in graph G). Examples

of threshold setting, including values derived from percentile-

based distribution analysis, are shown in Section V-B.

The use of functions (7) and (8) provides a quantitative

technique for ranking the domains by complexity and code

size, i.e., serving as an indicator for excluding components

from the TCB.

C. Guidelines for Architectural Policy

The final stage of the CyberImmune development approach

establishes the architectural policy, defining domain interac-

tions under operational constraints, usage scenarios, and TCB

minimization. We derive the rules from the graph-based and

domain classification models. Large and complex domains are

to be restricted to non-critical data due to testing limitations

and high operational costs. Small domains serving as proxy

entities are to be introduced to filter data for such components.

The architectural policy development proceeds in three

stages. Stage I labels all components as untrusted (d ∈ DUN).

Stage II applies initial TCB labeling based on security goals,

with updates guided by functions (7) and (8). The key rules

are the following.

• Components performing local computation are labeled as

d ∈ DUN ;

• Components receiving data from untrusted domains are

labeled as d ∈ DIN ;

• Data flows from d ∈ DIN are labeled as high-integrity;

• Components processing only high-integrity data are la-

beled as d ∈ DTR.

In Stage III, domain labels are applied to the architectural

diagram. CL domains assigned to DIN or DTR are either

decomposed into smaller ones or assigned proxy entities to

maintain TCB minimization.

D. Algorithm for Identifying Vulnerable Components and
Defining Architectural Policy

Based on the proposed graph-based architectural and do-

main classification models, we formulate a stepwise algorithm

to identify vulnerable system components and define the archi-

tectural policy in accordance with the CyberImmune develop-

ment approach. The method encompasses graph construction,

categorical evaluation of interactions, computation of weighted

complexity metrics, and domain classification. Results provide

the basis for component labeling and policy formation while

minimizing the trusted computing base (TCB). The process

for identifying vulnerable components and defining the archi-

tectural policy is outlined in Algorithm 1.

Algorithm 1 CyberImmune Architectural Analysis

1: Define sets A and E, G and H;

2: Represent the system architecture as a diagram containing

domains and data flows between them;

3: for all d ∈ D do
4: Label d as DUN

5: end for
6: for all d ∈ D do
7: Apply initial class label according to security goals;

8: end for
9: Represent the system as a graph Garh = (D,L);

10: for all links l ∈ L do
11: Determine categorical characteristics αl, βl, γl based

on boundary values

12: Compute edge weight wl using (4)

13: end for
14: Set coefficients λ1, λ2, λ3 for C(d) (7)

15: Set thresholds θ1, θ2 for κ(d) (8)

16: for all domains d ∈ V do
17: Compute C(d) using (7)

18: Compute κ(d) using (8)

19: Label class κ(d) on the architectural diagram

20: end for
21: Define architectural policy using values from (7), (8) and

rules in Section C

V. CYBERIMMUNE ARCHITECTURE FOR NORTHERN

SITUATIONAL MONITORING SYSTEM

The methodological principles of CyberImmune architec-

ture design are illustrated using the Northern Situational

Monitoring System as a case study. It should be noted that

detailed implementation aspects of the monitoring platform

are intentionally omitted, as they are the subject of a sepa-

rate forthcoming study. Here, the case study serves only to

illustrate the applicability and effectiveness of the proposed

graph-based approach.

A. System Overview

The system under study is an OSINT-based platform for

monitoring events within a geographically and thematically

constrained domain. Its primary function is the automated

collection and analysis of Northern-related publications from

news sources in foreign languages.

Each source maintains a collection of materials, including

news articles and reports, which are regularly updated. The

system automatically scans all source types, filtering data

according to geographic regions to track changes in the in-

formation environment across different Northern areas. Newly

discovered materials are uploaded into the system for further

analysis, with duplicate content being automatically excluded.

Users can define and modify a list of topics and associated

keywords. Based on the collected data, the system generates

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 115 --

Fig. 1. The initial architecture of the system

digests for selected time periods, categorizing content the-

matically while preserving geographic context. Each digest

entry is associated with one or more topics defined in the

system’s settings [20]. Automatic summarization generates

abstracts highlighting key points, with full-text translations and

summaries.

