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Abstract—Mental fatigue is a growing concern in various
domains. In this study, we propose a lightweight, non-intrusive
approach for estimating mental fatigue using facial videos cap-
tured via standard webcams. The method extracts red, green,
and blue (RGB) channel signals from the facial region using
a pixel averaging technique. These raw signals are filtered and
transformed into a set of statistical features, which are then fed
into traditional machine learning models. The proposed system
achieves promising classification performance, with models like
MLPClassifier and KNN reaching accuracy scores of up to 81%
following hyperparameter tuning and cross-validation. On the
contrary, deep networks such as LSTM and 1D-CNN applied
to the filtered raw RGB signals yielded lower accuracy (around
54–57%), most likely due to the dataset size being small and
the raw signal variability. With just an small decrease of
the accuracy compared to some literature benchmarking, our
method possesses numerous merits concerning speed, ease of
retraining, and deployment on low-resource devices. This makes
it particularly suitable for scalable fatigue monitoring in realistic
settings. Future improvements may include extending the feature
set and enlarging the dataset to further enhance performance.

I. INTRODUCTION

In recent years, technical systems have become more ad-

vanced and complicated. As they have become increasingly

complex, enormous cognitive burdens are being placed on

human operators who need to monitor a wide array of

performance parameters continuously and make fast, good

judgments in order to keep the system operating optimally.

Thus, the risk of mental fatigue has become more important.

Notably, in these high-responsibility environments, fatigue is

not merely an individual issue of well-being. It has serious

operational consequences, as even small mistakes in judgment

can have costly or risky consequences [1], [2].

One of the most challenging aspects of fatigue that it is

hard to be recognized by individuals until their performance

significantly decreases. When there is fatigue, decision-making

may take much longer and reactions may be slower, in

effect reducing professional performance and causing a higher

probability of operational errors [3].

There have been many approaches implemented to address

the problem of fatigue detection, primarily aimed at the

identification of early warning signs of fatigue and giving

real-time notifications to individuals of its possible risks. The

majority of the techniques follow machine learning-based

algorithms or deep learning-based models to develop robust

and effective systems of fatigue detection [4]. Much of the

existing work has been focused on identifying fatigue in task-

oriented, cognitively demanding situations, such as driving [5].

However, there have been some investigations on identifying

fatigue in more passive environments such as natural-viewing

scenarios where users are not directly involved in activities [6].

These approaches have made use of non-intrusive methods,

such as remote or webcam-based eye tracking. These systems

generally measure changes in pupil dynamics, blink rate, and

movement patterns of eyes to infer levels of fatigue in both

active and passive states of cognition [7].

Despite significant progress in fatigue detection research,

there remain a number of crucial limitations that are not met.

Though most studies exhibit high accuracy and robustness,

most sophisticated deep learning methods demand very high

computational requirements and large numbers of annotated

samples, which are not always practical in real-world sce-

narios. Additionally, most use of subjective self-reporting

measures (e.g., VAS-F and NASA-TLX) as annotation fa-

tigue is challenging to achieve high reliabilty. Sensor-based

approaches, while informative, often need physical touch or

wearable sensors, which may impact usability and scalability

for prolonged or large-scale monitoring. Our main contribu-

tions in this article are as follows:

1) We propose a lightweight, non-intrusive method for

estimating mental fatigue using facial videos captured

via a standard webcam, avoiding the need for wearable

sensors or specialized hardware.

2) We demonstrate that traditional machine learning mod-

els, when combined with statistical features and opti-

mized via grid search and cross-validation, can achieve

competitive accuracy with low computational cost.

3) Our method offers practical advantages in terms of

model retrainability, and fast inference, making it suit-

able for near real-time fatigue monitoring in resource-

constrained environments.

4) This study contributes to the growing body of work on

fatigue detection by addressing the trade-off between

accuracy, flexibility, and user acceptability, and by pro-

viding a scalable solution for long-term monitoring.

The paper is structured into four main sections. Section

II reviews a range of existing approaches to mental feature

detection. Section III introduces our proposed framework in

details where section IV provides an overview of the dataset
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utilized in this study. Section V details the experimental setup

and presents the results obtained from applying our approach.

Finally, Section VI offers a comprehensive discussion and

interpretation of the findings.

