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Abstract—We propose RS-PPO, a risk-sensitive reinforcement
learning framework for energy management in residential mi-
crogrids operating under uncertainty. RS-PPO extends Proximal
Policy Optimization by integrating Conditional Value-at-Risk
(CVaR) into the objective, enabling robust scheduling decisions
that account for extreme cost outcomes. The agent learns to
balance energy cost, peak demand, and battery longevity while
responding adaptively to real-time conditions without requiring
future forecasts. We evaluate RS-PPO using real-world solar
and demand data, comparing it to Greedy, Rule-Based, standard
PPO, and an oracle Model Predictive Control baseline. RS-PPO
consistently improves reliability, reduces peak loads, and lowers
exposure to cost volatility. It approaches the performance of MPC
while maintaining generalization under uncertainty, demonstrat-
ing its suitability for deployment in demand-responsive smart
grid environments.

I. INTRODUCTION

The increasing penetration of renewable energy in dis-

tributed energy systems has amplified the need for in-

telligent microgrid energy management strategies. Micro-

grids, particularly those operating in isolated or partially

autonomous modes, must make real-time decisions under

uncertainty—balancing cost, reliability, and battery longevity

while responding to fluctuating supply and demand. This is

particularly challenging when renewable generation (e.g., solar

or wind) is intermittent and forecasts are unreliable [1], [2].
Traditional approaches, such as rule-based scheduling or

model predictive control (MPC), rely heavily on short-term

forecasts of load and generation [3], [4]. While effective under

perfect information, these methods degrade in the presence of

uncertainty, often leading to suboptimal or risk-prone behavior.

Moreover, they require continuous re-optimization and tuning,

limiting their applicability in real-world, data-constrained en-

vironments [5].
Reinforcement learning (RL) offers a compelling alterna-

tive by learning policies that adapt directly from interaction

with the environment [6]. RL-based controllers can generalize

across unseen scenarios and operate under partial information,

potentially obviating the need for future forecasts. However,

standard RL algorithms such as Proximal Policy Optimization

(PPO) [7] tend to optimize expected returns, which may lead

to unsafe or high-variance behavior in critical systems like

microgrids. For instance, an agent optimizing only for average

cost may underprepare for rare but severe demand spikes,

resulting in blackouts or excessive grid draw during peak

periods [8], [9].

To address these limitations, we propose a risk-sensitive
variant of Proximal Policy Optimization (RS-PPO) tailored

to the microgrid scheduling problem. Our method integrates

Conditional Value at Risk (CVaR) [10] into the policy gradient

framework, explicitly penalizing high-cost outcomes while

maintaining tractable optimization. Unlike MPC, our method

requires no reliance on future forecasts. Unlike traditional

PPO, it yields more conservative and reliable decisions under

uncertainty [11], [12].

The contributions of this paper are as follows:

• We formulate microgrid energy management as a con-

strained Markov decision process with risk-sensitive ob-

jectives, incorporating cost, peak load, and battery cy-

cling.

• We develop RS-PPO, a constrained, risk-aware policy

gradient algorithm that minimizes CVaR while satisfying

operational constraints.

• We demonstrate the robustness and reliability of our

approach across three forecasting regimes (perfect, short-

term, and none) using real-world solar and demand traces

from the Pecan Street dataset [13].

• We evaluate against traditional PPO and MPC baselines,

showing statistically significant improvements in peak

load reduction, CVaR minimization, and sustainability

indicators such as battery wear [2], [14].

Our findings suggest that RS-PPO can operate competitively

with oracle-style MPC controllers, even without access to

forecasts, making it a promising candidate for real-world

deployments in dynamic and uncertain microgrid environ-

ments [15], [16].

The remainder of this paper is organized as follows: Section

II reviews related work in microgrid energy management and

risk-sensitive reinforcement learning. Section III defines the

problem formulation and system constraints. Section IV intro-

duces the RS-PPO methodology, followed by the experimental

setup in Section V. Section VI presents performance results

and analysis, while Section VII compares our approach to

related methods. Finally, Section VIII concludes the paper and

outlines future research directions.