The system supports filtering of materials by topic, digest

date, and data source. It is implemented as a web-based

platform with authenticated user access via login credentials.

The system architecture is illustrated in Figure 1.

The architectural diagram annotates data flow characteristics

according to Table I using the notation OxDyLz, where x

denotes operational efficiency (O1-O3), y - data volume (D1-

D2) and z - priority (L1-L2). These attributes determine the

weights of edges in the graph-based model of the system. The

diagram was designed using the app.diagrams.net service.

B. Graph-based model

The graph model in Figure 2 was generated automatically

from the XML file of the architectural diagram exported

from app.diagrams.net. A Python script was implemented

to parse system modules and data flows, extract categorical

attributes (O,D,L), and compute edge weights according to

model (4). The architecture was represented as a directed graph

G = (V,E) using the NetworkX library. For each node,

the complexity score was computed (7) using coefficients

λ1 = 0.6;λ2 = 0.3;λ3 = 0.1. The resulting graph was

visualized with PyVis, applying a color scheme where green

nodes represent low complexity (C(v) ≤ 0.2), yellow nodes

medium complexity (0.2 < C(v) ≤ 0.4), and red nodes high

complexity (C(v) ≥ 0.4).

External entities, such as the user (usr), the Google Search

Engine (gse), and RSS parsers (rss), are included in the graph

to illustrate interactions with the system; however, they are not

part of the internal architectural model and are therefore not

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 116 --

Fig. 2. Graph-based model of the system

subject to CyberImmune design principles.

C. CyberImmune system architecture

Rules for refining the system architecture are defined based

on the computed C(v) values. For CL domains, only non-

critical data is permitted due to limitations in comprehensive

testing and the high cost of such operations. To address this

limitation, proxy SS domains responsible for filtering and data

validation are introduced.

Considering the above details, a CyberImmune
Northern Situational Monitoring System architecture was

designed (Fig. 3). Initially, domains d ∈ D were established and
assigned dimensional classes based on (8). Subsequently, the
TCB was defined according to CyberImmune principles. All
components were considered untrusted DUN . Elements of
DUN and DIN were then organized to satisfy the system
security objectives G while minimizing the TCB size.

Modules included in DIN consist of web interface com-

ponents, website parsers, the GoogleSearch module, RSS

parsers, command modules, and the password controller. These

domains, with SS class label according to C(v), can be

incorporated into the TCB without violating the CyberImmune

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 117 --

Fig. 3. CyberImmune system architecture

principles. Additionally, several modules such as translation

and migration components were classified as DTR due to their

low complexity and small size.

Subsequently, data flows from CL-labeled domains were

analyzed. In parts of the system where low-integrity data could

compromise security goals, complex modules were decom-

posed and proxy entities were introduced to validate incoming

data. For instance, improper handling of low-integrity data

from duplication, summarization, or parsing modules when

interfaced with the data management system could compro-

mise original news content. To prevent this, SS-labeled proxy

domains were introduced to ensure control and validation (e.g.,

duplicate check validation, classifier validation). The same

principle was applied to access control domains, including

Registration controller, Login controller, Guard, Password

controller . Proxy entities are highlighted in bold in the

architectural diagram.

The case study conducted on the Northern Situational

Monitoring System serves as a comprehensive and developed

example. This analysis, which involves mapping a realistic

architecture with multiple complex data flows and module

interactions effectively demonstrates the practical feasibility

and interpretability of the proposed methodology for architec-

tural decision-making. The derivation of parameters for (7) and

(8) followed by subsequent architectural refinement provides

prima facie evidence of the method’s applicability in early

design phases, consistent with the practice of using developed

case studies to validate conceptual frameworks in complex

engineering domains [21].

VI. DISCUSSION

The presented case study in Section V serves to demonstrate

the practical applicability of the proposed methodology. A key

advantage of our approach, in comparison with existing works,

lies in its ability to generate an initial distribution of vulnerable

components into three complexity classes. This is achieved

based solely on the high-level system structure (graph topol-

ogy) and its integration characteristics, without requiring prior

detailed knowledge of software implementation. Furthermore,

the use of graph centrality metrics provides a comprehensive

complexity assessment, synthesizing the influence of local

activity, accessibility and the component’s routing influence.

