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Abstract—With the ongoing incorporation of large language 
models (LLMs) into cybersecurity operations, it is important to 
examine how they perform in real-life attacks. This paper 
presents a comparative evaluation of two advanced large 
language models, Deep Seek Coder and meta-llama-3-70b-
instruct, in detecting SQL injection vulnerabilities in source code. 
This article places greater emphasis on Boolean-based attacks. To 
test these models, we use a labelled dataset, which contains 
malicious and legitimate SQL queries. The most important 
parameters of classification, such as precision, recall, F1-score, 
and accuracy, are used in the measurement of performance. The 
results of the evaluation indicate that the meta-llama-3-70b-
instruct model performed better in important parameters of 
accuracy with scores of 68.75% precision, 88.00% recall, 72.42% 
F1 score, and 74.00% overall accuracy. Comparatively, Deep 
Seek Coder attained a precision of 71.50%, a recall rate of 
44.00%, an F1 score of 57.17%, and an accuracy rate of 60.00%. 
This comparison shows that Deep Seek Coder is particularly 
strong in precision, which hints at the ability to find common 
vulnerabilities, but also very weak in recall and accuracy.  Meta-
LLaMA-3-70B-Instruct has a better recall and overall accuracy 
and is best able to detect more varieties of malignant queries. So, 
it should have significant issues with detecting more context-
sensitive or obfuscated security concerns. The results make it 
clear that these forms of models can be an efficient helper in a 
secure coding process, but they cannot be used as stand-alone 
security analysis tools at the current stage. Suggestions are being 
made to develop a combination of LLMs and classic static 
analysis and fine-tuning with domain-specific security datasets. 

I. INTRODUCTION 

As many users and developers know, web applications form 
the backbone of digital interactions, but they are also prime 
targets for cyber threats. SQL injections have been considered 
one of the greatest and most common security vulnerabilities in 
web applications as it is today [1].It arises when input that the 
user controls is not correctly placed into database queries 
without sanitization, hence the attackers are able to perform 
different manipulations like manipulating the logic of queries, 
extraction of sensitive data, or even gaining full access to the 
backend databases [2]. Even without exciting mitigation 
methods, SQL injection has been observed many times in 
popular software systems such as content management systems, 
e-commerce web applications, and enterprise APIs, even after 
decades of awareness and mitigation techniques. 

The core of modern digital infrastructures is web 
applications through which a large amount of sensitive data are 
handled in a single day. According to the OWASP Top 10 
report, SQLi attacks have continued to happen and develop in 
recent years, and have been continuously ranked as the top 
security risk, allowing attackers to manipulate database queries 
and extract confidential information [3]. 

The Boolean-based SQL injection is a modification 
whereby respective database queries are employed to covertly 
manipulate true/false responses to the user's benefit and in 
favour of data theft. The nature of its functionality makes it 
difficult to detect since it uses conditional logic instead of 
syntax mistakes, which makes it highly obfuscating [4], [5]. 

Modern intrusion detection systems (IDSs) typically use 
signature-based or anomaly-based processes, which, to a large 
part, fail when it comes to dealing with changing adversarial 
strategies. As exemplified in the empirical work by Qbea’h, 
M., these mechanisms, by their very nature as being static, 
break quickly under the pressure of mutating query types since 
they produce very high rates of false-negative results as well as 
the inability to identify obfuscated or contextually subtle types 
of queries with reasonable accuracy [3]. Study of the empirical 
evidence shows that use of Boolean-based attacks may often 
take advantage of the vulnerabilities through the use of logical 
operators (e.g., AND/OR) to construct queries that seemingly 
pose no threats at first. The given findings demonstrate the high 
urgency of more sophisticated, responsive countermeasures in 
the modern web-security system [4], [6]. 

Recently, there has been a rapid development of large 
language models (LLMs), due to which their creativity and 
operational uses have gained additional attention. 

