ISSN 2305-7254

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

Compressing Large Language Models for SQL
Injection Detection: A Case Study on Deep Seek-
Coder and Meta-llama-3-70b-1nstruct

Borhanullah Hairan, Mehmet Akif Sahman
Selcuk University
Konya, Turkey
hairanborhan@gmail.com, asahman@selcuk.edu.tr

Abstract—With the ongoing incorporation of large language
models (LLMs) into cybersecurity operations, it is important to
examine how they perform in real-life attacks. This paper
presents a comparative evaluation of two advanced large
language models, Deep Seek Coder and meta-llama-3-70b-
instruct, in detecting SQL injection vulnerabilities in source code.
This article places greater emphasis on Boolean-based attacks. To
test these models, we use a labelled dataset, which contains
malicious and legitimate SQL queries. The most important
parameters of classification, such as precision, recall, F1-score,
and accuracy, are used in the measurement of performance. The
results of the evaluation indicate that the meta-llama-3-70b-
instruct model performed better in important parameters of
accuracy with scores of 68.75% precision, 88.00% recall, 72.42%
F1 score, and 74.00% overall accuracy. Comparatively, Deep
Seek Coder attained a precision of 71.50%, a recall rate of
44.00%, an F1 score of 57.17%, and an accuracy rate of 60.00%.
This comparison shows that Deep Seek Coder is particularly
strong in precision, which hints at the ability to find common
vulnerabilities, but also very weak in recall and accuracy. Meta-
LLaMA-3-70B-Instruct has a better recall and overall accuracy
and is best able to detect more varieties of malignant queries. So,
it should have significant issues with detecting more context-
sensitive or obfuscated security concerns. The results make it
clear that these forms of models can be an efficient helper in a
secure coding process, but they cannot be used as stand-alone
security analysis tools at the current stage. Suggestions are being
made to develop a combination of LLMs and classic static
analysis and fine-tuning with domain-specific security datasets.

1. INTRODUCTION

As many users and developers know, web applications form
the backbone of digital interactions, but they are also prime
targets for cyber threats. SQL injections have been considered
one of the greatest and most common security vulnerabilities in
web applications as it is today [1].It arises when input that the
user controls is not correctly placed into database queries
without sanitization, hence the attackers are able to perform
different manipulations like manipulating the logic of queries,
extraction of sensitive data, or even gaining full access to the
backend databases [2]. Even without exciting mitigation
methods, SQL injection has been observed many times in
popular software systems such as content management systems,
e-commerce web applications, and enterprise APIs, even after
decades of awareness and mitigation techniques.

90

The core of modern digital infrastructures is web
applications through which a large amount of sensitive data are
handled in a single day. According to the OWASP Top 10
report, SQLi attacks have continued to happen and develop in
recent years, and have been continuously ranked as the top
security risk, allowing attackers to manipulate database queries
and extract confidential information [3].

The Boolean-based SQL injection is a modification
whereby respective database queries are employed to covertly
manipulate true/false responses to the user's benefit and in
favour of data theft. The nature of its functionality makes it
difficult to detect since it uses conditional logic instead of
syntax mistakes, which makes it highly obfuscating [4], [5].

Modern intrusion detection systems (IDSs) typically use
signature-based or anomaly-based processes, which, to a large
part, fail when it comes to dealing with changing adversarial
strategies. As exemplified in the empirical work by Qbea’h,
M., these mechanisms, by their very nature as being static,
break quickly under the pressure of mutating query types since
they produce very high rates of false-negative results as well as
the inability to identify obfuscated or contextually subtle types
of queries with reasonable accuracy [3]. Study of the empirical
evidence shows that use of Boolean-based attacks may often
take advantage of the vulnerabilities through the use of logical
operators (e.g., AND/OR) to construct queries that seemingly
pose no threats at first. The given findings demonstrate the high
urgency of more sophisticated, responsive countermeasures in
the modern web-security system [4], [6].

Recently, there has been a rapid development of large
language models (LLMs), due to which their creativity and
operational uses have gained additional attention.