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 118 --

The proposed method inherently supports scalability and

applicability to large and complex distributed architectures.

Since the method operates on the high-level architectural

graph, its computational complexity is primarily determined

by the graph analysis algorithms, specifically the calculation of

weighted centrality metrics. These standard graph algorithms

exhibit well-established polynomial time complexity for dense

graphs, which can be optimized for sparse graphs. Given that

architectural graphs are typically sparse even for large systems,

the computational burden remains tractable and does not limit

the model’s application to large-scale industrial or distributed

systems. Furthermore, the use of categorical data for defining

edge weights ensures that the model is agnostic to the system’s

size and remains applicable during the early architectural

design stages. This characteristic makes the method suitable

for initial TCB minimization and vulnerability prioritization

within complex distributed environments.

As future work, we plan to conduct a full-scale experi-

mental study for the quantitative validation of the proposed

methodology. The experiment will be based on a real-world

implementation of the system architecture used in the Case

Study. This research will involve two main stages. We will

conduct a series of simulations covering various attack and

load scenarios to quantitatively assess system resilience and

performance. Experimental tests will be performed on two

system variants: the Original variant (control group) and

an Optimized variant, where the set of defended modules

is prioritized based on the complexity scores derived from

the proposed method. Comparison of key metrics, such as

recovery time or availability reduction will empirically confirm

effectiveness of the method in enhancing system resilience.

VII. CONCLUSION

This study presented our graph-based method for identify-

ing and assessing vulnerable components for architecture of

OSINT systems. The key contribution lies in the integration

of CyberImmune development approach, graph-based model-

ing, domain classification modeling, and architectural policy

rules into a unified framework that enables identification of

vulnerable components and minimization of the TCB. The

proposed approach extends beyond traditional architectural

analysis by introducing proxy-entities to ensure resilience of

complex domains, thereby addressing the critical challenge of

trust in OSINT systems.

The method is illustrated on a case study—OSINT system

that implements regular monitoring of open web news about

Northern territory. We acknowledge the necessity for quanti-

tative validation. The method’s inherent scalability, based on

well-established polynomial-time graph algorithms, suggests

its applicability to large-scale and distributed architectures.

Our research plan is to focus on an experimental vali-

dation utilizing a controlled microservice testbed based on

the system architecture introduced in this paper. Based on

experimental results, the methodology could be applied to the

design and development of many other OSINT systems. Our

further research may explore the integration of trustworthy AI

components within OSINT systems. Leveraging AI (operate

reliably and transparently in critical functions) represents a

promising direction for enhancing system adaptability, auto-

mated decision-making, and overall trustworthiness, aligning

with current trends in both AI and cybersecurity development.

ACKNOWLEDGEMENT

The research is implemented with financial support of the

Evgeny Kaspersky Scholarship, provided by the Gennady

Komissarov Foundation for the Support of Young Scientists.

The R&D results are transferred to Center for Top-level

Educational Programs in Information Technology at PetrSU.

REFERENCES

[1] K. Sundaramoorthy, R. Durga, and S. Nagadarshini, “Newsone—an
aggregation system for news using web scraping method,” in 2017
International Conference on Technical Advancements in Computers and
Communications (ICTACC). IEEE, 2017, pp. 136–140.

[2] N. L. Venugopal, Visala et al., “Advanced news archiving system with
machine learning-driven web scraping and AI-powered summarization
using T5, Pegasus, BERT and BART architectures,” Int. J. Exp. Res.
Rev., vol. 46, pp. 212–221, 2024.

[3] Y. W. Hwang et al., “Current status and security trend of OSINT,”
Wireless Communications and Mobile Computing, vol. 2022, no. 1, p.
1290129, 2022.

[4] H. Xu, Y. Li, W. Jin, and J. Tang, “Adversarial attacks and defenses:
Frontiers, advances and practice,” in Proceedings of the 26th Interna-
tional Conference on Knowledge Discovery, Virtual Event, CA, USA,
2020, pp. 3541–3542.

