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Abstract—Mental fatigue is a growing concern in various
domains. In this study, we propose a lightweight, non-intrusive
approach for estimating mental fatigue using facial videos cap-
tured via standard webcams. The method extracts red, green,
and blue (RGB) channel signals from the facial region using
a pixel averaging technique. These raw signals are filtered and
transformed into a set of statistical features, which are then fed
into traditional machine learning models. The proposed system
achieves promising classification performance, with models like
MLPClassifier and KNN reaching accuracy scores of up to 81%
following hyperparameter tuning and cross-validation. On the
contrary, deep networks such as LSTM and 1D-CNN applied
to the filtered raw RGB signals yielded lower accuracy (around
54-57%), most likely due to the dataset size being small and
the raw signal variability. With just an small decrease of
the accuracy compared to some literature benchmarking, our
method possesses numerous merits concerning speed, ease of
retraining, and deployment on low-resource devices. This makes
it particularly suitable for scalable fatigue monitoring in realistic
settings. Future improvements may include extending the feature
set and enlarging the dataset to further enhance performance.

I. INTRODUCTION

In recent years, technical systems have become more ad-
vanced and complicated. As they have become increasingly
complex, enormous cognitive burdens are being placed on
human operators who need to monitor a wide array of
performance parameters continuously and make fast, good
judgments in order to keep the system operating optimally.
Thus, the risk of mental fatigue has become more important.
Notably, in these high-responsibility environments, fatigue is
not merely an individual issue of well-being. It has serious
operational consequences, as even small mistakes in judgment
can have costly or risky consequences [1], [2].

One of the most challenging aspects of fatigue that it is
hard to be recognized by individuals until their performance
significantly decreases. When there is fatigue, decision-making
may take much longer and reactions may be slower, in
effect reducing professional performance and causing a higher
probability of operational errors [3].

There have been many approaches implemented to address
the problem of fatigue detection, primarily aimed at the
identification of early warning signs of fatigue and giving
real-time notifications to individuals of its possible risks. The
majority of the techniques follow machine learning-based
algorithms or deep learning-based models to develop robust
and effective systems of fatigue detection [4]. Much of the

97

existing work has been focused on identifying fatigue in task-
oriented, cognitively demanding situations, such as driving [5].
However, there have been some investigations on identifying
fatigue in more passive environments such as natural-viewing
scenarios where users are not directly involved in activities [6].
These approaches have made use of non-intrusive methods,
such as remote or webcam-based eye tracking. These systems
generally measure changes in pupil dynamics, blink rate, and
movement patterns of eyes to infer levels of fatigue in both
active and passive states of cognition [7].

Despite significant progress in fatigue detection research,
there remain a number of crucial limitations that are not met.
Though most studies exhibit high accuracy and robustness,
most sophisticated deep learning methods demand very high
computational requirements and large numbers of annotated
samples, which are not always practical in real-world sce-
narios. Additionally, most use of subjective self-reporting
measures (e.g., VAS-F and NASA-TLX) as annotation fa-
tigue is challenging to achieve high reliabilty. Sensor-based
approaches, while informative, often need physical touch or
wearable sensors, which may impact usability and scalability
for prolonged or large-scale monitoring. Our main contribu-
tions in this article are as follows:

1) We propose a lightweight, non-intrusive method for
estimating mental fatigue using facial videos captured
via a standard webcam, avoiding the need for wearable
sensors or specialized hardware.

2) We demonstrate that traditional machine learning mod-

els, when combined with statistical features and opti-

mized via grid search and cross-validation, can achieve
competitive accuracy with low computational cost.

Our method offers practical advantages in terms of

model retrainability, and fast inference, making it suit-

able for near real-time fatigue monitoring in resource-
constrained environments.

This study contributes to the growing body of work on

fatigue detection by addressing the trade-off between

accuracy, flexibility, and user acceptability, and by pro-
viding a scalable solution for long-term monitoring.

3)

4)

The paper is structured into four main sections. Section
IT reviews a range of existing approaches to mental feature
detection. Section III introduces our proposed framework in
details where section IV provides an overview of the dataset
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utilized in this study. Section V details the experimental setup
and presents the results obtained from applying our approach.
Finally, Section VI offers a comprehensive discussion and
interpretation of the findings.