The recent development of large language models (LLMs)
trained on code understanding, including Deep Seek Coder [7]
and Meta-LLaMA-3-70B-Instruct [8] has created new
opportunities to conduct vulnerability detection in an automatic
way. These models, pre-trained over giant repositories of open-
source code and natural language instructions, are able to
derive the semantics of code, reason about the behaviour of
programs and answer targeted questions. LLMs come with a
deep understanding of natural language as well as contextual
analysis, placing them in the best position to deal with the
parsing of sophisticated SQL commands. Recent studies on
LLMs for code-centric tasks demonstrated that they can also be

ISSN 2305-7254

applied on semantic analysis for detecting vulnerabilities which
may change the threat detection forever [9]. Consequently, they
are capable of being triggered to perform as smart code
checkers who can detect security weaknesses.

Nonetheless, the assessment of the models dealing with
certain types of vulnerabilities, such as SQL injection, remains
insufficient. Fine-grained analysis of security-critical patterns
does not exist in most studies, which are mostly on general bug
detection or code repair [10].

This paper fills this gap by testing the potential of the Deep
Seek Coder and Meta-LLaMA-3-70B-Instruct models in
finding SQL injection vulnerabilities in code snippets that
simulate scenarios realistically. We have made a contribution
comprising.

e Comparative performance examination based on precision,
recall, F1 score, and accuracy

e Qualitative insights into failure modes and contextual
limitations of current LLMs

We demonstrate that while both models achieve high
precision, their recall is significantly lower, highlighting a
critical challenge for deployment in production security
workflows.

A. How boolean-based sql injection works?

In Boolean-Based SQL Injection, the attacker enters
specially programmed SQL queries on an input box (e.g. a
login form or search box) that contains a condition statement.
Whether a condition is true or false can be inferred by what the
application does with the response to the request: to show
success message, error page or time out. Incrementally testing
each of the conditions, the attacker is able to determine which
bits make up the contents of the database [5].

Example Scenario:

Assume an insecure web application contains a login form
that makes a query of something similar to the following (in
pseudocode):

e SELECT * FROM user WHERE username
'input_username' AND password = 'input_password";

An attacker might manipulate the input to test for Boolean
conditions. For instance:

e Original query: SELECT * FROM user WHERE id = 1
AND 1=1;

e Attacker's injection: SELECT * FROM user WHERE id =
1 AND 1=1;'OR 1=1 -

If the response changes (e.g., the page loads fully), it
indicates the condition is true.

e Further injection: SELECT * FROM user WHERE id = 1
AND 1=2;

If the page fails to load or shows an error, it indicates the
condition is false.

Using this method, an attacker could enumerate database
values. For example, to extract a username:

91

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

e Inject: username' AND SUBSTRING(username, 1, 1) ="A’

If true, the first character is 'A'; if false, test the next letter.
In order to effectively and efficiently combat and prevent these
threats we are able to use modern approaches and advanced
technologies.

B. Models evaluated
Two code-specialized LLMs were selected for evaluation:

1) Deep Seek Coder (33B) : Deep Seek Coder is composed
of a series of code language models, each trained from scratch
on 2T tokens, with a composition of 8§7% code and 13%
natural language in both English and Chinese. We provide
various sizes of the code model, ranging from 1B to 33B
versions. Each model is pre-trained on project-level code
corpus by employing a window size of 16K and an extra fill-
in-the-blank task to support project-level code completion and
infilling. For coding capabilities, Deep Seek Coder achieves
state-of-the-art performance among open-source code models
on multiple programming languages and various benchmarks.
The result shows that DeepSeek-Coder-Base-33B significantly
outperforms existing open-source code LLMs in Fig. 1[7].

&8 JavaScript

31.1 3
2907 N8P

04" 259 83N\101
290

261 |
) \

TypeScript
StarCoder-16B @ CodeGeeX2-6B
@ Codellama-34B @ DeepSeek-Coder-7B @ DeepSeek-Coder-33B

Codellama-13B

Fig. 1. Deep seek coder performance [7]

2) Meta-LLaMA-3-70B-Instruct: Meta-LLaMA-3-70B-
Instruct is a state-of-the-art large language model introduced
by Meta Al as one of the members of the LLaMA 3 family and
is used in more advanced natural language processing tasks,
such as instruction-following, code generation, and contextual
reasoning. It is an instruct-tuned kind, which implies that it has
been trimmed to one that can very well react to user requests
and provide useful, coherent results to a broad variety of
applications [8].