II. RELATED WORK

Microgrid energy management has received increasing at-

tention due to growing renewable energy integration and the

need for safe and adaptive control policies. Model Predictive
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Control (MPC) remains a widely used technique for deter-

ministic and probabilistic optimization in energy scheduling

[17]–[19], but is often dependent on accurate forecasts and

re-optimization at every time step.

In contrast, Deep Reinforcement Learning (DRL) methods

learn policies through direct interaction with the environment,

adapting to stochastic inputs without explicit modeling. Prior

work has used DDPG for real-time scheduling [14], actor-critic

methods [20], and batch RL for load control [21]. However,

most of these target expected return minimization, which may

be ill-suited for safety-critical domains.

Risk-sensitive RL addresses this limitation via metrics like

Conditional Value-at-Risk (CVaR) [22], [23]. Zhou et al. [15]

apply CVaR-DQN for isolated microgrids, but restrict the

action space to discrete levels. More recent works incorporate

CVaR into policy gradient methods for general continuous

control [24], though without tailored applications to micro-

grids.

Several recent studies explore PPO-based control for energy

systems. Wang et al. [25] apply multi-agent PPO to real-

time microgrid scheduling, demonstrating scalability, while

Cuadrado et al. [26] investigate federated transfer learning

to improve generalization in zero-net energy settings. Das et

al. [27] combine RL with weather-aware scheduling for solar

microgrids. These works validate the effectiveness of PPO-

style methods but lack explicit treatment of risk metrics like

CVaR.

Our proposed RS-PPO method bridges this gap by combin-

ing continuous control via PPO with CVaR-regularized policy

gradients, providing robust, fine-grained control in stochastic

microgrid settings.

III. PROBLEM FORMULATION

Our proposed control framework is illustrated in Figure 1,

which depicts the interaction between the policy, value func-

tion, environment dynamics, and risk-sensitive reward shaping.

The agent observes the microgrid state—comprising PV out-

put, load, battery SOC, and grid power—and selects continu-

ous actions to manage battery and grid flows under operational

constraints.

Solar

Battery

Load

Grid

Environment

π

Risk-Sensitive PPO

Value Function

Reward

State

Action

Fig. 1. PPO Framework for Microgrid Energy Management.

We formulate the microgrid energy management task as

a finite-horizon Markov Decision Process (MDP) defined by

the tuple (S,A, P,R, γ), where S is the state space, A is

the action space, P : S × A × S → [0, 1] is the transition

probability, R : S × A → R is the reward function, and

γ ∈ [0, 1] is the discount factor.

A. Microgrid Dynamics

The microgrid consists of photovoltaic (PV) generation,

a battery storage system, and electrical loads. The grid can

import energy when local generation is insufficient. The state

at time t is given by:

st =
[
P pv
t , P load

t , SOCt, P
grid
t

]
, (1)

where P pv
t is PV output, P load

t is total load, SOCt ∈ [0, 1] is

the battery’s state of charge, and P grid
t is grid power import.

The action at ∈ A consists of continuous control decisions:

at =
[
P bat
t , P grid

t

]
, (2)

where P bat
t is battery power (positive for discharging, negative

for charging), and P grid
t is grid import/export.

B. Operational Constraints

The actions must satisfy:

P bat
min ≤ P bat

t ≤ P bat
max, (3)

SOCt+1 = SOCt + ηc · P bat
t ·Δt, (4)

0 ≤ SOCt+1 ≤ 1, (5)

P grid
t ≥ 0 (no export allowed). (6)

The system must satisfy power balance:

P pv
t + P bat

t + P grid
t = P load

t . (7)

C. Reward Function

The agent receives a scalar reward rt at each step to

minimize cost and risk:

rt = −
(
cgrid
t · P grid

t + λdeg ·D(SOCt) + λpeak · I(P grid
t > θ)

)
,

(8)

where cgrid
t is the grid price, D(SOCt) models battery degrada-

tion, θ is a peak power threshold, and λdeg, λpeak are weighting

coefficients. I(·) is the indicator function.