II. RELATED WORK

This section outlines the proposed approaches and method-
ologies developed for the assessment of mental fatigue in
drivers and operators. Accordingly, the methods presented here
are designed to detect cognitive fatigue in real-time or near
real-time conditions, leveraging both contactless estimation
techniques and sensor-based approaches. By doing so, we
aim to address the practical limitations and provide scalable,
generalizable solutions that can be integrated into real-world
monitoring systems.

The study in [8] proposes a cost-effective framework
for early-stage driver fatigue detection, designed to identify
fatigue before it becomes critical. An infrared (IR) camera
monitors behavioral indicators related to the eyes, mouth, and
head, ensuring reliable performance under varying lighting
conditions. Feature extraction is performed using multiple
CNN architectures, while classification is carried out with
a logical inference model. Evaluation on real-world datasets
collected in both daytime and nighttime conditions showed
a fatigue prediction accuracy of 93.3%, demonstrating strong
potential for practical deployment.

In [9].fatigue states are recognized through a combination
of facial analysis and temporal modeling. Face detection is
performed with a Multitask Convolutional Neural Network
MTCNN, followed by extraction of key landmarks using the
DLIB library. These landmarks generate fatigue-related feature
vectors from individual frames, which are concatenated into
sequences and processed by an LSTM to capture temporal
dynamics. The method achieved 88% accuracy on the YawDD
dataset [10] and 90% on a custom-built dataset, demonstrating
robust performance across sources.

Authors of [11] employ an RGB-D camera to capture both
RGB and infrared facial video for driver fatigue analysis. The
data are processed independently using the Joint Approximate
Diagonalization of Eigenmatrices (JADE) algorithm [12],
Fourier transform, and the Triangular Surface Patch (TSP) de-
scriptor [13], enabling extraction of heart rate, eye openness,
and mouth openness levels. These features are fused with a
Multimodal Fusion Recurrent Neural Network (MFRNN), that
integrates temporal dynamics via an RNN layer, while fuzzy
reasoning is applied to the heart rate signal to handle noise.
The system achieved accuracies of 86.75% and 91.67% on
two datasets.

In [14], a real-time framework for detecting driver dis-
turbances is presented using Convolutional Neural Networks
(CNNs), including InceptionV3, VGGI16, and ResNet50.
Among them, ResNet50 achieved the best results with 93.69%
accuracy and a loss of 0.6931.

The study in [15] introduces a non-invasive smart cushion
system for assessing mental fatigue in construction equipment
operators. Heart rate and respiration signals were continuously
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monitored during simulated excavator tasks with twelve par-
ticipants. A range of time and frequency-domain features was
extracted and used to train a Random Forest classifier. The
aim was to investigate the relationship between physiological
indicators and self-reported mental fatigue, as measured by the
NASA-TLX workload assessment. The model achieved 92%
accuracy, with results showing that combining heart rate and
respiration features outperformed either signal alone.

In [16], fatigue is estimated from multimodal wearable
sensor data including heart rate variability, respiratory rate,
energy expenditure, activity counts, and step count. Missing
values were imputed before training recurrent neural networks.
Both supervised and unsupervised approaches were tested,
with the best performance achieved using a hybrid of a random
forest and a causal CNN model, yielding 70% precision and
73% recall. The study highlights that physiological signals
predicted mental fatigue most effectively, while combining
physiological and activity-related features was crucial for
physical fatigue estimation.

Another significant advancement in driver fatigue detec-
tion is presented through a novel multimodal neural network
architecture [17]. Leveraging the DROZY dataset contain-
ing physiological (EEG, ECG) and facial image data, the
study’s standout contribution is a “multimodal feature coupled
model.” This model innovates by not simply combining data
streams but by having features from each modality (e.g.,
EEG, ECG, facial) dynamically weight and influence each
other. This sophisticated coupling mechanism proved highly
effective, achieving exceptional performance metrics (Accu-
racy: 98.41%, F1-Score: 98.38%), significantly outperforming
a standard feature combination model ( 95% across metrics).