The LLaMA 3 models and 70B-Instruct version in
particular are pre-trained on a large dataset of a wide variety of
web-scale texts, code, and multilingual texts, amounting to
more than 15 trillion tokens [8]. This also covers about half of

ISSN 2305-7254

the natural language information (mainly in English, but other
languages are supported), 30 percent code-related information
(such as GitHub), and 20 percent other structured and
unstructured information to add flexibility [11].

The LLaMA 3 series has different size models that can be
used to suit different computational requirements. In particular,
the 70B-Instruct model has an advantage in the parameter size
and can thus perform better in tasks of complicated applications
like filling in code, SQL query parsing, and real-time decisions

8.

II.

In this section, we survey existing literature on SQL
injection detection and the application of large language
models (LLMSs) in cybersecurity.

RELATED WORKS

A. SQL injection detection

The classic methods of SQL injection detection are usually
classified as signature-based methods, anomaly-based methods,
or static analysis. The signature-based technique will entail
matching predetermined patterns in the queries. Initial
contributions in this field may be seen in the contributions
made by Halfond and Orso [12], where tools centered around
tracking and countering SQL injection attacks through a
signature check were developed. Deep learning has proven
highly useful at identifying vulnerabilities to SQL injection,
achieving accuracies of up to 98.4 % on generic datasets [13];
however, these models are easily subverted by SQL injection
vulnerabilities based on Boolean values, so they appear to
follow logical operations to avoid naive string comparisons.
(Pan) [14] introduce a deep learning framework to identify
SQL injection vulnerability and claim to achieve higher
accuracy in detecting vulnerability in general datasets, but their
method does not identify vulnerable queries that are obfuscated
using Boolean logic [14]. Similarly, Demilie and Deriba
researched machine-learning classifiers, including random
forest and support vector machines, to detect SQL injection.
Their output proved its effectiveness in the recall and
constituted high false positives in a dynamic web environment
[15].

Although great strides may have been made in detecting
malware, the current techniques lack contextual awareness and
are therefore ineffective in real-time detection of subtle
Boolean-based exploits, a conclusion that replicates other
surveys on web vulnerability [4, 5].

B. LLM applications in security

The use of LLM in modern cybersecurity practices has
proved to be a topic of special interest to researchers due to
their ability to understand and evaluate code semantics [16].
Gui, Z., Wang, provides a survey of LLMs on code-related
datasets, specifically the tasks in vulnerability detection; they
state that models like the GPT variants make impressive results
in detecting vulnerabilities such as buffer overflows and
injection flaws [16]. Nafis Tanveer Islam introduces a pre-
trained language modelling task defined over program source
code that achieves outstanding results in semantic analysis of
code and has already been tuned to an alternative task, API

92

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

vulnerability detection [17]. A number of studies have
considered how LLMs can be used in general SQL injection
attacks. According to conventional thinking, even though
LLMs have been effectively used to address a broad range of
tasks, they are still hindered by high computing demands and
the need to conduct domain-specific fine-tuning when applied
in fields such as web security.

Overall, Studies in the relevant field of endeavour show that
there were evident gaps in the mitigation of Boolean-based
SQL injections. the literature reveals a gap in handling
Boolean-based SQL injection, where traditional methods lack
the semantic depth of LLMs, and current LLM applications
often overlook fine-grained attack types or real-world
scalability [10].

III.

This part explains the procedure used to evaluate deep seek-
coder and Meta-LLaMA-3-70B-Instruct in identifying Boolean
based SQL injection attacks. The aim is to build a reproducible,
extensible, and closely aligned to the recent research practices
concerning machine learning and cybersecurity assessment
framework. The methodology will include preparation of the
datasets, choice of the model, design of the detection
mechanism, metrics of evaluation, and experimental setup.

METHODOLOGY

The experimental testbed is a web-based application that
provides a simulation of a real-world scenario in which SQL
query execution and SQL injection attacks can be detected
(Fig. 2). The application is developed with Python 3.13
version, and Flask framework is used to develop a web
interface and application logic. The main database is the Jobs
Database, which holds job announcements and associated
records.