The recent development of large language models (LLMs) 
trained on code understanding, including Deep Seek Coder [7] 
and Meta-LLaMA-3-70B-Instruct [8] has created new 
opportunities to conduct vulnerability detection in an automatic 
way. These models, pre-trained over giant repositories of open-
source code and natural language instructions, are able to 
derive the semantics of code, reason about the behaviour of 
programs and answer targeted questions. LLMs come with a 
deep understanding of natural language as well as contextual 
analysis, placing them in the best position to deal with the 
parsing of sophisticated SQL commands. Recent studies on 
LLMs for code-centric tasks demonstrated that they can also be 
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applied on semantic analysis for detecting vulnerabilities which 
may change the threat detection forever [9]. Consequently, they 
are capable of being triggered to perform as smart code 
checkers who can detect security weaknesses. 

Nonetheless, the assessment of the models dealing with 
certain types of vulnerabilities, such as SQL injection, remains 
insufficient. Fine-grained analysis of security-critical patterns 
does not exist in most studies, which are mostly on general bug 
detection or code repair [10]. 

This paper fills this gap by testing the potential of the Deep 
Seek Coder and Meta-LLaMA-3-70B-Instruct models in 
finding SQL injection vulnerabilities in code snippets that 
simulate scenarios realistically. We have made a contribution 
comprising. 

Comparative performance examination based on precision,
recall, F1 score, and accuracy

Qualitative insights into failure modes and contextual
limitations of current LLMs

We demonstrate that while both models achieve high 
precision, their recall is significantly lower, highlighting a 
critical challenge for deployment in production security 
workflows. 

A. How boolean-based sql injection works? 
In Boolean-Based SQL Injection, the attacker enters 

specially programmed SQL queries on an input box (e.g. a 
login form or search box) that contains a condition statement. 
Whether a condition is true or false can be inferred by what the 
application does with the response to the request: to show 
success message, error page or time out. Incrementally testing 
each of the conditions, the attacker is able to determine which 
bits make up the contents of the database [5]. 

Example Scenario: 

Assume an insecure web application contains a login form 
that makes a query of something similar to the following (in 
pseudocode): 

SELECT * FROM user WHERE username =
'input_username' AND password = 'input_password'; 

An attacker might manipulate the input to test for Boolean 
conditions. For instance: 

Original query: SELECT * FROM user WHERE id = 1
AND 1=1; 

Attacker's injection: SELECT * FROM user WHERE id =
1 AND 1=1; ' OR 1=1 – 

If the response changes (e.g., the page loads fully), it 
indicates the condition is true. 

Further injection: SELECT * FROM user WHERE id = 1
AND 1=2; 

If the page fails to load or shows an error, it indicates the 
condition is false. 

Using this method, an attacker could enumerate database 
values. For example, to extract a username: 

Inject: username' AND SUBSTRING(username, 1, 1) = 'A'
– 

If true, the first character is 'A'; if false, test the next letter. 
In order to effectively and efficiently combat and prevent these 
threats we are able to use modern approaches and advanced 
technologies. 

B. Models evaluated 
Two code-specialized LLMs were selected for evaluation: 

1) Deep Seek Coder (33B) : Deep Seek Coder is composed
of a series of code language models, each trained from scratch 
on 2T tokens, with a composition of 87% code and 13% 
natural language in both English and Chinese. We provide 
various sizes of the code model, ranging from 1B to 33B 
versions. Each model is pre-trained on project-level code 
corpus by employing a window size of 16K and an extra fill-
in-the-blank task to support project-level code completion and 
infilling. For coding capabilities, Deep Seek Coder achieves 
state-of-the-art performance among open-source code models 
on multiple programming languages and various benchmarks. 
The result shows that DeepSeek-Coder-Base-33B significantly 
outperforms existing open-source code LLMs in Fig. 1[7]. 

Fig. 1. Deep seek coder performance [7] 

2) Meta-LLaMA-3-70B-Instruct: Meta-LLaMA-3-70B-
Instruct is a state-of-the-art large language model introduced 
by Meta AI as one of the members of the LLaMA 3 family and 
is used in more advanced natural language processing tasks, 
such as instruction-following, code generation, and contextual 
reasoning. It is an instruct-tuned kind, which implies that it has 
been trimmed to one that can very well react to user requests 
and provide useful, coherent results to a broad variety of 
applications [8]. 