Article [18] assesses fatigue from video data of working in-
dividuals using deep-learning-based feature extraction for head
movement (Euler angles), vital signs (e.g., heart rate, blood
pressure, oxygen saturation, respiratory rate), and indicators of
eye and mouth activity (blinking and yawning). The method
was validated using the "Human Fatigue Assessment Based
on Video Data” (HFAVD) dataset. Random Forest models
consistently achieved F1 scores and accuracies above 90%.
Based on this approach, [19] applied feature importance
techniques to identify the most influential predictors to avoid
the high computational cost presented in [18]. This study
highlighted key contributors to mental fatigue (heart rate,
blood pressure, oxygen saturation and the pitch angle of the
head) and replaced traditional machine learning methods, such
as Random Forest with sophisticated architecture of Tabular
Transformer which offers improved generalization capabilities
and is well-suited for handling structured data. This transition
led to a notable increase in the approach efficiency, achieving
an accuracy of 8§9%.

In [20], a facial feature-based drowsiness detection system
was proposed. Face detection was performed using Histogram
of Oriented Gradients (HoG) features with a Support Vector
Machine (SVM) classifier, followed by landmark extraction to
estimate head pose and eye blinks. Drowsiness indicators such
as blink duration, frequency, and PERCLOS were integrated
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with a fuzzy inference system. Validation against the Karolin-
ska Sleepiness Scale (KSS) [21] showed an average NRMSE
of 15.63%.

A notable contribution to the domain of mental fatigue
assessment is presented in this study [22] that integrates
the BlazeFace algorithm with a generalized regression neural
network (GRNN) optimized via a genetic algorithm (GA).
Video sequences undergo preprocessing via homomorphic fil-
tering, followed by BlazeFace detection for accurate landmark
localization. Fatigue-relevant features (PERCLOS, fixation du-
ration, pupil area) are weighted based on expert evaluation
and fused into a composite metric. A GRNN optimized with
genetic algorithms is then applied, achieving 97% accuracy
and demonstrating value for aviation safety applications.

Another study [23] proposed a novel approach that leverages
computer vision and machine learning techniques, offering
a contactless alternative to traditional sensor-based methods.
Unlike conventional approaches relying on physiological sig-
nals such as electrocardiograms, which require continuous
physical contact, this method utilizes facial data captured
through computer vision to assess fatigue states. The proposed
system integrates a Deep Residual Network with a Random
Forest classifier (DRN-RF), combining the representational
power of deep learning with the interpretability and stabil-
ity of ensemble methods. DRN-RF framework demonstrated
superior performance, achieving an accuracy of 94%.

Article [24] explores the assessment of mental fatigue
within the context of sports performance by introducing a
deep learning-based framework, thereby departing from the
conventional reliance on heart rate variability (HRV) analysis
typically seen in earlier works. The proposed method employs
a hybrid neural architecture that combines Residual Networks
(ResNet) and Bidirectional Long Short-Term Memory (Bi-
LSTM) networks for feature extraction, alongside a trans-
former module for advanced feature fusion. By utilizing orig-
inal ECG signals, two-dimensional spectral representations,
and other physiological indicators, the model achieves a high
classification accuracy of 95.29%.

Despite numerous reported studies in the area of fatigue
detection, which provide promising performance and excellent
results. Some of the constraints are still there that require
attention. Deep learning techniques—namely convolutional
and recurrent neural networks—have been extremely effective
in abstracting complex patterns of mental fatigue. However,
these techniques typically have high computational cost and
need the availability of large annotated datasets, which are not
always feasible for deployment. Furthermore, the majority of
fatigue labeling methods in the literature rely on subjective
self-report scales (e.g., NASA-TLX) or physiological sensors.
While informative, these measures have some issues. Sensor-
based measurement generally requires physical contact or
wearable sensors that can be inconvenient, and limit scalability
in large-scale or long-duration monitoring contexts. Overall,
although recent years have witnessed impressive technical
progress, there remain requirements for techniques balanced
between accuracy, flexibility, and user acceptability, partic-
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ularly those that can give solid fatigue predictions in non-
contact, non-intrusive manners under different environmental
and user conditions.

III. METHODOLOGY

This section presents a comprehensive overview of the
methodology adopted in this study. It includes the data prepro-
cessing steps, the machine learning and deep learning models
explored, and a detailed description of the dataset utilized to
implement and evaluate the proposed approach.

