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Abstract—We propose RS-PPO, a risk-sensitive reinforcement
learning framework for energy management in residential mi-
crogrids operating under uncertainty. RS-PPO extends Proximal
Policy Optimization by integrating Conditional Value-at-Risk
(CVaR) into the objective, enabling robust scheduling decisions
that account for extreme cost outcomes. The agent learns to
balance energy cost, peak demand, and battery longevity while
responding adaptively to real-time conditions without requiring
future forecasts. We evaluate RS-PPO using real-world solar
and demand data, comparing it to Greedy, Rule-Based, standard
PPO, and an oracle Model Predictive Control baseline. RS-PPO
consistently improves reliability, reduces peak loads, and lowers
exposure to cost volatility. It approaches the performance of MPC
while maintaining generalization under uncertainty, demonstrat-
ing its suitability for deployment in demand-responsive smart
grid environments.

I. INTRODUCTION

The increasing penetration of renewable energy in dis-
tributed energy systems has amplified the need for in-
telligent microgrid energy management strategies. Micro-
grids, particularly those operating in isolated or partially
autonomous modes, must make real-time decisions under
uncertainty—balancing cost, reliability, and battery longevity
while responding to fluctuating supply and demand. This is
particularly challenging when renewable generation (e.g., solar
or wind) is intermittent and forecasts are unreliable [1], [2].

Traditional approaches, such as rule-based scheduling or
model predictive control (MPC), rely heavily on short-term
forecasts of load and generation [3], [4]. While effective under
perfect information, these methods degrade in the presence of
uncertainty, often leading to suboptimal or risk-prone behavior.
Moreover, they require continuous re-optimization and tuning,
limiting their applicability in real-world, data-constrained en-
vironments [5].

Reinforcement learning (RL) offers a compelling alterna-
tive by learning policies that adapt directly from interaction
with the environment [6]. RL-based controllers can generalize
across unseen scenarios and operate under partial information,
potentially obviating the need for future forecasts. However,
standard RL algorithms such as Proximal Policy Optimization
(PPO) [7] tend to optimize expected returns, which may lead
to unsafe or high-variance behavior in critical systems like
microgrids. For instance, an agent optimizing only for average
cost may underprepare for rare but severe demand spikes,
resulting in blackouts or excessive grid draw during peak
periods [8], [9].
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To address these limitations, we propose a risk-sensitive
variant of Proximal Policy Optimization (RS-PPO) tailored
to the microgrid scheduling problem. Our method integrates
Conditional Value at Risk (CVaR) [10] into the policy gradient
framework, explicitly penalizing high-cost outcomes while
maintaining tractable optimization. Unlike MPC, our method
requires no reliance on future forecasts. Unlike traditional
PPO, it yields more conservative and reliable decisions under
uncertainty [11], [12].

The contributions of this paper are as follows:

o We formulate microgrid energy management as a con-
strained Markov decision process with risk-sensitive ob-
jectives, incorporating cost, peak load, and battery cy-
cling.

o« We develop RS-PPO, a constrained, risk-aware policy
gradient algorithm that minimizes CVaR while satisfying
operational constraints.

o We demonstrate the robustness and reliability of our
approach across three forecasting regimes (perfect, short-
term, and none) using real-world solar and demand traces
from the Pecan Street dataset [13].

o We evaluate against traditional PPO and MPC baselines,
showing statistically significant improvements in peak
load reduction, CVaR minimization, and sustainability
indicators such as battery wear [2], [14].

Our findings suggest that RS-PPO can operate competitively
with oracle-style MPC controllers, even without access to
forecasts, making it a promising candidate for real-world
deployments in dynamic and uncertain microgrid environ-
ments [15], [16].

The remainder of this paper is organized as follows: Section
IT reviews related work in microgrid energy management and
risk-sensitive reinforcement learning. Section III defines the
problem formulation and system constraints. Section IV intro-
duces the RS-PPO methodology, followed by the experimental
setup in Section V. Section VI presents performance results
and analysis, while Section VII compares our approach to
related methods. Finally, Section VIII concludes the paper and
outlines future research directions.

II. RELATED WORK

Microgrid energy management has received increasing at-
tention due to growing renewable energy integration and the
need for safe and adaptive control policies. Model Predictive
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Control (MPC) remains a widely used technique for deter-
ministic and probabilistic optimization in energy scheduling
[17]-[19], but is often dependent on accurate forecasts and
re-optimization at every time step.