The LLMs are guided using a zero-shot, instruction-
following prompt. This means that the models are not fine-
tuned with labeled training examples for SQL injection
detection, where each SQL query is embedded in a controlled
instruction template. The goal is to evaluate whether the model
could distinguish between benign and malicious (Boolean-
based SQLI1) queries. Specifically, each SQL query is inserted
into a standardized instruction template that requires the model
to analyze the query and make a binary decision. If the model
determines that the query is legitimate, the system executes the
query on the backend database and returns the appropriate
results. Conversely, if the model classifies the query as an SQL
injection attempt, the system blocks execution and returns only
an explanatory message indicating why the query is identified
as malicious. This prompt-driven workflow ensures
consistency across models and allows for an evaluation of their
ability to reliably distinguish between benign and malicious
inputs in a realistic web application context. This prompt
design created a decision-driven workflow in which the LLMs
effectively acted as gatekeepers between the user input and the
database execution layer.

Both LLMs are accessed and used via the OpenRouter API.
The top-k value is set to 50 for meta-llama/llama-3-70b-instruct
and 40 for deepseek-ai/deepseek-coder. The top-p value is set
to 1.0 for both models. Additionally, to minimize the
randomness of the models and ensure consistent and
deterministic output, a common Temperature value of 0.1 is

ISSN 2305-7254

selected. These settings are specifically focused on detecting
SQL injection attempts in a realistic and reliable manner.

In SQL request, if the input is validated as safe, the query
would be allowed to pass through to the database, and
legitimate results (e.g., user records in the example) would be
returned to the user. This Fig. 2 explains how legitimate queries
are processed successfully through the same system.

The first process flow diagram depicts how a valid SQL
request is executed when no malicious pattern is detected by
the LLM.

Step 1: User Input Submission

The process begins with the user submitting a valid query
through the input and response area.

Step 2: API Request Handling

The application backend forwards the request to the APIL,
which communicates with the LLM. At this stage, the LLM is
tasked with analysing the query.

Step 3: LLM Verification and Database Execution

Upon inspection, the LLM does not detect any SQL
injection signatures in the query. Since the input is validated as
safe, the request is executed against the database.

Step 4: Returning Results to the User

The database processes the query and returns the requested
records to the LLM. The LLM then relays these results back to
the application interface, where they are displayed in the
response area for the user.

The second process flow diagram in Fig. 2 reflects a
process workflow to detect and mitigate SQL injection (SQL1)
attacks using the combination of LLMs. This workflow shows

User Input
Select * from user
w=er d| mame descriplion ernail
1 John Doe | Hing manager johng@ig.com
2 |Alice Brow| Product manager | aice@poom
API
¥
4 ™y
LLM
\a
Database
w=er | mame descriplion ernail
1 Jahn Doe | Hing manager | johnélig.com
N A

SQL request is not flagged as an
injection attempt

Fig. 2. LLM supported SQL query processing

93

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

how the user input is intercepted, analyzed and filtered before
any query is left to the database, thus the chances of
exploitation are minimized.

Step 1: User Input Submission

The process begins when a user interacts with the
application interface and submits an input query through a code
input box. In the example provided, the malicious query is:

SELECT username FROM user WHERE id=3 OR '1'='1" --

This input has the conditional expression 1=1 and this is
always true. Such expressions are widely recognized as a
standard SQL injection technique used to bypass authentication
and extract unauthorized data. The query is first received by the
application backend.

Step 2: Request Processing via API and LLM

The request is passed through the application backend to the
API, a middleware layer. The API does not transfer the query
to the database directly but instead sends it to a LLM. In this
stage the query is examined by the LLM in order to identify
potentially malicious patterns. It has a duty to categorize the
input as an SQL injection attempt or as a valid database query.
With the help of natural language processing and contextual
processing, the LLM detects suspicious conditions 1=1 in this
example.

Step 3: Response Generation and Prevention of Database
Compromise

When the LLM determines that the input is malicious, it
blocks execution and prevents the query from reaching the
database. Instead, the model generates a response message that
is sent back to the user through the response area. This ensures
that the database remains protected from unauthorized access
or data leakage.