II. RELATED WORK

This section outlines the proposed approaches and method-

ologies developed for the assessment of mental fatigue in

drivers and operators. Accordingly, the methods presented here

are designed to detect cognitive fatigue in real-time or near

real-time conditions, leveraging both contactless estimation

techniques and sensor-based approaches. By doing so, we

aim to address the practical limitations and provide scalable,

generalizable solutions that can be integrated into real-world

monitoring systems.

The study in [8] proposes a cost-effective framework

for early-stage driver fatigue detection, designed to identify

fatigue before it becomes critical. An infrared (IR) camera

monitors behavioral indicators related to the eyes, mouth, and

head, ensuring reliable performance under varying lighting

conditions. Feature extraction is performed using multiple

CNN architectures, while classification is carried out with

a logical inference model. Evaluation on real-world datasets

collected in both daytime and nighttime conditions showed

a fatigue prediction accuracy of 93.3%, demonstrating strong

potential for practical deployment.

In [9],fatigue states are recognized through a combination

of facial analysis and temporal modeling. Face detection is

performed with a Multitask Convolutional Neural Network

MTCNN, followed by extraction of key landmarks using the

DLIB library. These landmarks generate fatigue-related feature

vectors from individual frames, which are concatenated into

sequences and processed by an LSTM to capture temporal

dynamics. The method achieved 88% accuracy on the YawDD

dataset [10] and 90% on a custom-built dataset, demonstrating

robust performance across sources.

Authors of [11] employ an RGB-D camera to capture both

RGB and infrared facial video for driver fatigue analysis. The

data are processed independently using the Joint Approximate

Diagonalization of Eigenmatrices (JADE) algorithm [12],

Fourier transform, and the Triangular Surface Patch (TSP) de-

scriptor [13], enabling extraction of heart rate, eye openness,

and mouth openness levels. These features are fused with a

Multimodal Fusion Recurrent Neural Network (MFRNN), that

integrates temporal dynamics via an RNN layer, while fuzzy

reasoning is applied to the heart rate signal to handle noise.

The system achieved accuracies of 86.75% and 91.67% on

two datasets.

In [14], a real-time framework for detecting driver dis-

turbances is presented using Convolutional Neural Networks

(CNNs), including InceptionV3, VGG16, and ResNet50.

Among them, ResNet50 achieved the best results with 93.69%

accuracy and a loss of 0.6931.

The study in [15] introduces a non-invasive smart cushion

system for assessing mental fatigue in construction equipment

operators. Heart rate and respiration signals were continuously

monitored during simulated excavator tasks with twelve par-

ticipants. A range of time and frequency-domain features was

extracted and used to train a Random Forest classifier. The

aim was to investigate the relationship between physiological

indicators and self-reported mental fatigue, as measured by the

NASA-TLX workload assessment. The model achieved 92%

accuracy, with results showing that combining heart rate and

respiration features outperformed either signal alone.

In [16], fatigue is estimated from multimodal wearable

sensor data including heart rate variability, respiratory rate,

energy expenditure, activity counts, and step count. Missing

values were imputed before training recurrent neural networks.

Both supervised and unsupervised approaches were tested,

with the best performance achieved using a hybrid of a random

forest and a causal CNN model, yielding 70% precision and

73% recall. The study highlights that physiological signals

predicted mental fatigue most effectively, while combining

physiological and activity-related features was crucial for

physical fatigue estimation.

Another significant advancement in driver fatigue detec-

tion is presented through a novel multimodal neural network

architecture [17]. Leveraging the DROZY dataset contain-

ing physiological (EEG, ECG) and facial image data, the

study’s standout contribution is a ”multimodal feature coupled

model.” This model innovates by not simply combining data

streams but by having features from each modality (e.g.,

EEG, ECG, facial) dynamically weight and influence each

other. This sophisticated coupling mechanism proved highly

effective, achieving exceptional performance metrics (Accu-

racy: 98.41%, F1-Score: 98.38%), significantly outperforming

a standard feature combination model ( 95% across metrics).

Article [18] assesses fatigue from video data of working in-

dividuals using deep-learning-based feature extraction for head

movement (Euler angles), vital signs (e.g., heart rate, blood

pressure, oxygen saturation, respiratory rate), and indicators of

eye and mouth activity (blinking and yawning). The method

was validated using the ”Human Fatigue Assessment Based

on Video Data” (HFAVD) dataset. Random Forest models

consistently achieved F1 scores and accuracies above 90%.