In contrast, Deep Reinforcement Learning (DRL) methods
learn policies through direct interaction with the environment,
adapting to stochastic inputs without explicit modeling. Prior
work has used DDPG for real-time scheduling [14], actor-critic
methods [20], and batch RL for load control [21]. However,
most of these target expected return minimization, which may
be ill-suited for safety-critical domains.

Risk-sensitive RL addresses this limitation via metrics like
Conditional Value-at-Risk (CVaR) [22], [23]. Zhou et al. [15]
apply CVaR-DQN for isolated microgrids, but restrict the
action space to discrete levels. More recent works incorporate
CVaR into policy gradient methods for general continuous
control [24], though without tailored applications to micro-
grids.

Several recent studies explore PPO-based control for energy
systems. Wang et al. [25] apply multi-agent PPO to real-
time microgrid scheduling, demonstrating scalability, while
Cuadrado et al. [26] investigate federated transfer learning
to improve generalization in zero-net energy settings. Das et
al. [27] combine RL with weather-aware scheduling for solar
microgrids. These works validate the effectiveness of PPO-
style methods but lack explicit treatment of risk metrics like
CVaR.

Our proposed RS-PPO method bridges this gap by combin-
ing continuous control via PPO with CVaR-regularized policy
gradients, providing robust, fine-grained control in stochastic
microgrid settings.

III. PROBLEM FORMULATION

Our proposed control framework is illustrated in Figure 1,
which depicts the interaction between the policy, value func-
tion, environment dynamics, and risk-sensitive reward shaping.
The agent observes the microgrid state—comprising PV out-
put, load, battery SOC, and grid power—and selects continu-
ous actions to manage battery and grid flows under operational

constraints.
Risk-Sensitive PPO

Action

Environment

State .
Value Function

Fig. 1. PPO Framework for Microgrid Energy Management.
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We formulate the microgrid energy management task as
a finite-horizon Markov Decision Process (MDP) defined by
the tuple (S, A, P, R,v), where S is the state space, A is
the action space, P : S x A x § — [0,1] is the transition
probability, R : § x A — R is the reward function, and
~ €10, 1] is the discount factor.

A. Microgrid Dynamics

The microgrid consists of photovoltaic (PV) generation,
a battery storage system, and electrical loads. The grid can
import energy when local generation is insufficient. The state
at time ¢ is given by:

s =[PP, PP s0Cy, P (1)

where P} is PV output, P}°* is total load, SOC} € [0,1] is
the battery’s state of charge, and Pfrml is grid power import.
The action a; € A consists of continuous control decisions:

a; = [Pfat, Pffid} , )

where PP is battery power (positive for discharging, negative
for charging), and P is grid import/export.

B. Operational Constraints

The actions must satisfy:

Pba'[ < Ptbal < Pbat (3)

SOC 41 = SOC; +n. - PP - At, 4)
0< 500+ <1, ©)

P& >0 (no export allowed). (6)

The system must satisfy power balance:
PP 4 pP 4 pgid — pload, 7

C. Reward Function

The agent receives a scalar reward r; at each step to
minimize cost and risk:

re == (™ PE 4 Ageg - D(SOCY) + Apea - I(PE™ > 9)2 :

_ (8)
where 2™ s the grid price, D(SOC;) models battery degrada-
tion, @ is a peak power threshold, and Ageg, Apeak are weighting
coefficients. I(-) is the indicator function.

D. Risk-Sensitive Objective

Rather than minimizing expected cumulative cost alone, we
optimize the Conditional Value-at-Risk (CVaR) of the return:

1
Jovar () = rynel]rR} {1/ + EEﬂ {(G - V)ﬂ } , 09
where G = ZtT:o ~'ry is the discounted return and « € (0, 1)
is the CVaR confidence level. The policy 7 aims to minimize
risk-exposed losses in the worst a-quantile of outcomes.
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E. Objective

The agent seeks a policy my, parameterized by 6, that
minimizes the risk-sensitive return:

7" = arg min Jevar (7), (10)
s

subject to the system dynamics and operational constraints

outlined above.

IV. METHODOLOGY

We formulate microgrid energy management as a sequential
decision-making problem under uncertainty, modeled as a
Markov Decision Process (MDP). The agent observes system
states and selects actions to minimize both expected cost and
risk exposure while satisfying operational constraints.

A. Problem Definition

Let the MDP be defined by (S, A, P, c,v), where S is the
set of states (e.g., battery level, net demand, solar forecast), A
is the set of actions (e.g., battery charge/discharge rates), P
is the transition probability, ¢(s,a) is the instantaneous cost
function, and v € [0,1] is the discount factor. The goal is to
learn a policy 7(a | s) that minimizes not only the expected
cumulative cost, but also its tail risk.