The LLaMA 3 models and 70B-Instruct version in 
particular are pre-trained on a large dataset of a wide variety of 
web-scale texts, code, and multilingual texts, amounting to 
more than 15 trillion tokens [8]. This also covers about half of 

ISSN 2305-7254________________________________________PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 91 ----------------------------------------------------------------------------



the natural language information (mainly in English, but other 
languages are supported), 30 percent code-related information 
(such as GitHub), and 20 percent other structured and 
unstructured information to add flexibility [11]. 

The LLaMA 3 series has different size models that can be 
used to suit different computational requirements. In particular, 
the 70B-Instruct model has an advantage in the parameter size 
and can thus perform better in tasks of complicated applications 
like filling in code, SQL query parsing, and real-time decisions 
[8]. 

II. RELATED WORKS

In this section, we survey existing literature on SQL 
injection detection and the application of large language 
models (LLMs) in cybersecurity. 

A. SQL injection detection 
The classic methods of SQL injection detection are usually 

classified as signature-based methods, anomaly-based methods, 
or static analysis. The signature-based technique will entail 
matching predetermined patterns in the queries. Initial 
contributions in this field may be seen in the contributions 
made by Halfond and Orso [12], where tools centered around 
tracking and countering SQL injection attacks through a 
signature check were developed. Deep learning has proven 
highly useful at identifying vulnerabilities to SQL injection, 
achieving accuracies of up to 98.4 % on generic datasets [13]; 
however, these models are easily subverted by SQL injection 
vulnerabilities based on Boolean values, so they appear to 
follow logical operations to avoid naive string comparisons. 
(Pan) [14] introduce a deep learning framework to identify 
SQL injection vulnerability and claim to achieve higher 
accuracy in detecting vulnerability in general datasets, but their 
method does not identify vulnerable queries that are obfuscated 
using Boolean logic [14]. Similarly, Demilie and Deriba 
researched machine-learning classifiers, including random 
forest and support vector machines, to detect SQL injection. 
Their output proved its effectiveness in the recall and 
constituted high false positives in a dynamic web environment 
[15].  

Although great strides may have been made in detecting 
malware, the current techniques lack contextual awareness and 
are therefore ineffective in real-time detection of subtle 
Boolean-based exploits, a conclusion that replicates other 
surveys on web vulnerability [4, 5]. 

B. LLM applications in security 
The use of LLM in modern cybersecurity practices has 

proved to be a topic of special interest to researchers due to 
their ability to understand and evaluate code semantics [16]. 
Gui, Z., Wang, provides a survey of LLMs on code-related 
datasets, specifically the tasks in vulnerability detection; they 
state that models like the GPT variants make impressive results 
in detecting vulnerabilities such as buffer overflows and 
injection flaws [16]. Nafis Tanveer Islam introduces a pre-
trained language modelling task defined over program source 
code that achieves outstanding results in semantic analysis of 
code and has already been tuned to an alternative task, API 

vulnerability detection [17]. A number of studies have 
considered how LLMs can be used in general SQL injection 
attacks. According to conventional thinking, even though 
LLMs have been effectively used to address a broad range of 
tasks, they are still hindered by high computing demands and 
the need to conduct domain-specific fine-tuning when applied 
in fields such as web security. 

Overall, Studies in the relevant field of endeavour show that 
there were evident gaps in the mitigation of Boolean-based 
SQL injections. the literature reveals a gap in handling 
Boolean-based SQL injection, where traditional methods lack 
the semantic depth of LLMs, and current LLM applications 
often overlook fine-grained attack types or real-world 
scalability [10]. 

III. METHODOLOGY

This part explains the procedure used to evaluate deep seek-
coder and Meta-LLaMA-3-70B-Instruct in identifying Boolean 
based SQL injection attacks. The aim is to build a reproducible, 
extensible, and closely aligned to the recent research practices 
concerning machine learning and cybersecurity assessment 
framework. The methodology will include preparation of the 
datasets, choice of the model, design of the detection 
mechanism, metrics of evaluation, and experimental setup. 