Based on this approach, [19] applied feature importance

techniques to identify the most influential predictors to avoid

the high computational cost presented in [18]. This study

highlighted key contributors to mental fatigue (heart rate,

blood pressure, oxygen saturation and the pitch angle of the

head) and replaced traditional machine learning methods, such

as Random Forest with sophisticated architecture of Tabular

Transformer which offers improved generalization capabilities

and is well-suited for handling structured data. This transition

led to a notable increase in the approach efficiency, achieving

an accuracy of 89%.

In [20], a facial feature-based drowsiness detection system

was proposed. Face detection was performed using Histogram

of Oriented Gradients (HoG) features with a Support Vector

Machine (SVM) classifier, followed by landmark extraction to

estimate head pose and eye blinks. Drowsiness indicators such

as blink duration, frequency, and PERCLOS were integrated
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with a fuzzy inference system. Validation against the Karolin-

ska Sleepiness Scale (KSS) [21] showed an average NRMSE

of 15.63%.

A notable contribution to the domain of mental fatigue

assessment is presented in this study [22] that integrates

the BlazeFace algorithm with a generalized regression neural

network (GRNN) optimized via a genetic algorithm (GA).

Video sequences undergo preprocessing via homomorphic fil-

tering, followed by BlazeFace detection for accurate landmark

localization. Fatigue-relevant features (PERCLOS, fixation du-

ration, pupil area) are weighted based on expert evaluation

and fused into a composite metric. A GRNN optimized with

genetic algorithms is then applied, achieving 97% accuracy

and demonstrating value for aviation safety applications.

Another study [23] proposed a novel approach that leverages

computer vision and machine learning techniques, offering

a contactless alternative to traditional sensor-based methods.

Unlike conventional approaches relying on physiological sig-

nals such as electrocardiograms, which require continuous

physical contact, this method utilizes facial data captured

through computer vision to assess fatigue states. The proposed

system integrates a Deep Residual Network with a Random

Forest classifier (DRN-RF), combining the representational

power of deep learning with the interpretability and stabil-

ity of ensemble methods. DRN-RF framework demonstrated

superior performance, achieving an accuracy of 94%.

Article [24] explores the assessment of mental fatigue

within the context of sports performance by introducing a

deep learning-based framework, thereby departing from the

conventional reliance on heart rate variability (HRV) analysis

typically seen in earlier works. The proposed method employs

a hybrid neural architecture that combines Residual Networks

(ResNet) and Bidirectional Long Short-Term Memory (Bi-

LSTM) networks for feature extraction, alongside a trans-

former module for advanced feature fusion. By utilizing orig-

inal ECG signals, two-dimensional spectral representations,

and other physiological indicators, the model achieves a high

classification accuracy of 95.29%.

Despite numerous reported studies in the area of fatigue

detection, which provide promising performance and excellent

results. Some of the constraints are still there that require

attention. Deep learning techniques—namely convolutional

and recurrent neural networks—have been extremely effective

in abstracting complex patterns of mental fatigue. However,

these techniques typically have high computational cost and

need the availability of large annotated datasets, which are not

always feasible for deployment. Furthermore, the majority of

fatigue labeling methods in the literature rely on subjective

self-report scales (e.g., NASA-TLX) or physiological sensors.

While informative, these measures have some issues. Sensor-

based measurement generally requires physical contact or

wearable sensors that can be inconvenient, and limit scalability

in large-scale or long-duration monitoring contexts. Overall,

although recent years have witnessed impressive technical

progress, there remain requirements for techniques balanced

between accuracy, flexibility, and user acceptability, partic-

ularly those that can give solid fatigue predictions in non-

contact, non-intrusive manners under different environmental

and user conditions.

III. METHODOLOGY

This section presents a comprehensive overview of the

methodology adopted in this study. It includes the data prepro-

cessing steps, the machine learning and deep learning models

explored, and a detailed description of the dataset utilized to

implement and evaluate the proposed approach.