B. CVaR-Regularized PPO Objective

We adopt Proximal Policy Optimization (PPO) [28] with
an augmented objective that incorporates Conditional Value-
at-Risk (CVaR) [10]. The standard PPO objective seeks to
maximize expected advantage while constraining policy up-
dates:

Lppo(0) = E, [min(rt(ﬂ)/it, clip(r(0),1 — e, 1+ €)A)] ,

1)
mo(atlse) - . . .
Toge (@150 is the importance sampling ratio,

and A, is the generalized advantage estimate.

To promote risk-averse behavior, we regularize this objec-
tive using CVaR at confidence level o € (0, 1) over the episode
return distribution R™:

where r;(6) =

£(6) = Eppo(e) - CVaRa(R”), (12)

where A controls the risk sensitivity trade-off. CVaR is esti-
mated using quantile regression on sampled returns [29]. The
formulation biases the agent toward policies that avoid high-
cost tail outcomes, which are critical in microgrid scenarios
with high load uncertainty or volatile solar supply.

V. ENVIRONMENT AND CONSTRAINTS

The environment models a residential microgrid comprising
a photovoltaic (PV) system, a lithium-ion battery, and a grid
connection. The agent controls battery charging and discharg-
ing actions in response to stochastic net demand and solar
generation while minimizing operational cost and respecting
system constraints.
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A. State and Action Space

At each timestep ¢, the state s; includes:

o Current battery state of charge (SoC), by € [bumin, bmax]

o Net demand d; = [; — g;, where [; is load and g; is PV
output

o Time features (hour of day, day of week)

¢ Optional: short-term forecasts (for baseline models)

The action a; € A is a continuous control representing
battery power dispatch (positive for charging, negative for
discharging), subject to power and energy capacity limits.

B. Battery Dynamics

The battery SoC evolves according to:

1
bir1 = by +n.-max(ag, 0) - At — — -max(—ay, 0) - At, (13)
Nd
where 7,74 € (0,1] are charging and discharging efficien-
cies, and At is the timestep duration (15 minutes).

C. Constraints

The agent must satisfy the following constraints at every
step:

1) Battery power limits: a; € [—Pax, Pmax)

2) Battery SoC limits: b; € [bin, bmax)

3) Grid import/export limits: |pyiq¢| < Gmax

If the battery cannot meet the net demand, the residual is
met by grid import/export. Any action violating the constraints
is clipped and incurs a penalty in the reward function.

D. Cost Function

The total cost ¢; at time ¢t consists of:

Ct = Pt - max(pgrid,h 0) + >\deg . |at‘ + )\pen - Lviolation s
—_—— —_——— —_———

grid purchase battery degradation constraint penalty

(14)

where p; is the electricity price (static or time-varying),

Adeg models battery degradation cost per kWh cycled, and

Apen penalizes constraint violations such as over-discharge

or exceeding inverter ratings. Blackout events are heavily
penalized or forbidden depending on the scenario.

E. Reward and Episode Structure

The agent receives a reward r; = —c; at each timestep and
is trained over daily episodes of 96 steps. State transitions
incorporate real-world variability in demand and solar irradi-
ance, sampled from historical data to ensure robustness and
generalization.

To guide the policy toward conservative behavior under
uncertainty, we integrate CVaR-based regularization into the
PPO objective. Figure 2 summarizes the MDP structure and
training signal, illustrating how operational constraints, battery
dynamics, and risk-sensitive rewards influence the agent’s
learning loop.
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Fig. 2. Risk-Sensitive PPO Framework for Microgrid MDP

VI. EXPERIMENTAL SETUP

A. Simulation Environment and Dataset

We use real-world data from the Pecan Street Dataport [13],
consisting of 15-minute resolution PV generation and load
profiles for a residential household in Austin, Texas. Each
episode simulates a 24-hour period (96 steps), and battery
dynamics follow a 13.5 kWh lithium-ion model with 90%
round-trip efficiency. Grid export is disallowed, and time-of-
use pricing varies hourly.

The agent observes a continuous state s; =
(PP, Pld SOC;, PE™Y] and selects continuous —actions
a; = [P, P& to maintain power balance.