The experimental testbed is a web-based application that 
provides a simulation of a real-world scenario in which SQL 
query execution and SQL injection attacks can be detected 
(Fig. 2). The application is developed with Python 3.13 
version, and Flask framework is used to develop a web 
interface and application logic. The main database is the Jobs 
Database, which holds job announcements and associated 
records. 

The LLMs are guided using a zero-shot, instruction-
following prompt. This means that the models are not fine-
tuned with labeled training examples for SQL injection 
detection, where each SQL query is embedded in a controlled 
instruction template. The goal is to evaluate whether the model 
could distinguish between benign and malicious (Boolean-
based SQLi) queries. Specifically, each SQL query is inserted 
into a standardized instruction template that requires the model 
to analyze the query and make a binary decision. If the model 
determines that the query is legitimate, the system executes the 
query on the backend database and returns the appropriate 
results. Conversely, if the model classifies the query as an SQL 
injection attempt, the system blocks execution and returns only 
an explanatory message indicating why the query is identified 
as malicious. This prompt-driven workflow ensures 
consistency across models and allows for an evaluation of their 
ability to reliably distinguish between benign and malicious 
inputs in a realistic web application context. This prompt 
design created a decision-driven workflow in which the LLMs 
effectively acted as gatekeepers between the user input and the 
database execution layer. 

Both LLMs are accessed and used via the OpenRouter API. 
The top-k value is set to 50 for meta-llama/llama-3-70b-instruct 
and 40 for deepseek-ai/deepseek-coder. The top-p value is set 
to 1.0 for both models. Additionally, to minimize the 
randomness of the models and ensure consistent and 
deterministic output, a common Temperature value of 0.1 is 
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selected. These settings are specifically focused on detecting 
SQL injection attempts in a realistic and reliable manner. 

In SQL request, if the input is validated as safe, the query 
would be allowed to pass through to the database, and 
legitimate results (e.g., user records in the example) would be 
returned to the user. This Fig. 2 explains how legitimate queries 
are processed successfully through the same system. 

The first process flow diagram depicts how a valid SQL 
request is executed when no malicious pattern is detected by 
the LLM. 

Step 1: User Input Submission 

The process begins with the user submitting a valid query 
through the input and response area. 

Step 2: API Request Handling 

The application backend forwards the request to the API, 
which communicates with the LLM. At this stage, the LLM is 
tasked with analysing the query. 

Step 3: LLM Verification and Database Execution 

Upon inspection, the LLM does not detect any SQL 
injection signatures in the query. Since the input is validated as 
safe, the request is executed against the database.  

Step 4: Returning Results to the User 

The database processes the query and returns the requested 
records to the LLM. The LLM then relays these results back to 
the application interface, where they are displayed in the 
response area for the user. 

The second process flow diagram in Fig. 2 reflects a 
process workflow to detect and mitigate SQL injection (SQLi) 
attacks using the combination of LLMs. This workflow shows 

how the user input is intercepted, analyzed and filtered before 
any query is left to the database, thus the chances of 
exploitation are minimized. 

Step 1: User Input Submission 

The process begins when a user interacts with the 
application interface and submits an input query through a code 
input box. In the example provided, the malicious query is: 

SELECT username FROM user WHERE id=3 OR '1'='1' -- 

This input has the conditional expression 1=1 and this is 
always true. Such expressions are widely recognized as a 
standard SQL injection technique used to bypass authentication 
and extract unauthorized data. The query is first received by the 
application backend. 

Step 2: Request Processing via API and LLM 

The request is passed through the application backend to the 
API, a middleware layer. The API does not transfer the query 
to the database directly but instead sends it to a LLM. In this 
stage the query is examined by the LLM in order to identify 
potentially malicious patterns. It has a duty to categorize the 
input as an SQL injection attempt or as a valid database query. 
With the help of natural language processing and contextual 
processing, the LLM detects suspicious conditions 1=1 in this 
example. 