[5] S. P. Sobolev, “Cyber immune development approach. Microser-
vices based illustration,” Vestnik Sankt-Peterburgskogo Universiteta.
Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya,
vol. 20, no. 1, pp. 52–61, 2024.

[6] R. J. DeLong and E. Rudina, MILS Architectural Approach Supporting
Trustworthiness of the IIoT Solutions: IIC Whitepaper. Boston:
Industrial Internet Consortium, 2021.

[7] R. Spencer, S. D. Smalley, P. Loscocco, M. Hibler, D. G. Andersen,
and J. Lepreau, “The Flask Security Architecture: System Support for
Diverse Security Policies,” in Proceedings of the 8th USENIX Security
Symposium. Washington, DC, USA: USENIX, 1999, pp. 23–36.

[8] K.Ivashnev and D.Korzun, “Digital modeling of territory for smart
e-tourism services,” in Conference of Open Innovations Association,
FRUCT, no. 35, 2024, pp. 805–811, eDN YUEAPG.

[9] M. Siddula, Y. Li et al., “Privacy-enhancing preferential LBS query
for mobile social network users,” Wireless Communications and Mobile
Computing, vol. 2020, pp. 1–13, 2020.

[10] C. Su, “Big data security and privacy protection,” in Proceedings of the
2019 International Conference on Virtual Reality and Intelligent Systems
(ICVRIS), Jishou, China, 2019, pp. 87–89.

[11] Z. Avrahami, M. Zwilling et al., “Leveraging OSINT for Advanced
Proactive Cybersecurity: Strategies and Solutions,” IEEE Access, vol. 13,
pp. 154 229–154 250, 2025.

[12] E. Nonum, O.Avwokuruaye et al., “Role of open source intelligence
(osint) in cybersecurity and threat analysis,” International Journal of
Latest Technology in Engineering, Management & Applied Science,
vol. 14, no. 3, pp. 189–200, 2025.

[13] J. Zhang and H. Li, “Research and implementation of a data backup
and recovery system for important business areas,” in Proceedings of
the 2017 9th International Conference on Intelligent Human-Machine
Systems and Cybernetics (IHMSC), vol. 2, Hangzhou, China, 2017, pp.
432–437.

[14] T. O. Browne, M. Abedin, and M. J. M. Chowdhury, “A systematic
review on research utilising artificial intelligence for open-source in-
telligence (OSINT) applications,” International Journal of Information
Security, vol. 23, pp. 2911–2938, 2024.

[15] O. Obioha-Val, T. I. Lawal et al., “Investigating the feasibility and
risks of leveraging artificial intelligence and open source intelligence
to manage predictive cyber threat models,” Journal of Engineering
Research and Reports, 2025, to be published.

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 119 --

[16] R. Ghioni, M. Taddeo, and L. Floridi, “Open source intelligence and AI:
A systematic review of the GELSI literature,” AI & Society, pp. 1–16,
2023.

[17] T. M. Kolade, O. Obioha-Val et al., “AI-driven open source intelligence
in cyber defense: A double-edged sword for national security,” Asian
Journal of Research in Computer Science, 2025, to be published.

[18] M. Pavlov, E. Rybin, K. Ivashnev et al., “Real-time industrial automated
video analytics system for welding defect detection,” in Conference of
Open Innovations Association, FRUCT, no. 36, 2024, pp. 585–592, eDN
QZLIUV.

[19] A. H. A. T. Nguyen and A. M. H. Teixeira, “Centrality-based security

allocation in networked control systems,” in International Conference on
Critical Information Infrastructures Security. Cham: Springer Nature
Switzerland, 2024, pp. 212–230.

[20] K. Ivashnev and D. Korzun, “Text classification of news articles based
on keyword sets,” in Digital Technologies in Education, Science, and
Society: Proceedings of the XVII All-Russian Scientific and Practical
Conference. Petrozavodsk, Russia: Petrozavodsk State University, 2023,
pp. 45–48, conference abstract, November 22–24, 2023.

[21] S. Sengupta, A. Kanjilal, and S. Bhattacharya, “Measuring complexity of
component based architecture: a graph based approach,” ACM SIGSOFT
Software Engineering Notes, vol. 36, no. 1, pp. 1–10, 2011.

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 120 --