This study builds on the concept of extracting meaningful
signals from facial videos of computer operators using a pixel-
averaging technique. These raw signals are then preprocessed
using filtering to enhance signal quality before being passed
into machine learning or deep learning models for fatigue
estimation.

We examined two main strategies for handling the signals
obtained from the red, green, and blue (RGB) channels of the
video frames. The first strategy involves summarizing each
one-minute segment of each signal by extracting statistical
features, specifically, the mean, minimum, maximum, standard
deviation, median, and the 25th and 75th percentiles. This
results in a set of 21 features (7 statistics per RGB channel),
which serve as input to a prediction model.

The second strategy treats the raw signals as time series
data. Here, the signals are divided into one-minute segments
containing 60 consecutive values, which are then directly fed
into a detection model to predict fatigue levels. This time-
series-based approach is applied separately to the signals
extracted from each RGB channel to evaluate their individual
contributions.

Therefore, the proposed methodology shown in Figure 1
follows a structured three-stage pipeline: signal extraction
from facial videos, preprocessing of the raw signals, and
finally, the evaluation of various machine learning and deep
learning models. Each stage is designed to refine and prepare
the data for the next, ultimately aiming to predict fatigue levels
accurately.

1) Signals extraction stage: This stage aims to extract
signals from RGB video data by tracking the color variations
in the facial region over time. The process involves identifying
the face in each video frame, extracting the average RGB
values, which will be followed with signal processing tech-
niques to produce smoothed signals. The process begins with
loading the video file using the OpenCV library, where frames
are sampled at a rate of one frame per second to minimize
computational time. Each selected frame is converted from
OpenCV'’s default BGR format to the RGB color space.

Afterwards, we use the face_recognition library to locate
faces in the frame. When a face is detected, the region
corresponding to the bounding box of the first detected face
is extracted. If no face is found, the entire frame is used as
a fallback. This ensures the signal is extracted from the most
relevant part of the frame — the facial skin region, which is
known to exhibit subtle color changes due to blood flow.
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Fig. 1. The proposed methodology

From each identified facial region, the mean pixel intensity
values of the R, G, and B channels are computed. This
results in three synchronized time series representing raw color
variation signals. These signals are subsequently subjected to
signal processing stage to enhance their quality and prepare
them for subsequent modeling stages.

2) Signals pre-processing stage: Among the primary issues
in extracting signals from video is the presence of noise due
to ambient lighting changes, camera sensor aberrations, video
compression, and facial movement. These sources of noise
can mask subtle temporal color variations in skin, which are
indicative of physiological processes. To mitigate these effects
without compromising the informative value of the signal, we
employ the Savitzky—Golay filter [25], a widely used digital
filter for signal smoothing.

The Savitzky—Golay filter (SG filter) is a convolution-based
smoothing algorithm that operates by fitting a low-degree
polynomial to a local window of consecutive data points using
least squares regression, and evaluating the polynomial at the
central point of the window.

Formally, for each point x; in the signal, a polynomial of
degree p is fitted to the values in a window centered at x;,
with a total of w data points (where w is the window length).
The central point is then replaced with the value of the fitted
polynomial at x;, which acts as the smoothed estimate. Here
is the equation:

Ui = Z CjYitj (1)
j=—m

where:

o ¢, is the smoothed (filtered) value at point x;,

e yiy; are the original signal values in the window around
Lis

e ¢; are the convolution coefficients derived by fitting a
polynomial of degree p via least squares to the window,
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o m is the half-window size, so that the window contains

2m + 1 points in total.

These coefficients ¢; depend only on the polynomial degree
p and the window length w, and are the same for all x; when
the window is uniformly spaced.

This process is repeated across the entire time series,
effectively reducing high-frequency noise while retaining the
overall shape, amplitude, and phase characteristics of the
signal, which are properties that traditional low-pass filters
often distort.

The SG filter is particularly well-suited for processing
RGB signals extracted from skin regions in video due to the
following properties:

1) Preservation of Temporal Structure: Unlike moving
average filters or aggressive low-pass filters that can
distort signal peaks and delay phase information, the
SG filter maintains the shape of periodic components
that are crucial for accurate estimation of physiological
metrics.

2) Noise Attenuation Without Signal Suppression: High-
frequency variations caused by compression artifacts,
camera noise, or flickering illumination are effectively
smoothed out, while slow, physiologically relevant color
modulations are preserved.