Step 3: Response Generation and Prevention of Database 
Compromise 

When the LLM determines that the input is malicious, it 
blocks execution and prevents the query from reaching the 
database. Instead, the model generates a response message that 
is sent back to the user through the response area. This ensures 
that the database remains protected from unauthorized access 
or data leakage. 

Fig. 2. LLM supported SQL query processing 
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A. Dataset preparation 
Effective training and evaluation of systems aimed at 

detecting SQL injections requires the availability of a well-
labelled, comprehensive dataset. We constructed a custom 
dataset comprising a set of labelled SQL queries, with a focus 
on Boolean-based attacks that manipulate true/false responses. 
This experimental structure allowed assessment of the 
detection potential of the pre-trained LLMs in a systematic way 
with the normal and injection-based queries. The dataset is 
fairly balanced, more than 350 queries were performed, 
including about 70 percent of the elements had malicious 
actions (e.g., using AND/OR and equal operators in queries) 
and 30 percent of the elements in the dataset had benign 
activities (e.g., typical database actions). SQLite was used as 
backend storage and as a support to the evaluation process 
through the Flask framework. 

To generate samples, we used the SQLMap tool to create 
synthetic malicious queries, simulating real-world attack 
scenarios. 
B. Model selection and adaptation 

We selected the deep seek-coder and Meta-LLaMA-3-70B-
Instruct models for their advanced capabilities in natural 
language processing and efficient handling of contextual tasks. 
Both of these models, like Deep Seek-Coder (large-scale 
transformers optimized for coding, evolution) and Meta-
LLaMA-3-70B-Instruct with the instruction-tuned design, 
exhibit a reasonable trade-off between the rate of performance 
and resources. This especially brings them to web-security 
applications, e.g., real-time SQL injection detection in the 
query processing of an actual database. 

C. Evaluation metrics 
To rigorously assess the model's performance, we adopted 

standard metrics evaluations. These include: 

Accuracy: The proportion of correctly classified queries
(both benign and malicious).

Precision: The ratio of true positive detections to all
positive predictions, critical for minimizing false alarms in
web security.

Recall: The ratio of true positive detections to all actual
malicious queries, essential for capturing elusive Boolean-
based attacks.

F1-score: The harmonic means of precision and recall,
providing a balanced measure.

These metrics were selected to address the high-stakes 
nature of SQL injection detection, where both false positives 
and negatives can have significant consequences. 

IV. EXPERIMENTAL STUDIES

In accordance with the methodology of Section III, this part 
shows the practical results of the Meta-LLaMA-3-70B-Instruct 
and Deep Seek-Coder models when tested in the context of a 
practical study. In this practical setup, the system was 
integrated into a Python-based web project for job-related 
applications. Standard SELECT statements, which would have 
been associated with standard user requests, were run to make 
sure proper retrieval and display of records were done. In 
contrast, the SQL injection queries, especially the ones using 
Boolean logic (AND, OR) to process queries and retrieve 
confidential information, were blocked and detected by 
filtering. Both models were applied in their pre-trained model, 
without any extra fine-tuning or modification of the structure, 
as specified with the implementation of the user. 

Both models categorized the incoming queries based on the 
patterns that they had learned, applying a validation prompt-
based mechanism to classify between legitimate and malicious 
requests. These models recognized a query as valid, and the 
LLM performed it and provided the relevant information and 
presented the relevant data on a designated database.  

Fig. 3. Boolean base attack example 
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On the other hand, all the queries, which proved to be SQL 
injection attacks, would be prevented from executing. When 
this was the case, the model produced an explanatory message 
that pointed to the decision of a non-execution as well as the 
categorization of the query as a possible SQL injection attack. 

In the example above (Fig. 3), an SQL injection query was 
used: select id, email, sent at from contact where id =1' or 
'1'='27' –  

As it was shown in the example, both models demonstrate 
different behaviour to the same query, whereas in the real 
world, it is an SQL injection attempt. The Meta-LLaMA-3-
70B-Instruct model was able to detect the query as being 
malicious, but the deep seek-coder was unable to detect the 
attack as an injection one. Rather, it categorized the request as 
correct and valid, and proceeded to execute the request, then 
showed the related information from the database. 