User Input

Select username from user where
id=3 or "1'="1" --

b4
Response

The input contains a conditional
statement '1' ="1" which is always
frue. This is a common technique

used in SQL injection attack.

h 4

LLM

%)
>

SQL injection is detected

SQL injection is detected by LLM

ISSN 2305-7254

A. Dataset preparation

Effective training and evaluation of systems aimed at
detecting SQL injections requires the availability of a well-
labelled, comprehensive dataset. We constructed a custom
dataset comprising a set of labelled SQL queries, with a focus
on Boolean-based attacks that manipulate true/false responses.
This experimental structure allowed assessment of the
detection potential of the pre-trained LLMs in a systematic way
with the normal and injection-based queries. The dataset is
fairly balanced, more than 350 queries were performed,
including about 70 percent of the elements had malicious
actions (e.g., using AND/OR and equal operators in queries)
and 30 percent of the elements in the dataset had benign
activities (e.g., typical database actions). SQLite was used as
backend storage and as a support to the evaluation process
through the Flask framework.

To generate samples, we used the SQLMap tool to create
synthetic malicious queries, simulating real-world attack
scenarios.

B. Model selection and adaptation

We selected the deep seek-coder and Meta-LLaMA-3-70B-
Instruct models for their advanced capabilities in natural
language processing and efficient handling of contextual tasks.
Both of these models, like Deep Seek-Coder (large-scale
transformers optimized for coding, evolution) and Meta-
LLaMA-3-70B-Instruct with the instruction-tuned design,
exhibit a reasonable trade-off between the rate of performance
and resources. This especially brings them to web-security
applications, e.g., real-time SQL injection detection in the
query processing of an actual database.

C. Evaluation metrics
To rigorously assess the model's performance, we adopted
standard metrics evaluations. These include:

e Accuracy: The proportion of correctly classified queries
(both benign and malicious).

meta-llama/llama-3-70b-instruct
SQL Injection Detected: Yes
Trusted Query: No

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

e Precision: The ratio of true positive detections to all
positive predictions, critical for minimizing false alarms in
web security.

e Recall: The ratio of true positive detections to all actual
malicious queries, essential for capturing elusive Boolean-
based attacks.

e Fl-score: The harmonic means of precision and recall,
providing a balanced measure.

These metrics were selected to address the high-stakes
nature of SQL injection detection, where both false positives
and negatives can have significant consequences.

IV. EXPERIMENTAL STUDIES

In accordance with the methodology of Section III, this part
shows the practical results of the Meta-LLaMA-3-70B-Instruct
and Deep Seek-Coder models when tested in the context of a
practical study. In this practical setup, the system was
integrated into a Python-based web project for job-related
applications. Standard SELECT statements, which would have
been associated with standard user requests, were run to make
sure proper retrieval and display of records were done. In
contrast, the SQL injection queries, especially the ones using
Boolean logic (AND, OR) to process queries and retrieve
confidential information, were blocked and detected by
filtering. Both models were applied in their pre-trained model,
without any extra fine-tuning or modification of the structure,
as specified with the implementation of the user.

Both models categorized the incoming queries based on the
patterns that they had learned, applying a validation prompt-
based mechanism to classify between legitimate and malicious
requests. These models recognized a query as valid, and the
LLM performed it and provided the relevant information and
presented the relevant data on a designated database.

Reason: The input contains a suspicious pattern of using an always-true condition ('1'='27")
which is a common technique used by attackers to test for SQL injection vuinerabilities. The
use of the '--' comment at the end of the query is also a red flag, as it may be an attempt to ¢
omment out the rest of the query and inject malicious SQL code. Although the input does not
contain any obvious malicious payload, the presence of these patterns suggests a potential

SQL injection attempt.

deepseek-coder

Query Executed: Yes

SQL Injection Detected: No
Records:

id email

sent_at

codellama/codellama-13b-instruct
Query Executed: Yes

SQL Injection Detected: No
Records:

1 00001 23xxxXxxxXxx@gmail.com

2025-06-19 18:02:21

id email

Fig. 3. Boolean base attack example

1 borhan123hairan@gmail.com

94

2025-06-19 18:02:21

ISSN 2305-7254

On the other hand, all the queries, which proved to be SQL
injection attacks, would be prevented from executing. When
this was the case, the model produced an explanatory message
that pointed to the decision of a non-execution as well as the
categorization of the query as a possible SQL injection attack.