Following the filtering process, we explored two preprocess-
ing strategies to prepare the RGB signals for fatigue prediction.
In the first approach, each one-minute segment of the signal
was summarized using 21 statistical features (7 statistics per
channel). In the second approach, we treated the filtered RGB
signals as time series. Each one-minute window, consisting
of 60 consecutive samples, was used directly as input to
the model to preserve temporal dynamics. Both strategies
were evaluated to assess the predictive value of RGB channel
information under different signal representations.

3) Models Evaluation: We explored multiple machine
learning and deep learning approaches to get the best per-
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formance. Here is an overview of the models evaluated:

1) Random Forest: Random Forest is an ensemble method
that builds multiple decision trees and combines their
outputs to improve accuracy and reduce overfitting. It
is well-suited for tabular data with engineered features
(e.g., statistical summaries of signals) but not ideal for
raw time series, as it doesn’t capture temporal depen-
dencies.

XGBoost Classifier: XGBoost is a high-performance
gradient boosting algorithm that builds trees sequentially
to correct previous errors. It includes advanced regular-
ization and parallelism. XGBoost excels with structured,
tabular data, but does not handle temporal sequences
natively unless time-based features are engineered.
LightGBM Classifier: LightGBM is a fast, efficient
gradient boosting algorithm that grows trees leaf-wise.
It is highly scalable and accurate on tabular datasets,
especially those with many features. Like other tree-
based models, it does not model time dependencies
unless temporal information is manually encoded.
CatBoost Classifier: CatBoost is a gradient boosting
algorithm that handles categorical variables naturally
and avoids overfitting. It’s effective for tabular data and
robust with minimal preprocessing. However, it lacks
native support for time-dependent patterns.

Multilayer Perceptron: MLP is a fully connected neu-
ral network that can model non-linear relationships in
tabular data. While it can also be used for time series,
it does not inherently model temporal dependencies
unless combined with specific architectures or time-
aware feature engineering.

K-Nearest Neighbors: KNN classifies the features based
on the majority vote of nearest neighbors. It’s simple
and effective for low-dimensional tabular data, but it
struggles with high-dimensional inputs and raw time
series, especially without proper feature scaling and
dimensionality reduction.

Support Vector Classifier: SVC finds optimal hyper-
planes for classification, with support for non-linear
kernels. It performs well on tabular data, especially when
classes are separable, but is computationally intensive
for large datasets and not optimized for sequential data.
Long Short-Term Memory Network: LSTM networks
are designed to learn long-term dependencies in se-
quential data through memory gates. They are ideal for
time series, especially where trends, delays, or repeated
patterns exist. They are not typically used for static
tabular data.

ID Convolutional Neural Network: 1D-CNNs learn lo-
cal temporal patterns using convolutional filters. They
are efficient and effective for time series classification,
particularly when the signal has short- to mid-range
dependencies. While not typical for tabular data, they
can be adapted if the input has some spatial/temporal
structure.

2)

3)

4)

5)

6)

7)

8)

9)
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We chose these models based on the need to balance
model complexity with practical constraints on computational
resources, especially given the volume of data derived from
video-based signal extraction. Tree-based and distance-based
classifiers were prioritized for their low training time and
minimal hyperparameter tuning requirements when applied to
engineered statistical features. Similarly, the use of lightweight
neural architectures for time series data (e.g., ID-CNNs) was
chosen over more computationally intensive alternatives to the
minimize processing cost.

IV. DATASET

In the conducted experiments, we utilized the Opera-
torEYEVP dataset, as introduced by [26]. This dataset com-
prises recordings from ten distinct participants engaged in
a variety of activities, captured three times daily—morning,
afternoon, and evening—across a span of eight to ten days.
Each session includes facial video recordings, accompanied
by a rich set of additional data: eye and head movement
signals, scene imagery, heart rate measurements (expressed
as pulse per interval), results from two instances of a choice
reaction time (CRT) task, and responses to subjective self-
report measures, including the Visual Analogue Scale for
Fatigue (VAS-F).