This study builds on the concept of extracting meaningful

signals from facial videos of computer operators using a pixel-

averaging technique. These raw signals are then preprocessed

using filtering to enhance signal quality before being passed

into machine learning or deep learning models for fatigue

estimation.

We examined two main strategies for handling the signals

obtained from the red, green, and blue (RGB) channels of the

video frames. The first strategy involves summarizing each

one-minute segment of each signal by extracting statistical

features, specifically, the mean, minimum, maximum, standard

deviation, median, and the 25th and 75th percentiles. This

results in a set of 21 features (7 statistics per RGB channel),

which serve as input to a prediction model.

The second strategy treats the raw signals as time series

data. Here, the signals are divided into one-minute segments

containing 60 consecutive values, which are then directly fed

into a detection model to predict fatigue levels. This time-

series-based approach is applied separately to the signals

extracted from each RGB channel to evaluate their individual

contributions.

Therefore, the proposed methodology shown in Figure 1

follows a structured three-stage pipeline: signal extraction

from facial videos, preprocessing of the raw signals, and

finally, the evaluation of various machine learning and deep

learning models. Each stage is designed to refine and prepare

the data for the next, ultimately aiming to predict fatigue levels

accurately.

1) Signals extraction stage: This stage aims to extract

signals from RGB video data by tracking the color variations

in the facial region over time. The process involves identifying

the face in each video frame, extracting the average RGB

values, which will be followed with signal processing tech-

niques to produce smoothed signals. The process begins with

loading the video file using the OpenCV library, where frames

are sampled at a rate of one frame per second to minimize

computational time. Each selected frame is converted from

OpenCV’s default BGR format to the RGB color space.

Afterwards, we use the face recognition library to locate

faces in the frame. When a face is detected, the region

corresponding to the bounding box of the first detected face

is extracted. If no face is found, the entire frame is used as

a fallback. This ensures the signal is extracted from the most

relevant part of the frame — the facial skin region, which is

known to exhibit subtle color changes due to blood flow.
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Fig. 1. The proposed methodology

From each identified facial region, the mean pixel intensity

values of the R, G, and B channels are computed. This

results in three synchronized time series representing raw color

variation signals. These signals are subsequently subjected to

signal processing stage to enhance their quality and prepare

them for subsequent modeling stages.

2) Signals pre-processing stage: Among the primary issues

in extracting signals from video is the presence of noise due

to ambient lighting changes, camera sensor aberrations, video

compression, and facial movement. These sources of noise

can mask subtle temporal color variations in skin, which are

indicative of physiological processes. To mitigate these effects

without compromising the informative value of the signal, we

employ the Savitzky–Golay filter [25], a widely used digital

filter for signal smoothing.

The Savitzky–Golay filter (SG filter) is a convolution-based

smoothing algorithm that operates by fitting a low-degree

polynomial to a local window of consecutive data points using

least squares regression, and evaluating the polynomial at the

central point of the window.

Formally, for each point xi in the signal, a polynomial of

degree p is fitted to the values in a window centered at xi,

with a total of w data points (where w is the window length).

The central point is then replaced with the value of the fitted

polynomial at xi, which acts as the smoothed estimate. Here

is the equation:

ŷi =
m∑

j=−m

cjyi+j (1)

where:

• ŷi is the smoothed (filtered) value at point xi,

• yi+j are the original signal values in the window around

xi,

• cj are the convolution coefficients derived by fitting a

polynomial of degree p via least squares to the window,

• m is the half-window size, so that the window contains

2m+ 1 points in total.

These coefficients cj depend only on the polynomial degree

p and the window length w, and are the same for all xi when

the window is uniformly spaced.

This process is repeated across the entire time series,

effectively reducing high-frequency noise while retaining the

overall shape, amplitude, and phase characteristics of the

signal, which are properties that traditional low-pass filters

often distort.

The SG filter is particularly well-suited for processing

RGB signals extracted from skin regions in video due to the

following properties:

1) Preservation of Temporal Structure: Unlike moving

average filters or aggressive low-pass filters that can

distort signal peaks and delay phase information, the

SG filter maintains the shape of periodic components

that are crucial for accurate estimation of physiological

metrics.

2) Noise Attenuation Without Signal Suppression: High-

frequency variations caused by compression artifacts,

camera noise, or flickering illumination are effectively

smoothed out, while slow, physiologically relevant color

modulations are preserved.