D. Risk-Sensitive Objective

Rather than minimizing expected cumulative cost alone, we

optimize the Conditional Value-at-Risk (CVaR) of the return:

JCVaR(π) = min
ν∈R

{
ν +

1

1− α
Eπ

[
(G− ν)

+
]}

, (9)

where G =
∑T

t=0 γ
trt is the discounted return and α ∈ (0, 1)

is the CVaR confidence level. The policy π aims to minimize

risk-exposed losses in the worst α-quantile of outcomes.
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E. Objective

The agent seeks a policy πθ, parameterized by θ, that

minimizes the risk-sensitive return:

π∗ = argmin
π

JCVaR(π), (10)

subject to the system dynamics and operational constraints

outlined above.

IV. METHODOLOGY

We formulate microgrid energy management as a sequential

decision-making problem under uncertainty, modeled as a

Markov Decision Process (MDP). The agent observes system

states and selects actions to minimize both expected cost and

risk exposure while satisfying operational constraints.

A. Problem Definition

Let the MDP be defined by (S,A, P, c, γ), where S is the

set of states (e.g., battery level, net demand, solar forecast), A
is the set of actions (e.g., battery charge/discharge rates), P
is the transition probability, c(s, a) is the instantaneous cost

function, and γ ∈ [0, 1] is the discount factor. The goal is to

learn a policy π(a | s) that minimizes not only the expected

cumulative cost, but also its tail risk.

B. CVaR-Regularized PPO Objective

We adopt Proximal Policy Optimization (PPO) [28] with

an augmented objective that incorporates Conditional Value-

at-Risk (CVaR) [10]. The standard PPO objective seeks to

maximize expected advantage while constraining policy up-

dates:

LPPO(θ) = Et

[
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

]
,

(11)

where rt(θ) =
πθ(at|st)
πθold

(at|st) is the importance sampling ratio,

and Ât is the generalized advantage estimate.

To promote risk-averse behavior, we regularize this objec-

tive using CVaR at confidence level α ∈ (0, 1) over the episode

return distribution Rπ:

L(θ) = LPPO(θ)− λ · CVaRα(R
π), (12)

where λ controls the risk sensitivity trade-off. CVaR is esti-

mated using quantile regression on sampled returns [29]. The

formulation biases the agent toward policies that avoid high-

cost tail outcomes, which are critical in microgrid scenarios

with high load uncertainty or volatile solar supply.

V. ENVIRONMENT AND CONSTRAINTS

The environment models a residential microgrid comprising

a photovoltaic (PV) system, a lithium-ion battery, and a grid

connection. The agent controls battery charging and discharg-

ing actions in response to stochastic net demand and solar

generation while minimizing operational cost and respecting

system constraints.

A. State and Action Space

At each timestep t, the state st includes:

• Current battery state of charge (SoC), bt ∈ [bmin, bmax]
• Net demand dt = lt − gt, where lt is load and gt is PV

output

• Time features (hour of day, day of week)

• Optional: short-term forecasts (for baseline models)

The action at ∈ A is a continuous control representing

battery power dispatch (positive for charging, negative for

discharging), subject to power and energy capacity limits.

B. Battery Dynamics

The battery SoC evolves according to:

bt+1 = bt+ηc ·max(at, 0) ·Δt− 1

ηd
·max(−at, 0) ·Δt, (13)

where ηc, ηd ∈ (0, 1] are charging and discharging efficien-

cies, and Δt is the timestep duration (15 minutes).

C. Constraints

The agent must satisfy the following constraints at every

step:

1) Battery power limits: at ∈ [−Pmax, Pmax]
2) Battery SoC limits: bt ∈ [bmin, bmax]
3) Grid import/export limits: |pgrid,t| ≤ Gmax

If the battery cannot meet the net demand, the residual is

met by grid import/export. Any action violating the constraints

is clipped and incurs a penalty in the reward function.

D. Cost Function

The total cost ct at time t consists of:

ct = pt ·max(pgrid,t, 0)︸ ︷︷ ︸
grid purchase

+ λdeg · |at|︸ ︷︷ ︸
battery degradation

+λpen · Iviolation︸ ︷︷ ︸
constraint penalty

,

(14)

where pt is the electricity price (static or time-varying),

λdeg models battery degradation cost per kWh cycled, and

λpen penalizes constraint violations such as over-discharge

or exceeding inverter ratings. Blackout events are heavily

penalized or forbidden depending on the scenario.