We compare our proposed RS-PPO agent against four
representative baselines:

e Greedy Controller: A myopic policy that immediately
satisfies demand using the grid or battery, with no fore-
sight or optimization. This reflects simplistic dispatch
heuristics.

o Rule-Based Controller: A fixed-policy baseline com-
monly used in practice [30], where the battery charges
whenever PV generation exceeds demand and discharges
otherwise, subject to constraints.

o Model Predictive Control (MPC): An oracle controller
with full access to future demand and solar generation
over a 24-hour horizon. It solves a convex optimization
problem at each timestep to minimize total cost under
battery and grid constraints [3], [S]. MPC serves as an
upper bound for achievable performance with perfect
foresight.

o Standard PPO: A vanilla Proximal Policy Optimization
agent trained without risk sensitivity [28]. This serves
as the primary RL baseline and allows us to isolate the
benefits of CVaR regularization in our approach.

B. Training Protocol

We train each agent for 1000 episodes using Adam with a
learning rate of 3 x 10~% and GAE (\ = 0.95). PPO clipping
parameter ¢ = 0.2 and discount factor v = 0.99. The policy
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network is a 2-layer MLP with 64 hidden units and ReLU
activations. Experiments run on an NVIDIA RTX 3080 GPU.
The CVaR confidence level is set to oo = 0.1.

C. Evaluation Metrics

We employ a comprehensive set of evaluation metrics
to quantify performance across economic, operational, and
robustness dimensions:

o Total Energy Cost (|): The total daily cost incurred from
grid consumption, calculated as:

Cost = 3 ™. pgd,
t

Lower values indicate greater economic efficiency.
o Peak Grid Load (}): The maximum instantaneous grid
import, representing the worst-case demand spike:

Peak Load = max pEd,

Reducing peak load supports grid stability and demand
response goals.

o CVaR of Daily Cost (]): Conditional Value-at-Risk
(CVaR) at confidence level o = 0.1, computed over the
distribution of daily costs across all test episodes:

CVaR,(G) = E[G | G > VaR,].

This captures tail-risk exposure and reflects robustness
under high-cost scenarios.

o Battery Cycling Rate (]): The average number of
equivalent full cycles per day, used as a proxy for battery
degradation. Excessive cycling leads to reduced battery
lifespan and maintenance costs.

o Blackout Events (]): The number of time steps where
the agent fails to meet the power balance condition (i.e.,
supply # demand), due to invalid actions or insufficient
resources. This metric penalizes reliability violations.

All metrics are computed over a 60-day test set using 10

random seeds. We report means and 95% confidence intervals
via non-parametric bootstrapping.

VII. RESULTS AND DISCUSSION

This section presents quantitative results evaluating our risk-
sensitive PPO agent (RS-PPO) against four baselines: a greedy
controller, a rule-based heuristic, a Model Predictive Controller
(MPC) and a standard PPO. Experiments are run over a 60-day
held-out test set using 10 random seeds. All reported values
are means with 95% confidence intervals.

A. Statistical Analysis

We evaluate performance differences using paired two-tailed
t-tests across 10 random seeds and report Cohen’s d to quantify
effect sizes. RS-PPO significantly outperforms all baseline
controllers on key metrics including total cost, peak load,
CVaRy 1, and battery cycling.

Against Greedy: RS-PPO achieves statistically significant
reductions in total cost (p < 0.001, d = 2.13), peak load
(p < 0.001, d = 2.21), and CVaRgy; (p < 0.001, d = 2.03).
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TABLE 1. PERFORMANCE COMPARISON WITH 95% CONFIDENCE

INTERVALS
Controller Total Cost Peak Load CVaRg 1 Battery Cycling Blackouts
Greedy 2645 £ 0.88 4.82 +0.21 31.72 £ 1.03 1.61 £+ 0.07 2
Rule-Based 2492 +0.84 425 +£0.19 3048 + 0.97 1.52 + 0.06 0
PPO 22.05 £ 0.95 3.86 £ 028 28.15 + 1.12 1.49 + 0.08 0
MPC (oracle)  20.14 = 0.78  2.95 = 0.19  24.38 £ 0.85 1.39 £ 0.05 0
RS-PPO 21.67 £ 094 3.10 + 0.26  26.45 £ 1.03 1.42 + 0.06 0

Battery cycling is also improved (p = 0.004, d = 1.36), and
blackout frequency drops from 2 to 0, indicating enhanced
reliability and risk sensitivity.

Against Rule-Based: RS-PPO reduces total cost (p =
0.002, d = 1.83), peak load (p < 0.001, d = 2.01), and
CVaRp 1 (p = 0.001, d = 1.91). Battery cycling is modestly
improved (p = 0.013, d = 0.97), while both policies maintain
blackout-free performance.

Against PPO: RS-PPO demonstrates consistent improve-
ment in total cost (p = 0.005, d = 1.28), peak load
(p = 0.003, d = 1.38), and CVaRg 1 (p = 0.002, d = 1.34).
Battery cycling is also lower (p = 0.011, d = 1.00), reflecting
smoother dispatch behavior.