In Fig. 4, legitimate query was used: select id, salary, 
location from job where id =1. 

The performance and reaction of both models to a valid 
query are shown in Fig. 4 as an example, demonstrating 
different responses to the same query. Although this query is a 
valid query, the first model did not identify it correctly and 
considered it as an injection query, whereas the second model 
recognized it as a valid and legitimate query and displayed the 
corresponding data from the database. 

Fig. 4. Legitimate query 

The most critical point is that, regardless of whether a query 
is valid or an SQL injection, if it is executed multiple times at 
different intervals, the models may sometimes produce 
inconsistent responses. For example, a query that was initially 
classified as an injection may, at another time, be classified as a 
valid query and consequently retrieve and display data from the 
database. This inconsistency constitutes a security vulnerability 
in itself. 

V. RESULTS 

The experimental analysis compared the detection of SQL 
injection attacks using Boolean methods of Meta-LLaMA-3-
70B-Instruct and DeepSeek-Coder on a balanced set of 
legitimate and malicious queries. The evaluation of the 
performance was conducted in terms of precision, recall, F1-
score, and accuracy (Table 1). These results indicate strong 
recall capabilities, meaning the model effectively captured a 
high proportion of actual SQL injection attempts. 

TABLE I.  PERFORMANCE OF MODELS 

Model Precision 
(%) 

Recall 
(%) 

F1 Score 
(%) 

Accuracy 
(%) 

Meta-LLaMA-
3-70B-Instruct 

68.75 88.00 77.42 74.00 

Deep Seek-
Coder 

71.50 44.00 57.17 60.00 

These findings bring to focus an important trade-off: Meta-
LLaMA-3-70B-Instruct can be better at detecting more 
malicious queries, but DeepSeek-Coder is more reserved in the 
classification, and not as efficient in picking up all threats 

VI. DISCUSSION

The results obtained highlight both promise and limitations 
in using LLMs for automated security analysis. Their relatively 
high levels of precision under both models make them useful as 
complementary tools in Integrated Development Environments 
(IDEs) or FRP-based continuous integration systems, where it 
is useful to produce as few false positives as possible in order 
to avoid developer burnout. Nevertheless, the lower recall, 
especially in DeepSeek-Coder, shows that one should not rely 
exclusively on these types of models to provide a high level of 
security in any production environment, as most of the attacks 
may go unnoticed. 

It can be observed that there is an inconsistency in 
classification across multiple runs on the same query. In some 
other instances, a query that was considered to be malicious 
was changed to a genuine query by the same model, and this 
may result in security flaws. Such instability means 
susceptibility to immediate context or token-level differences 
that have to be fixed before safety in critical systems. 

Moreover, Meta-LLaMA-3-70B-Instruct was found to be 
more flexible in detecting obfuscated forms of attack, maybe 
because it contains higher parameters and instruction-tuning 
data. Alternatively, the increased accuracy of DeepSeek-Coder 
implies that it might be more applicable to cases where it is 
crucial to reduce false positive detections, as opposed to 
ensuring detection against all attacks. 

Implications: 

LLMs show promise as first-line security filters or
developer assistants. 

For operational deployment, they should be paired with
traditional static and dynamic analysis tools. 

Fine-tuning on domain-specific security datasets could
substantially improve recall without degrading precision. 

VII. CONCLUSIONS

This paper performed a comparison test of Meta-LLaMA-3-
70B-Instruct and DeepSeek-Coder on detecting SQL injection 
attacks that are based on Boolean. Findings indicate that the 
Meta-LLaMA-3-70B-Instruct has better recall and overall 
accuracy and is best able to detect more varieties of malignant 
queries. DeepSeek-Coder is a little more accurate, lowering the 
false positive rate, but failing to detect a large percentage of the 
attacks. 
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Although both models also hold promise as part of secure 
coding processes, neither model is currently sufficiently 
consistent to be used as an autonomous security mechanism. 
Their best-suited place is in multi-layered defence 
architectures, in which they serve together with traditional 
vulnerability scanners and in-person code reviews. 
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