E. Reward and Episode Structure

The agent receives a reward rt = −ct at each timestep and

is trained over daily episodes of 96 steps. State transitions

incorporate real-world variability in demand and solar irradi-

ance, sampled from historical data to ensure robustness and

generalization.

To guide the policy toward conservative behavior under

uncertainty, we integrate CVaR-based regularization into the

PPO objective. Figure 2 summarizes the MDP structure and

training signal, illustrating how operational constraints, battery

dynamics, and risk-sensitive rewards influence the agent’s

learning loop.
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SOCt, P
grid
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grid
t > θ)
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minπ JCVaR(π)

Action

Reward

Fig. 2. Risk-Sensitive PPO Framework for Microgrid MDP

VI. EXPERIMENTAL SETUP

A. Simulation Environment and Dataset

We use real-world data from the Pecan Street Dataport [13],

consisting of 15-minute resolution PV generation and load

profiles for a residential household in Austin, Texas. Each

episode simulates a 24-hour period (96 steps), and battery

dynamics follow a 13.5 kWh lithium-ion model with 90%

round-trip efficiency. Grid export is disallowed, and time-of-

use pricing varies hourly.

The agent observes a continuous state st =
[P pv

t , P load
t , SOCt, P

grid
t ] and selects continuous actions

at = [P bat
t , P grid

t ] to maintain power balance.

We compare our proposed RS-PPO agent against four

representative baselines:

• Greedy Controller: A myopic policy that immediately

satisfies demand using the grid or battery, with no fore-

sight or optimization. This reflects simplistic dispatch

heuristics.

• Rule-Based Controller: A fixed-policy baseline com-

monly used in practice [30], where the battery charges

whenever PV generation exceeds demand and discharges

otherwise, subject to constraints.

• Model Predictive Control (MPC): An oracle controller

with full access to future demand and solar generation

over a 24-hour horizon. It solves a convex optimization

problem at each timestep to minimize total cost under

battery and grid constraints [3], [5]. MPC serves as an

upper bound for achievable performance with perfect

foresight.

• Standard PPO: A vanilla Proximal Policy Optimization

agent trained without risk sensitivity [28]. This serves

as the primary RL baseline and allows us to isolate the

benefits of CVaR regularization in our approach.

B. Training Protocol

We train each agent for 1000 episodes using Adam with a

learning rate of 3× 10−4 and GAE (λ = 0.95). PPO clipping

parameter ε = 0.2 and discount factor γ = 0.99. The policy

network is a 2-layer MLP with 64 hidden units and ReLU

activations. Experiments run on an NVIDIA RTX 3080 GPU.

The CVaR confidence level is set to α = 0.1.

C. Evaluation Metrics

We employ a comprehensive set of evaluation metrics

to quantify performance across economic, operational, and

robustness dimensions:

• Total Energy Cost (↓): The total daily cost incurred from

grid consumption, calculated as:

Cost =
∑
t

cgrid
t · P grid

t .

Lower values indicate greater economic efficiency.

• Peak Grid Load (↓): The maximum instantaneous grid

import, representing the worst-case demand spike:

Peak Load = max
t

P grid
t .

Reducing peak load supports grid stability and demand

response goals.

• CVaR of Daily Cost (↓): Conditional Value-at-Risk

(CVaR) at confidence level α = 0.1, computed over the

distribution of daily costs across all test episodes:

CVaRα(G) = E[G | G > VaRα].

This captures tail-risk exposure and reflects robustness

under high-cost scenarios.

• Battery Cycling Rate (↓): The average number of

equivalent full cycles per day, used as a proxy for battery

degradation. Excessive cycling leads to reduced battery

lifespan and maintenance costs.

• Blackout Events (↓): The number of time steps where

the agent fails to meet the power balance condition (i.e.,

supply �= demand), due to invalid actions or insufficient

resources. This metric penalizes reliability violations.

All metrics are computed over a 60-day test set using 10

random seeds. We report means and 95% confidence intervals

via non-parametric bootstrapping.