In the example above (Fig. 3), an SQL injection query was
used: select id, email, sent at from contact where id =1" or
"n'="7"—

As it was shown in the example, both models demonstrate
different behaviour to the same query, whereas in the real
world, it is an SQL injection attempt. The Meta-LLaMA-3-
70B-Instruct model was able to detect the query as being
malicious, but the deep seek-coder was unable to detect the
attack as an injection one. Rather, it categorized the request as
correct and valid, and proceeded to execute the request, then
showed the related information from the database.

In Fig. 4, legitimate query was used: select id, salary,
location from job where id =1.

The performance and reaction of both models to a valid
query are shown in Fig. 4 as an example, demonstrating
different responses to the same query. Although this query is a
valid query, the first model did not identify it correctly and
considered it as an injection query, whereas the second model
recognized it as a valid and legitimate query and displayed the
corresponding data from the database.

meta-llama/llama-3-70b-instruct
SQL Injection Detected: Yes
I'rusted Query: No

xiu\.‘[‘ seek-coder
Query Executed: Yes
SQL Injection Detected: No
Records:
id salary location
1 $2000/m Istanbul, Turkey

Fig. 4. Legitimate query

The most critical point is that, regardless of whether a query
is valid or an SQL injection, if it is executed multiple times at
different intervals, the models may sometimes produce
inconsistent responses. For example, a query that was initially
classified as an injection may, at another time, be classified as a
valid query and consequently retrieve and display data from the
database. This inconsistency constitutes a security vulnerability
in itself.

V.

The experimental analysis compared the detection of SQL
injection attacks using Boolean methods of Meta-LLaMA-3-
70B-Instruct and DeepSeek-Coder on a balanced set of
legitimate and malicious queries. The evaluation of the
performance was conducted in terms of precision, recall, F1-
score, and accuracy (Table 1). These results indicate strong
recall capabilities, meaning the model effectively captured a
high proportion of actual SQL injection attempts.

RESULTS

95

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

TABLE I. PERFORMANCE OF MODELS

Model Precision Recall F1 Score Accuracy
(%) (%) (%) (%)

Meta-LLaMA- 68.75 88.00 77.42 74.00

3-70B-Instruct

Deep Seek- 71.50 44.00 57.17 60.00

Coder

These findings bring to focus an important trade-oft: Meta-
LLaMA-3-70B-Instruct can be better at detecting more
malicious queries, but DeepSeek-Coder is more reserved in the
classification, and not as efficient in picking up all threats

VL

The results obtained highlight both promise and limitations
in using LLMs for automated security analysis. Their relatively
high levels of precision under both models make them useful as
complementary tools in Integrated Development Environments
(IDEs) or FRP-based continuous integration systems, where it
is useful to produce as few false positives as possible in order
to avoid developer burnout. Nevertheless, the lower recall,
especially in DeepSeek-Coder, shows that one should not rely
exclusively on these types of models to provide a high level of
security in any production environment, as most of the attacks
may go unnoticed.

DISCUSSION

It can be observed that there is an inconsistency in
classification across multiple runs on the same query. In some
other instances, a query that was considered to be malicious
was changed to a genuine query by the same model, and this
may result in security flaws. Such instability means
susceptibility to immediate context or token-level differences
that have to be fixed before safety in critical systems.

Moreover, Meta-LLaMA-3-70B-Instruct was found to be
more flexible in detecting obfuscated forms of attack, maybe
because it contains higher parameters and instruction-tuning
data. Alternatively, the increased accuracy of DeepSeek-Coder
implies that it might be more applicable to cases where it is
crucial to reduce false positive detections, as opposed to
ensuring detection against all attacks.

Implications:

e LLMs show promise as first-line security filters or
developer assistants.

e For operational deployment, they should be paired with
traditional static and dynamic analysis tools.

e Fine-tuning on domain-specific security datasets could
substantially improve recall without degrading precision.