The VAS-F consists of 18 items designed to assess partic-
ipants’ perceived fatigue levels and is done at the beginning
of each session. The overall experimental session follows a
structured protocol, starting with a sleep quality questionnaire
(administered once daily prior to the morning session), fol-
lowed by the VAS-F, a CRT task, a scientific text reading
task, the Landolt Ring correction test, a Tetris game, and a
second CRT task. The inclusion of a second CRT assessment
is based on the authors decision due to the fact that the
operator’s level of fatigue may vary between the start and the
end of the recording session. On average, each session lasted
approximately one hour.

The inclusion of the Landolt Rings correction test provides
an objective indictor to the assessment of cognitive perfor-
mance, particularly in relation to fatigue. Unlike subjective
self-report measures that rely on individual perception and may
be influenced by mood or personal bias like questionnaires and
rating scales, the Landolt Rings test yields metrics derived
from task performance. These include attention productivity,
work accuracy, stability of attention concentration, mental per-
formance coefficient and processing speed, which are known
to decline under mental fatigue.

In this study, mental performance was utilized as an indi-
cator of fatigue. A higher mental performance value reflects
lower levels of fatigue, and vice versa. The mental perfor-
mance values, derived from the Landolt Rings correction test,
ranged from O to 3. To distinguish between low and high
fatigue levels, we applied a threshold of 1.5 for labeling
purposes. Specifically, each five-minute video of the Landolt
Rings task was divided into one-minute intervals, and each
minute was labeled according to the corresponding mental
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performance level (fatigue level). We chose to focus exclu-
sively on the Landolt Rings videos to ensure the reliability
and objectivity of the fatigue labels, given the task’s strong
association with cognitive performance under fatigue.

V. EXPERIMENTS AND RESULTS

As stated above, the dataset includes recordings from 10
subjects. In total, 211 videos with a duration of five minutes
each were used, which resulted in 1,055 one-minute samples
for training the models - whether they are time series or
statistical feature-based. Because of the relatively small dataset
size, we opted for small deep learning models and did not
employ more advanced models such as Transformers, which
typically require larger datasets to converge effectively and
yield stable outcomes. This option is also aligned with our
goal of computational efficiency.

To optimize model performance, we employed grid search
combined with cross-validation on the training set to identify
the most effective hyperparameter configurations of the tra-
ditional machine learning models. This approach ensures that
the selected parameters generalize well and are not overfit to
a specific subset of the data. The dataset, consisting of 1,055
one-minute samples, was split such that 20% was reserved as a
hold-out test set to evaluate the final model performance. This
separation allowed for an unbiased assessment of the models’
predictive capabilities on unseen data.

Machine learning algorithms are well-adapted to grid-based
hyperparameter optimization because they have relatively short
training times and a small number of parameters to be opti-
mized. Table I includes a list of the hyperparameters explored
in this study.

TABLE 1. HYPERPARAMETERS USED FOR
EACH MODEL

Model Hyperparameters
n_estimators: [100, 200]
max_depth: [None, 10]
min_samples_split: [2, 5]

n_estimators: [100, 200]

Random Forest
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to initialization and data variability, making traditional grid
search relatively less efficient or effective. Therefore, within
these architectures, we employed default parameter settings
taken from exploratory experiments with the computational
feasibility as priority. Tables II and III show the architectures
of the LSTM and 1D-CNN, respectively.

TABLE II. LSTM MODEL
ARCHITECTURE

Layer (type) Output Shape | Param #
lstm (LSTM) (None, 60, 64) 16,896
lstm_1 (LSTM) (None, 32) 12,416
dense (Dense) (None, 32) 1,056
dropout (Dropout) (None, 32) 0
dense_1 (Dense) (None, 1) 33

TABLE III. 1ID-CNN MODEL
ARCHITECTURE

Layer (type) Output Shape | Param #
convld (ConvlD) (None, 58, 32) 128
max_poolingld (MaxPoolinglD) (None, 29, 32) 0
convld_1 (ConvilD) (None, 27, 64) 6,208
max_poolingld_1 (MaxPoolinglD) (None, 13, 64) 0
flatten (Flatten) (None, 832) 0
dense_2 (Dense) (None, 64) 53,312
dropout_1 (Dropout) (None, 64) 0
dense_3 (Dense) (None, 1) 65

Tables IV and V present the accuracy of various models
trained on two different types of input data: statistical features
(table IV) and raw color channel signals extracted from video
frames (table V).