VII. RESULTS AND DISCUSSION

This section presents quantitative results evaluating our risk-

sensitive PPO agent (RS-PPO) against four baselines: a greedy

controller, a rule-based heuristic, a Model Predictive Controller

(MPC) and a standard PPO. Experiments are run over a 60-day

held-out test set using 10 random seeds. All reported values

are means with 95% confidence intervals.

A. Statistical Analysis

We evaluate performance differences using paired two-tailed

t-tests across 10 random seeds and report Cohen’s d to quantify

effect sizes. RS-PPO significantly outperforms all baseline

controllers on key metrics including total cost, peak load,

CVaR0.1, and battery cycling.

Against Greedy: RS-PPO achieves statistically significant

reductions in total cost (p < 0.001, d = 2.13), peak load

(p < 0.001, d = 2.21), and CVaR0.1 (p < 0.001, d = 2.03).
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TABLE I. PERFORMANCE COMPARISON WITH 95% CONFIDENCE 
INTERVALS

Controller Total Cost Peak Load CVaR0.1 Battery Cycling Blackouts

Greedy 26.45 ± 0.88 4.82 ± 0.21 31.72 ± 1.03 1.61 ± 0.07 2
Rule-Based 24.92 ± 0.84 4.25 ± 0.19 30.48 ± 0.97 1.52 ± 0.06 0
PPO 22.05 ± 0.95 3.86 ± 0.28 28.15 ± 1.12 1.49 ± 0.08 0
MPC (oracle) 20.14 ± 0.78 2.95 ± 0.19 24.38 ± 0.85 1.39 ± 0.05 0
RS-PPO 21.67 ± 0.94 3.10 ± 0.26 26.45 ± 1.03 1.42 ± 0.06 0

Battery cycling is also improved (p = 0.004, d = 1.36), and

blackout frequency drops from 2 to 0, indicating enhanced

reliability and risk sensitivity.

Against Rule-Based: RS-PPO reduces total cost (p =
0.002, d = 1.83), peak load (p < 0.001, d = 2.01), and

CVaR0.1 (p = 0.001, d = 1.91). Battery cycling is modestly

improved (p = 0.013, d = 0.97), while both policies maintain

blackout-free performance.

Against PPO: RS-PPO demonstrates consistent improve-

ment in total cost (p = 0.005, d = 1.28), peak load

(p = 0.003, d = 1.38), and CVaR0.1 (p = 0.002, d = 1.34).

Battery cycling is also lower (p = 0.011, d = 1.00), reflecting

smoother dispatch behavior.

Against MPC (oracle): Although MPC has access to

perfect forecasts, RS-PPO achieves near-parity in total cost

(p = 0.071, d = 0.59), and moderate differences in CVaR0.1

(p = 0.049, d = 0.72) and peak load (p = 0.036, d = 0.81).

Notably, RS-PPO’s battery cycling is statistically comparable

(p = 0.058, d = 0.65), indicating that it matches MPC’s

efficiency without privileged information.

Overall, RS-PPO reduces daily CVaR by $1.70 compared

to PPO and by $5.27 compared to Greedy, while decreasing

peak demand by up to 1.72 kW (35.7%) relative to the Greedy

baseline. These improvements reinforce RS-PPO’s suitability

for real-world deployment under uncertainty.

B. Comparison to Related Work

Franco et al. [14] develop a DDPG-based energy-sharing

framework for prosumers. Although effective in load man-

agement, their method does not address tail-risk or cost

variability. Zhou et al. [15] introduce CVaR-regularized DQN

for microgrid control, but their model is limited to discrete

actions and fixed horizons, restricting fine-grained operational

flexibility.

Tamar et al. [24] and Chow et al. [22] propose CVaR-

sensitive policy gradients, but their formulations are largely

domain-agnostic and not evaluated in energy contexts. Li et

al. [23] extend this line with quantile regression for CVaR

estimation, which we adopt for robust microgrid optimization.

Wang et al. [25] apply multi-agent PPO to microgrids but fo-

cus on expected return. Cuadrado et al. [26] present federated

PPO frameworks to improve adaptability, and Das et al. [27]

incorporate weather forecasts for solar-aware DRL—but none

explicitly optimize for risk exposure.