Following the filtering process, we explored two preprocess-

ing strategies to prepare the RGB signals for fatigue prediction.

In the first approach, each one-minute segment of the signal

was summarized using 21 statistical features (7 statistics per

channel). In the second approach, we treated the filtered RGB

signals as time series. Each one-minute window, consisting

of 60 consecutive samples, was used directly as input to

the model to preserve temporal dynamics. Both strategies

were evaluated to assess the predictive value of RGB channel

information under different signal representations.
3) Models Evaluation: We explored multiple machine

learning and deep learning approaches to get the best per-
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formance. Here is an overview of the models evaluated:

1) Random Forest: Random Forest is an ensemble method

that builds multiple decision trees and combines their

outputs to improve accuracy and reduce overfitting. It

is well-suited for tabular data with engineered features

(e.g., statistical summaries of signals) but not ideal for

raw time series, as it doesn’t capture temporal depen-

dencies.

2) XGBoost Classifier: XGBoost is a high-performance

gradient boosting algorithm that builds trees sequentially

to correct previous errors. It includes advanced regular-

ization and parallelism. XGBoost excels with structured,

tabular data, but does not handle temporal sequences

natively unless time-based features are engineered.

3) LightGBM Classifier: LightGBM is a fast, efficient

gradient boosting algorithm that grows trees leaf-wise.

It is highly scalable and accurate on tabular datasets,

especially those with many features. Like other tree-

based models, it does not model time dependencies

unless temporal information is manually encoded.

4) CatBoost Classifier: CatBoost is a gradient boosting

algorithm that handles categorical variables naturally

and avoids overfitting. It’s effective for tabular data and

robust with minimal preprocessing. However, it lacks

native support for time-dependent patterns.

5) Multilayer Perceptron: MLP is a fully connected neu-

ral network that can model non-linear relationships in

tabular data. While it can also be used for time series,

it does not inherently model temporal dependencies

unless combined with specific architectures or time-

aware feature engineering.

6) K-Nearest Neighbors: KNN classifies the features based

on the majority vote of nearest neighbors. It’s simple

and effective for low-dimensional tabular data, but it

struggles with high-dimensional inputs and raw time

series, especially without proper feature scaling and

dimensionality reduction.

7) Support Vector Classifier: SVC finds optimal hyper-

planes for classification, with support for non-linear

kernels. It performs well on tabular data, especially when

classes are separable, but is computationally intensive

for large datasets and not optimized for sequential data.

8) Long Short-Term Memory Network: LSTM networks

are designed to learn long-term dependencies in se-

quential data through memory gates. They are ideal for

time series, especially where trends, delays, or repeated

patterns exist. They are not typically used for static

tabular data.

9) 1D Convolutional Neural Network: 1D-CNNs learn lo-

cal temporal patterns using convolutional filters. They

are efficient and effective for time series classification,

particularly when the signal has short- to mid-range

dependencies. While not typical for tabular data, they

can be adapted if the input has some spatial/temporal

structure.

We chose these models based on the need to balance

model complexity with practical constraints on computational

resources, especially given the volume of data derived from

video-based signal extraction. Tree-based and distance-based

classifiers were prioritized for their low training time and

minimal hyperparameter tuning requirements when applied to

engineered statistical features. Similarly, the use of lightweight

neural architectures for time series data (e.g., 1D-CNNs) was

chosen over more computationally intensive alternatives to the

minimize processing cost.

IV. DATASET

In the conducted experiments, we utilized the Opera-

torEYEVP dataset, as introduced by [26]. This dataset com-

prises recordings from ten distinct participants engaged in

a variety of activities, captured three times daily—morning,

afternoon, and evening—across a span of eight to ten days.

Each session includes facial video recordings, accompanied

by a rich set of additional data: eye and head movement

signals, scene imagery, heart rate measurements (expressed

as pulse per interval), results from two instances of a choice

reaction time (CRT) task, and responses to subjective self-

report measures, including the Visual Analogue Scale for

Fatigue (VAS-F).