In the first table, traditional machine learning models trained
on statistical features consistently achieved higher accuracy,
with the MLPClassifier and KNeighborsClassifier reaching
up to 81%, and ensemble methods such as Random Forest,
LGBMClassifier, and CatBoostClassifier achieving accuracy
scores between 77% and 78%. These results indicate that
statistical summarization of the signals provides highly infor-
mative features for fatigue classification.

gamma: [’scale’, "auto’]

Deep learning algorithms such as LSTM and 1D-CNN,
conversely, usually require additional optimization techniques
(e.g., learning rate schedules, early stopping) and are sensitive
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XGBoost max_depth: [3, 5]
learning_rate: [0.05, 0.1]
n_estimators: [100, 200] TABLE IV. MODEL PERFORMANCE USING STATISTICAL
LGBMClassifier max_depth: [3, 5, -1] FEATURES
learning_rate: [0.05, 0.1]
n_estimators: [100, 200] Model Accuracy | Precision | Recall | Fl-score
CatBoostClassifier | max_depth: [3, 5] Random Forest 0.77 0.78 0.77 0.77
learning_rate: [0.05, 0.1] XGBClassifier 0.74 0.75 0.74 0.75
hidden_layer_sizes: [(64, 32), (128, 64)] LGBMClassifier 0.78 0.78 0.78 0.78
MLPClassifier activation: [relu’, 'tanh’] CatBoostClassifier 0.78 0.79 0.78 0.78
alpha: [0.0001, 0.001] MLPClassifier 0.80 0.80 0.80 0.80
n_neighbors: [1, 3,5, 7] KNeighborsClassifier 0.81 0.80 0.80 0.80
KNN WeiggtSI ["uniform’, “distance’] SVCClassifier 0.66 0.69 0.64 0.63
p: 1, 2]
c: [0.1, 1, 10]
svc kernel: ['linear’, 'rbf’] Table V shows the performance of deep learning models

(LSTM and 1D-CNN) trained on raw filtered red, green,
and blue channels. These models presented lower accuracies
ranging from 0.54 to 0.57, where the LSTM performed slightly
better on the blue channel. The low accuracy implies that the
raw channel signals separately may not hold discriminative
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information required to accurately predict levels of fatigue
without further feature engineering or larger training data.

TABLE V. MODEL PERFORMANCE USING COLOR CHANNEL

SIGNALS
Model Red Blue Green
Channel Channel Channel
Accuracy: 0.54 | Accuracy: 0.57 | Accuracy: 0.54
LSTM Precision: 0.27 | Precision: 0.57 | Precision: 0.27
Recall: 0.50 Recall: 0.55 Recall: 0.50
Fl-score: 0.35 F1-score: 0.53 Fl1-score: 0.35
Accuracy: 0.54 | Accuracy: 0.54 | Accuracy: 0.54
ID-CNN Precision: 0.27 | Precision: 0.27 | Precision: 0.27
Recall: 0.50 Recall: 0.50 Recall: 0.50
Fl-score: 0.35 Fl1-score: 0.35 Fl1-score: 0.35

Overall, this comparison highlights that using statistical
features derived from the video signals leads to substantially
better predictive performance than relying on raw RGB sig-
nals, particularly in small-data scenarios. This supports our
decision to focus on statistical features with traditional ML
models in this study.

VI. DISCUSSION

The performance difference between models trained on
statistical features and those trained on raw RGB channel
signals can be explained to several critical factors relating to
signal representation, model suitability, and data constraints.

Firstly, statistical features serve as high-level representations
of the underlying meaningful signals. These features effec-
tively outline temporal dynamics and noise-prone patterns into
more compact and discriminative representation. By leverag-
ing these features, traditional machine learning model are able
to efficiently capture relevant patterns associated with fatigue
without being overwhelmed by the variability in raw data. This
explains their relatively high and consistent accuracy levels,
reaching up to 81%.

In contrast, the deep learning models (LSTM and 1D-
CNN) in this study were trained on filtered raw red, green,
and blue (RGB) channel signals, extracted from facial video
frames. The filtering process aimed to enhance the video
signal quality by reducing motion and illumination artifacts.
However, these raw filtered time-series signals still include
substantial residual variability and subtle temporal dynamics,
which are not explicitly structured or annotated.