In contrast, our RS-PPO framework uniquely supports

continuous control, variable horizons, and principled risk

modeling through CVaR regularization. This design enables

improved robustness under demand spikes and renewable in-

termittency while maintaining policy stability and operational

feasibility.

VIII. CONCLUSION AND FUTURE WORK

This work introduces a risk-sensitive reinforcement learn-

ing framework for microgrid energy management, leveraging

Proximal Policy Optimization (PPO) enhanced with Con-

ditional Value-at-Risk (CVaR) regularization. Our approach

explicitly models uncertainty and worst-case cost exposure,

allowing the learned policy to trade off expected performance

against risk in a principled manner. This is particularly im-

portant in microgrid settings, where variability in demand and

renewable generation can result in substantial cost fluctuations

and operational risks.

Through extensive simulation using one year of real-world

solar and load data from the Pecan Street Dataport, we

demonstrate that the proposed RS-PPO agent consistently

outperforms standard PPO and rule-based heuristics across key

operational metrics. These include reductions in total energy

cost, peak grid load, and CVaR of daily cost—highlighting the

agent’s robustness and ability to generalize to diverse daily

profiles. Although RS-PPO does not outperform the oracle

Model Predictive Controller (MPC) with perfect foresight, it

closes a significant portion of the gap while relying solely on

current state information, underscoring its practical viability

in real-world deployments.

The policy also exhibits more conservative battery usage and

maintains zero blackout events, indicating safe and sustainable

control behavior. Moreover, statistical analysis confirms the

significance and strength of these improvements, with large

effect sizes observed in key comparisons.

Future work will explore several directions. First, integrating

probabilistic forecasts of demand and solar generation into the

RL framework may further reduce risk and improve economic

performance without requiring perfect foresight. Second, ex-

tending the agent to operate in multi-agent or hierarchical

microgrid architectures can enable coordinated control across

multiple homes or buildings [16]. Third, incorporating market

mechanisms—such as dynamic pricing, peer-to-peer trading,

and demand response incentives—would support broader in-

tegration into smart grid ecosystems [31]. Finally, applying

the method in real-time control environments, supported by

hardware-in-the-loop (HIL) simulation or pilot deployment,
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Fig. 3. Performance comparison across forecasting assumptions. RS-PPO
demonstrates lower CVaR (a), peak load (b), and battery wear (d), and closely
approaches oracle MPC in total cost (c), despite no access to forecasts.

would allow further evaluation of its responsiveness and

stability under physical constraints [32].

This work demonstrates the feasibility and effectiveness

of risk-sensitive reinforcement learning for safe, adaptive,

and economically efficient microgrid control. The proposed

method contributes toward intelligent energy systems that are

both cost-aware and resilient to uncertainty.

REFERENCES

[1] Y. Zhou, Y. Xu, and Q. Wu, “Risk-constrained energy management
for islanded microgrids with renewable generators and battery storage,”
Applied Energy, vol. 307, p. 118242, 2022.

[2] X. Chen, B. Zhang, and F. Li, “Reinforcement learning for integrated
microgrid energy management: A review,” IEEE Open Journal of the
Industrial Electronics Society, vol. 1, pp. 88–102, 2020.

[3] A. Parisio, E. Rikos, and L. Glielmo, “A model predictive control
approach to microgrid operation optimization,” IEEE Transactions on
Control Systems Technology, vol. 22, no. 5, pp. 1813–1827, 2014.

[4] D. Zhang, N. Shah, and L. G. Papageorgiou, “Model predictive control of
residential energy systems using energy storage: A review,” Renewable
and Sustainable Energy Reviews, vol. 61, pp. 30–40, 2016.

[5] F. Oldewurtel, A. Ulbig, A. Parisio, G. Andersson, and M. Morari, “Use
of model predictive control and weather forecasts for energy efficient
building climate control,” Energy and Buildings, vol. 45, pp. 15–27,
2012.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu et al., “Human-level
control through deep reinforcement learning,” Nature, vol. 518, no. 7540,
pp. 529–533, 2015.

[7] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” in
arXiv preprint arXiv:1707.06347, 2017. [Online]. Available:
https://arxiv.org/abs/1707.06347

[8] Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone, “Risk-sensitive
and robust decision-making: A cvar optimization approach,” in Advances
in Neural Information Processing Systems, vol. 28, 2015, pp. 1522–
1530.