The VAS-F consists of 18 items designed to assess partic-

ipants’ perceived fatigue levels and is done at the beginning

of each session. The overall experimental session follows a

structured protocol, starting with a sleep quality questionnaire

(administered once daily prior to the morning session), fol-

lowed by the VAS-F, a CRT task, a scientific text reading

task, the Landolt Ring correction test, a Tetris game, and a

second CRT task. The inclusion of a second CRT assessment

is based on the authors decision due to the fact that the

operator’s level of fatigue may vary between the start and the

end of the recording session. On average, each session lasted

approximately one hour.

The inclusion of the Landolt Rings correction test provides

an objective indictor to the assessment of cognitive perfor-

mance, particularly in relation to fatigue. Unlike subjective

self-report measures that rely on individual perception and may

be influenced by mood or personal bias like questionnaires and

rating scales, the Landolt Rings test yields metrics derived

from task performance. These include attention productivity,

work accuracy, stability of attention concentration, mental per-

formance coefficient and processing speed, which are known

to decline under mental fatigue.

In this study, mental performance was utilized as an indi-

cator of fatigue. A higher mental performance value reflects

lower levels of fatigue, and vice versa. The mental perfor-

mance values, derived from the Landolt Rings correction test,

ranged from 0 to 3. To distinguish between low and high

fatigue levels, we applied a threshold of 1.5 for labeling

purposes. Specifically, each five-minute video of the Landolt

Rings task was divided into one-minute intervals, and each

minute was labeled according to the corresponding mental
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performance level (fatigue level). We chose to focus exclu-

sively on the Landolt Rings videos to ensure the reliability

and objectivity of the fatigue labels, given the task’s strong

association with cognitive performance under fatigue.

V. EXPERIMENTS AND RESULTS

As stated above, the dataset includes recordings from 10

subjects. In total, 211 videos with a duration of five minutes

each were used, which resulted in 1,055 one-minute samples

for training the models - whether they are time series or

statistical feature-based. Because of the relatively small dataset

size, we opted for small deep learning models and did not

employ more advanced models such as Transformers, which

typically require larger datasets to converge effectively and

yield stable outcomes. This option is also aligned with our

goal of computational efficiency.

To optimize model performance, we employed grid search

combined with cross-validation on the training set to identify

the most effective hyperparameter configurations of the tra-

ditional machine learning models. This approach ensures that

the selected parameters generalize well and are not overfit to

a specific subset of the data. The dataset, consisting of 1,055

one-minute samples, was split such that 20% was reserved as a

hold-out test set to evaluate the final model performance. This

separation allowed for an unbiased assessment of the models’

predictive capabilities on unseen data.

Machine learning algorithms are well-adapted to grid-based

hyperparameter optimization because they have relatively short

training times and a small number of parameters to be opti-

mized. Table I includes a list of the hyperparameters explored

in this study.

TABLE I. HYPERPARAMETERS USED FOR 
EACH MODEL

Model Hyperparameters

Random Forest
n_estimators: [100, 200]
max_depth: [None, 10]
min_samples_split: [2, 5]

XGBoost
n_estimators: [100, 200]
max_depth: [3, 5]
learning_rate: [0.05, 0.1]

LGBMClassifier
n_estimators: [100, 200]
max_depth: [3, 5, -1]
learning_rate: [0.05, 0.1]

CatBoostClassifier
n_estimators: [100, 200]
max_depth: [3, 5]
learning_rate: [0.05, 0.1]

MLPClassifier
hidden_layer_sizes: [(64, 32), (128, 64)]
activation: [’relu’, ’tanh’]
alpha: [0.0001, 0.001]

KNN
n_neighbors: [1, 3, 5, 7]
weights: [’uniform’, ’distance’]
p: [1, 2]

SVC
C: [0.1, 1, 10]
kernel: [’linear’, ’rbf’]
gamma: [’scale’, ’auto’]

Deep learning algorithms such as LSTM and 1D-CNN,

conversely, usually require additional optimization techniques

(e.g., learning rate schedules, early stopping) and are sensitive

to initialization and data variability, making traditional grid

search relatively less efficient or effective. Therefore, within

these architectures, we employed default parameter settings

taken from exploratory experiments with the computational

feasibility as priority. Tables II and III show the architectures

of the LSTM and 1D-CNN, respectively.