Against MPC (oracle): Although MPC has access to
perfect forecasts, RS-PPO achieves near-parity in total cost
(p = 0.071, d = 0.59), and moderate differences in CVaRq 1
(p = 0.049, d = 0.72) and peak load (p = 0.036, d = 0.81).
Notably, RS-PPO’s battery cycling is statistically comparable
(p = 0.058, d = 0.65), indicating that it matches MPC’s
efficiency without privileged information.

Overall, RS-PPO reduces daily CVaR by $1.70 compared
to PPO and by $5.27 compared to Greedy, while decreasing
peak demand by up to 1.72 kW (35.7%) relative to the Greedy
baseline. These improvements reinforce RS-PPO’s suitability
for real-world deployment under uncertainty.

B. Comparison to Related Work

Franco et al. [14] develop a DDPG-based energy-sharing
framework for prosumers. Although effective in load man-
agement, their method does not address tail-risk or cost
variability. Zhou et al. [15] introduce CVaR-regularized DQN
for microgrid control, but their model is limited to discrete
actions and fixed horizons, restricting fine-grained operational
flexibility.

Tamar et al. [24] and Chow et al. [22] propose CVaR-
sensitive policy gradients, but their formulations are largely
domain-agnostic and not evaluated in energy contexts. Li et
al. [23] extend this line with quantile regression for CVaR
estimation, which we adopt for robust microgrid optimization.

Wang et al. [25] apply multi-agent PPO to microgrids but fo-
cus on expected return. Cuadrado et al. [26] present federated
PPO frameworks to improve adaptability, and Das et al. [27]
incorporate weather forecasts for solar-aware DRL—but none
explicitly optimize for risk exposure.

In contrast, our RS-PPO framework uniquely supports
continuous control, variable horizons, and principled risk
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modeling through CVaR regularization. This design enables
improved robustness under demand spikes and renewable in-
termittency while maintaining policy stability and operational
feasibility.

VIII. CONCLUSION AND FUTURE WORK

This work introduces a risk-sensitive reinforcement learn-
ing framework for microgrid energy management, leveraging
Proximal Policy Optimization (PPO) enhanced with Con-
ditional Value-at-Risk (CVaR) regularization. Our approach
explicitly models uncertainty and worst-case cost exposure,
allowing the learned policy to trade off expected performance
against risk in a principled manner. This is particularly im-
portant in microgrid settings, where variability in demand and
renewable generation can result in substantial cost fluctuations
and operational risks.

Through extensive simulation using one year of real-world
solar and load data from the Pecan Street Dataport, we
demonstrate that the proposed RS-PPO agent consistently
outperforms standard PPO and rule-based heuristics across key
operational metrics. These include reductions in total energy
cost, peak grid load, and CVaR of daily cost—highlighting the
agent’s robustness and ability to generalize to diverse daily
profiles. Although RS-PPO does not outperform the oracle
Model Predictive Controller (MPC) with perfect foresight, it
closes a significant portion of the gap while relying solely on
current state information, underscoring its practical viability
in real-world deployments.

The policy also exhibits more conservative battery usage and
maintains zero blackout events, indicating safe and sustainable
control behavior. Moreover, statistical analysis confirms the
significance and strength of these improvements, with large
effect sizes observed in key comparisons.

Future work will explore several directions. First, integrating
probabilistic forecasts of demand and solar generation into the
RL framework may further reduce risk and improve economic
performance without requiring perfect foresight. Second, ex-
tending the agent to operate in multi-agent or hierarchical
microgrid architectures can enable coordinated control across
multiple homes or buildings [16]. Third, incorporating market
mechanisms—such as dynamic pricing, peer-to-peer trading,
and demand response incentives—would support broader in-
tegration into smart grid ecosystems [31]. Finally, applying
the method in real-time control environments, supported by
hardware-in-the-loop (HIL) simulation or pilot deployment,
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Fig. 3. Performance comparison across forecasting assumptions. RS-PPO
demonstrates lower CVaR (a), peak load (b), and battery wear (d), and closely
approaches oracle MPC in total cost (c), despite no access to forecasts.

would allow further evaluation of its responsiveness and
stability under physical constraints [32].

This work demonstrates the feasibility and effectiveness
of risk-sensitive reinforcement learning for safe, adaptive,
and economically efficient microgrid control. The proposed
method contributes toward intelligent energy systems that are
both cost-aware and resilient to uncertainty.
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