[9] A. Tamar, Y. Glassner, and S. Mannor, “Optimizing the cvar via sam-
pling,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 29, no. 1, 2015, pp. 2959–2965.

[10] R. T. Rockafellar and S. Uryasev, “Optimization of conditional value-
at-risk,” Journal of Risk, vol. 2, no. 3, pp. 21–41, 2000.

[11] A. Tamar, Y. Chow, M. Ghavamzadeh, and S. Mannor, “Policy gra-
dient for coherent risk measures,” in Advances in Neural Information
Processing Systems, vol. 28, 2015, pp. 1468–1476.

[12] B. Mavrin, H. Wang, T. Schaul, M. Hessel, and H. van Hasselt,
“Distributional reinforcement learning with quantile regression,” AAAI
Conference on Artificial Intelligence, vol. 33, no. 01, pp. 3604–3611,
2019.

[13] “Dataport by pecan street inc.” https://www.pecanstreet.org/dataport,
accessed: 2025-06-22.

[14] G. Franco, D. Saez, and J. Contreras, “Deep reinforcement learning for
real-time autonomous energy management in isolated microgrids,” IEEE
Transactions on Smart Grid, vol. 12, no. 2, pp. 1280–1291, 2021.

[15] Y. Zhou, Y. Xu, and Q. Wu, “Risk-constrained energy management
for islanded microgrids with renewable generators and battery storage,”
Applied Energy, vol. 307, p. 118242, 2022.

[16] W. Zhang, X. Chen, W. Hu, and F. Li, “Multi-agent deep reinforcement
learning for multi-microgrid energy management,” IEEE Transactions
on Smart Grid, vol. 11, no. 1, pp. 1068–1081, 2020.

[17] D. Zhang, N. Shah, and L. G. Papageorgiou, “Model predictive control of
residential energy systems using energy storage: A review,” Renewable
and Sustainable Energy Reviews, vol. 61, pp. 30–40, 2016.

[18] A. Parisio, E. Rikos, and L. Glielmo, “A model predictive control
approach to microgrid operation optimization,” IEEE Transactions on
Control Systems Technology, vol. 22, no. 5, pp. 1813–1827, 2014.

[19] F. Oldewurtel, A. Ulbig, A. Parisio, G. Andersson, and M. Morari, “Use
of model predictive control and weather forecasts for energy efficient
building climate control,” Energy and Buildings, vol. 45, pp. 15–27,
2012.

[20] X. Chen, B. Zhang, and F. Li, “Reinforcement learning for integrated
microgrid energy management: A review,” IEEE Open Journal of the
Industrial Electronics Society, vol. 1, pp. 88–102, 2020.

[21] F. Ruelens, B. Claessens, S. Vandael, B. De Schutter, R. Babuska,
and R. Belmans, “Residential demand response of thermostatically
controlled loads using batch reinforcement learning,” IEEE Transactions
on Smart Grid, vol. 8, no. 5, pp. 2149–2159, 2017.

[22] Y. Chow, A. Tamar, S. Mannor, and M. Pavone, “Risk-sensitive and
robust decision-making: A cvar optimization approach,” Advances in
Neural Information Processing Systems, vol. 28, pp. 1522–1530, 2015.

ISSN 2305-7254________________________________________PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 110 ----------------------------------------------------------------------------



[23] A. Tamar, Y. Glassner, and S. Mannor, “Optimizing the cvar via sam-
pling,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 29, no. 1, 2015, pp. 2959–2965.

[24] A. Tamar, Y. Chow, M. Ghavamzadeh, and S. Mannor, “Policy gra-
dient for coherent risk measures,” in Advances in Neural Information
Processing Systems, vol. 28, 2015, pp. 1468–1476.

[25] D. Wang, Q. Sun, and H. Su, “Real-time optimal energy management of
microgrid based on multi-agent proximal policy optimization,” Neural
Computing and Applications, vol. 37, no. 28, pp. 7145–7157, 2025.

[26] N. M. Cuadrado Avila, S. Horváth, and M. Takáč, “Generalizing in
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