VIL

This paper performed a comparison test of Meta-LLaMA-3-
70B-Instruct and DeepSeek-Coder on detecting SQL injection
attacks that are based on Boolean. Findings indicate that the
Meta-LLaMA-3-70B-Instruct has better recall and overall
accuracy and is best able to detect more varieties of malignant
queries. DeepSeek-Coder is a little more accurate, lowering the
false positive rate, but failing to detect a large percentage of the
attacks.

CONCLUSIONS

ISSN 2305-7254 PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

Although both models also hold promise as part of secure
coding processes, neither model is currently sufficiently
consistent to be used as an autonomous security mechanism.
Their best-suited place is in multi-layered defence
architectures, in which they serve together with traditional
vulnerability scanners and in-person code reviews.

REFERENCES

[1] O. Foundation. "OWASP Top Ten 2025." https://owasp.org/
www-project-top-ten/ (accessed 02.09.2025, 2025).

[2] A. Khraisat, . Gondal, P. Vamplew, and J. Kamruzzaman, "Survey of
intrusion detection systems: techniques, datasets and challenges,"
Cybersecurity, vol. 2, no. 1, pp. 1-22, 2019.

[3] M. Qbea'h, S. Alrabace, M. Alshraideh, and K. E. Sabri, "Diverse
approaches have been presented to mitigate sql injection attack, but it is
still alive: a review," in 2022 International Conference on Computer
and Applications (ICCA), 2022: IEEE, pp. 1-5.

[4] S. Yaswanthraj, A. M, K. S, and J. R, "SQL Injection and Prevention,"
International Journal of Research Publication and Reviews, 2024.

[5] M. Meenakshi and D. Murugan, "Understanding the Threat: Exploring
SQL Injection Attacks and Prevention Strategies," International
Research Journal of Modernization in Engineering Technology and
Science, 2024.

[6] J.Zhang, Y. Zhou, B. Hui, Y. Liu, Z. Li, and S. Hu, "TrojanSQL: SQL
Injection against Natural Language Interface to Database," Singapore,
December 2023: Association for Computational Linguistics, in
Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 4344-4359, doi: 10.18653/v1/2023.emnlp-
main.264.

96

(7]
(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

D. Coder. "Deepseek-Ai. ." https://github.com/deepseek-ai/DeepSeek-
Coder (accessed 02.09.2025, 2025).

C. Cetin, Authentication and SQL-Injection Prevention Techniques in
Web Applications. University of South Florida, 2019.

H. Zhao et al., "Explainability for large language models: A survey,"
ACM Transactions on Intelligent Systems and Technology, vol. 15, no.
2, pp. 1-38,2024.

V. Usha, N. C. Abhinash, S. N. Chowdary, V. Sathya, and E. R. Reddy,
"Enhanced Database Interaction Using Large Language Models for
Improved Data Retrieval and Analysis," in 2024 Second International
Conference on Intelligent Cyber Physical Systems and Internet of
Things (IColCI), 2024: IEEE, pp. 1302-1306.

S. Mishra, "SQL injection detection using machine learning," 2019.

W. G. Halfond and A. Orso, "Combining static analysis and runtime
monitoring to counter SQL-injection attacks," in Proceedings of the
third international workshop on Dynamic analysis, 2005, pp. 1-7.

M. M. Hassan, R. B. Ahmad, and T. Ghosh, "SQL injection
vulnerability detection using deep learning: a feature-based approach,"
Indonesian Journal of Electrical Engineering and Informatics (IJEEI),
vol. 9, no. 3, pp. 702-718, 2021.

Y. Pan et al., "Detecting web attacks with end-to-end deep learning,"
Journal of Internet Services and Applications, vol. 10, no. 1, pp. 1-22,
2019.

W. B. Demilie and F. G. Deriba, "Detection and prevention of SQLI
attacks and developing compressive framework using machine learning
and hybrid techniques," Journal of Big Data, vol. 9, no. 1, p. 124, 2022.
Z. Gui et al., "SqliGPT: Evaluating and Utilizing Large Language
Models for Automated SQL Injection Black-Box Detection," Applied
Sciences, vol. 14, no. 16, p. 6929, 2024.

N. T. Islam, M. B. Karkevandi, and P. Najafirad, "Code security
vulnerability repair using reinforcement learning with large language
models," arXiv preprint arXiv:2401.07031, 2024.