TABLE II. LSTM MODEL 
ARCHITECTURE

Layer (type) Output Shape Param #
lstm (LSTM) (None, 60, 64) 16,896
lstm_1 (LSTM) (None, 32) 12,416
dense (Dense) (None, 32) 1,056
dropout (Dropout) (None, 32) 0
dense_1 (Dense) (None, 1) 33

TABLE III. 1D-CNN MODEL 
ARCHITECTURE

Layer (type) Output Shape Param #
conv1d (Conv1D) (None, 58, 32) 128
max_pooling1d (MaxPooling1D) (None, 29, 32) 0
conv1d_1 (Conv1D) (None, 27, 64) 6,208
max_pooling1d_1 (MaxPooling1D) (None, 13, 64) 0
flatten (Flatten) (None, 832) 0
dense_2 (Dense) (None, 64) 53,312
dropout_1 (Dropout) (None, 64) 0
dense_3 (Dense) (None, 1) 65

Tables IV and V present the accuracy of various models

trained on two different types of input data: statistical features

(table IV) and raw color channel signals extracted from video

frames (table V).

In the first table, traditional machine learning models trained

on statistical features consistently achieved higher accuracy,

with the MLPClassifier and KNeighborsClassifier reaching

up to 81%, and ensemble methods such as Random Forest,

LGBMClassifier, and CatBoostClassifier achieving accuracy

scores between 77% and 78%. These results indicate that

statistical summarization of the signals provides highly infor-

mative features for fatigue classification.

TABLE IV. MODEL PERFORMANCE USING STATISTICAL 
FEATURES

Model Accuracy Precision Recall F1-score
Random Forest 0.77 0.78 0.77 0.77
XGBClassifier 0.74 0.75 0.74 0.75
LGBMClassifier 0.78 0.78 0.78 0.78
CatBoostClassifier 0.78 0.79 0.78 0.78
MLPClassifier 0.80 0.80 0.80 0.80
KNeighborsClassifier 0.81 0.80 0.80 0.80
SVCClassifier 0.66 0.69 0.64 0.63

Table V shows the performance of deep learning models

(LSTM and 1D-CNN) trained on raw filtered red, green,

and blue channels. These models presented lower accuracies

ranging from 0.54 to 0.57, where the LSTM performed slightly

better on the blue channel. The low accuracy implies that the

raw channel signals separately may not hold discriminative
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information required to accurately predict levels of fatigue

without further feature engineering or larger training data.

TABLE V. MODEL PERFORMANCE USING COLOR CHANNEL 
SIGNALS

Model Red
Channel

Blue
Channel

Green
Channel

LSTM

Accuracy: 0.54
Precision: 0.27

Recall: 0.50
F1-score: 0.35

Accuracy: 0.57
Precision: 0.57

Recall: 0.55
F1-score: 0.53

Accuracy: 0.54
Precision: 0.27

Recall: 0.50
F1-score: 0.35

1D-CNN

Accuracy: 0.54
Precision: 0.27

Recall: 0.50
F1-score: 0.35

Accuracy: 0.54
Precision: 0.27

Recall: 0.50
F1-score: 0.35

Accuracy: 0.54
Precision: 0.27

Recall: 0.50
F1-score: 0.35

Overall, this comparison highlights that using statistical

features derived from the video signals leads to substantially

better predictive performance than relying on raw RGB sig-

nals, particularly in small-data scenarios. This supports our

decision to focus on statistical features with traditional ML

models in this study.

VI. DISCUSSION

The performance difference between models trained on

statistical features and those trained on raw RGB channel

signals can be explained to several critical factors relating to

signal representation, model suitability, and data constraints.

Firstly, statistical features serve as high-level representations

of the underlying meaningful signals. These features effec-

tively outline temporal dynamics and noise-prone patterns into

more compact and discriminative representation. By leverag-

ing these features, traditional machine learning model are able

to efficiently capture relevant patterns associated with fatigue

without being overwhelmed by the variability in raw data. This

explains their relatively high and consistent accuracy levels,

reaching up to 81%.

In contrast, the deep learning models (LSTM and 1D-

CNN) in this study were trained on filtered raw red, green,

and blue (RGB) channel signals, extracted from facial video

frames. The filtering process aimed to enhance the video

signal quality by reducing motion and illumination artifacts.