While deep models theoretically excel at discovering latent
patterns in raw sequences, they rely heavily on large, diverse
datasets to learn robust and generalizable features. In this
case, the relatively small dataset likely limited the effeciency
of the LSTM and CNN architectures to extract meaningful
representations, resulting in consistently low accuracy scores
across all RGB channels. Furthermore, the nearly constant
performance across red, green, and blue channels indicates
that individual signal channel cannot provid sufficiently strong
discriminative performance.

The biggest limitation of this study is the relatively
small dataset, which constrains generalizability. Expanding the
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dataset is a key next step, and we are currently planning
additional data collection. Additionally, while physiology-
inspired and frequency-domain features can further enhance
performance, which we did in our prior work [18], [19],
we experimented with such features (e.g., heart rate, blood
pressure, oxygen saturation, head/eye movement indicators)
and obtained promising results. However, they typically re-
quire additional sensors or computationally intensive computer
vision pipelines. In the present study, our primary objective
was to design a lightweight and feasible solution. For this
reason, we intentionally restricted the feature set to simple
statistical summaries of RGB signals, allowing deployment on
standard webcams and low-resource devices without special-
ized hardware. This choice enabled an approach that remains
practical, scalable, and effective in real-world scenarios.

Nevertheless, we see this contribution as a proof-of-concept,
highlighting that even in settings where large-scale annotated
data are not available, useful and efficient models can be
built. However, we acknowledge that validating across diverse
datasets or environments would further strengthen the gen-
eralizability of the approach. Furthermore, in this study we
deliberately focused on a single dataset (OperatorEYEVP), as
it provides objective fatigue labels (via the Landolt Rings test),
ensuring consistency and reliability in evaluation. Expanding
validation across multiple datasets is an important direction
for future research, but was beyond the scope of the present
study.

In summary, these results validate the hypothesis that
domain-informed feature engineering remains a powerful ap-
proach, especially when data is limited. Traditional ML models
trained on statistical features not only outperform deep learn-
ing models in accuracy but also offer greater interpretability
and computational efficiency. This justifies the design choice
in our pipeline to prioritize extracted features and conventional
classifiers over end-to-end deep models trained on raw inputs.

VII. CONCLUSION

In this study, we proposed a lightweight framework for
estimating mental fatigue from facial videos. The approach
involves extracting red, green, and blue (RGB) channel signals
using a pixel averaging technique, followed by signal filtering
and statistical feature extraction. These features were then used
to train traditional machine learning models, which achieved
good performance when optimized through grid search and
cross-validation.

We also evaluated the effectiveness of deep learning models
(LSTM and 1D-CNN) applied directly to the filtered raw
signals. However, these models demonstrated relatively poor
performance, likely due to the limited size of the dataset and
the high variability and redundancy present in the raw signal
data and the fact that deep architectures typically require large-
scale data to perform effectively.

Our exploration of deep learning models was intentionally
limited. The first reason is the dataset size. As discussed
before, the dataset is relatively small (1,055 one-minute sam-
ples). Deep models generally require much larger and more




ISSN 2305-7254

diverse training data to converge effectively and avoid instabil-
ity. Extensive tuning under these data constraints would likely
not provide meaningful improvements or reliable conclusions.
The other reason is that our main goal of this work was to
assess whether simple, efficient models can achieve competi-
tive performance in webcam-based fatigue detection. While we
included baseline LSTM and 1D-CNN models for comparison,
our emphasis was on demonstrating that lightweight ML
approaches can be better suited for practical deployment in
data-constrained, resource-limited settings.

Although the accuracy of our proposed method does not
surpass most of state-of-the-art approaches discussed in the
literature, it offers several practical advantages. It is computa-
tionally efficient, interpretable, and capable of providing quick
predictions, making it especially suitable for deployment on
low-resource systems. Moreover, traditional machine learning
models are easier and faster to update when new data be-
comes available, compared to more complex deep learning
frameworks.

With the inclusion of more training samples, additional
relevant features, and more advanced feature engineering
which is benefitial for the deep learning models, the overall
performance of the framework could be further improved.
Nonetheless, our findings support the use of lightweight,
interpretable models for mental fatigue estimation in resource-
constrained settings.
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