However, these raw filtered time-series signals still include

substantial residual variability and subtle temporal dynamics,

which are not explicitly structured or annotated.

While deep models theoretically excel at discovering latent

patterns in raw sequences, they rely heavily on large, diverse

datasets to learn robust and generalizable features. In this

case, the relatively small dataset likely limited the effeciency

of the LSTM and CNN architectures to extract meaningful

representations, resulting in consistently low accuracy scores

across all RGB channels. Furthermore, the nearly constant

performance across red, green, and blue channels indicates

that individual signal channel cannot provid sufficiently strong

discriminative performance.

The biggest limitation of this study is the relatively

small dataset, which constrains generalizability. Expanding the

dataset is a key next step, and we are currently planning

additional data collection. Additionally, while physiology-

inspired and frequency-domain features can further enhance

performance, which we did in our prior work [18], [19],

we experimented with such features (e.g., heart rate, blood

pressure, oxygen saturation, head/eye movement indicators)

and obtained promising results. However, they typically re-

quire additional sensors or computationally intensive computer

vision pipelines. In the present study, our primary objective

was to design a lightweight and feasible solution. For this

reason, we intentionally restricted the feature set to simple

statistical summaries of RGB signals, allowing deployment on

standard webcams and low-resource devices without special-

ized hardware. This choice enabled an approach that remains

practical, scalable, and effective in real-world scenarios.

Nevertheless, we see this contribution as a proof-of-concept,

highlighting that even in settings where large-scale annotated

data are not available, useful and efficient models can be

built. However, we acknowledge that validating across diverse

datasets or environments would further strengthen the gen-

eralizability of the approach. Furthermore, in this study we

deliberately focused on a single dataset (OperatorEYEVP), as

it provides objective fatigue labels (via the Landolt Rings test),

ensuring consistency and reliability in evaluation. Expanding

validation across multiple datasets is an important direction

for future research, but was beyond the scope of the present

study.

In summary, these results validate the hypothesis that

domain-informed feature engineering remains a powerful ap-

proach, especially when data is limited. Traditional ML models

trained on statistical features not only outperform deep learn-

ing models in accuracy but also offer greater interpretability

and computational efficiency. This justifies the design choice

in our pipeline to prioritize extracted features and conventional

classifiers over end-to-end deep models trained on raw inputs.

VII. CONCLUSION

In this study, we proposed a lightweight framework for

estimating mental fatigue from facial videos. The approach

involves extracting red, green, and blue (RGB) channel signals

using a pixel averaging technique, followed by signal filtering

and statistical feature extraction. These features were then used

to train traditional machine learning models, which achieved

good performance when optimized through grid search and

cross-validation.

We also evaluated the effectiveness of deep learning models

(LSTM and 1D-CNN) applied directly to the filtered raw

signals. However, these models demonstrated relatively poor

performance, likely due to the limited size of the dataset and

the high variability and redundancy present in the raw signal

data and the fact that deep architectures typically require large-

scale data to perform effectively.

Our exploration of deep learning models was intentionally

limited. The first reason is the dataset size. As discussed

before, the dataset is relatively small (1,055 one-minute sam-

ples). Deep models generally require much larger and more
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diverse training data to converge effectively and avoid instabil-

ity. Extensive tuning under these data constraints would likely

not provide meaningful improvements or reliable conclusions.

The other reason is that our main goal of this work was to

assess whether simple, efficient models can achieve competi-

tive performance in webcam-based fatigue detection. While we

included baseline LSTM and 1D-CNN models for comparison,

our emphasis was on demonstrating that lightweight ML

approaches can be better suited for practical deployment in

data-constrained, resource-limited settings.

Although the accuracy of our proposed method does not

surpass most of state-of-the-art approaches discussed in the

literature, it offers several practical advantages. It is computa-

tionally efficient, interpretable, and capable of providing quick

predictions, making it especially suitable for deployment on

low-resource systems. Moreover, traditional machine learning

models are easier and faster to update when new data be-

comes available, compared to more complex deep learning

frameworks.

With the inclusion of more training samples, additional

relevant features, and more advanced feature engineering

which is benefitial for the deep learning models, the overall

performance of the framework could be further improved.

Nonetheless, our findings support the use of lightweight,

interpretable models for mental fatigue estimation in resource-

constrained settings.
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