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Abstract— Manual inspection of textile defects is time-
consuming, error-prone, and limits industrial scalability. The
following paper presents the design and evaluation of an intel-
ligent web-based system that automates fabric defect detection
using deep learning and computer vision. The proposed solution
integrates a YOLOv8-based model trained on a custom dataset
comprising over 6,000 images, augmented from an initial 2,404,
representing three common defect types: holes, lines, and stains.
The system is deployed via a web application connected to
a camera and a cloud hosted backend, enabling real-time
detection and reporting. Eight YOLOv8 and YOLOv8-OBB
models were trained and evaluated using multi-label and single-
label strategies. Results show that single-label YOLOv8-OBB
models achieve superior accuracy, with the best model reaching
an mAP@0.5 of 0.954. The study highlights the benefits of
rotation-aware detection and class-specific training in industrial
contexts. Future work includes expanding the dataset, enabling
real-time video processing, and deploying the solution in live
production environments.

I. INTRODUCTION

Manual inspection of fabric defects has long been a

standard practice in the textile industry to ensure the quality

of the product. However, these methods are limited by factors

such as reduced attention span, human exhaustion, and high

time consumption [14]. Inspectors have to work long shifts,

finding faults, damages, writing reports, and responding ac-

cordingly. Furthermore, human inspection is not very precise

because of human exhaustion. Human inspectors have an

accuracy rate of approximately 60–70%, with performance

declining as fatigue sets in [15].

Fabric defects can significantly reduce the commercial

value of textile products. The presence of defects can reduce

the price of fabrics by more than 50% [16]. Ensuring quality

and physical integrity is a key priority for the industry to sell

their textiles. To avoid waste of materials and resources is

important to identify and correct any defects or production

problems, which optimizes the production and maximizes

the profitability [17]. Considering the limitations of manual

inspections, industries face many challenges for detecting

flaws and tear in textiles, which comes at the cost of

effectiveness and increases waste of materials.

The complexity of fabric defects further complicates de-

tection efforts. There are over 235 identified types of fabric

defects, each varying in appearance and severity [18]. This

vast variability poses challenges for both manual inspection

and automated systems. Early computer vision approaches,

such as analyzing gray-pixel-value distributions or histogram

statistics, have struggled with accuracy and adaptability to

real-world conditions [18]. Additionally, manual inspection

of fabric flaws presents several significant challenges that

affect the efficiency and reliability of quality control pro-

cesses. Manual inspection speeds are limited, often less than

20 meters per minute, making it inefficient for high-volume

production [19].
Although various automated inspection techniques have

been proposed, many fail to generalize across real-world

production environments. Earlier models often rely on hand-

crafted features or shallow classifiers that lack robustness

and require frequent re-tuning. Deep learning models have

emerged as promising alternatives, but many are not op-

timized for real-time use, demand excessive computing

resources, or lack integration into scalable, user-friendly

applications. Therefore, there remains a gap in deployable,

accurate, and efficient systems designed specifically for tex-

tile inspection.
Furthermore, the textile industry holds significant rele-

vance in the Peruvian economy. As of 2020, it contributed

approximately 6.3% to the manufacturing GDP and 0.8% to

the national GDP [20]. The sector is also a major source of

employment, generating around 400,000 jobs directly [20].

Despite its economic importance, many textile companies

in Peru still rely on traditional manual inspection methods,

which limit scalability, reduce quality consistency, and hinder

global competitiveness. Therefore, improving fabric inspec-

tion processes is essential not only for quality assurance but

also for boosting industrial efficiency and supporting national

economic growth.
Given the limitations of manual inspection and the

high complexity of defect types, there is a growing need

for intelligent, automated solutions that can enhance

detection accuracy and operational efficiency. Advances in

computer vision and deep learning offer promising tools

for addressing these challenges. In this study, we propose

the development of an intelligent web application that

integrates the YOLOv8 object detection model, trained with

a custom-labeled dataset of fabric defects. This system

aims to provide fast, accurate, and scalable defect detection

tailored to the needs of the textile industry. Our approach

focuses on balancing detection performance with usability

and deployment feasibility.

Our main contributions are as follows:

• We are developing an intelligent web application which

detects flaws and damages on fabric using computer

vision.

• We propose a combined dataset, using of public and

manually captured images, containing over 6,000 im-

ages. The dataset includes the 3 most common types of
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defects: holes, lines and stains.

• We propose an simple architecture involving one camera

for the flaw detection on textiles

This paper is distributed in the following sections: In

first place, we review the related works about the use of

computer vision in flaw detection and its effectiveness in

the automatization of quality control in Section II. In second

place, we discuss about some preliminary concepts related

to our research, describing its main contribution with more

detail in Section III. In addition, the procedures and exper-

iments that were carried out in this study will be explained

in Section IV. In the end, we will analyze the results and

show the main conclusions of the project, closing with some

recommendations for future works in Section V.

II. RELATED WORKS

The detection of defects in fabric using intelligent sys-

tems has been widely explored through various innovative

approaches. The following works present diverse strategies,

ranging from lightweight neural networks and composite

reconstruction methods to phased noise enhancement and

human–robot collaboration models. Each contributes unique

techniques aimed at improving accuracy, efficiency, and

adaptability in defect detection.

A. Paper 1

The authors propose GH-YOLOx, a lightweight network

for comprehensive fabric anomaly detection that addresses

the high computational resource consumption often associ-

ated with such tasks. They solved this problem by integrating

ghost convolutions and a hierarchical backbone network

(GHNetV2), together with the use of dynamic convolutions,

feature fusion modules, and a shared group convolution

head to efficiently detect anomalies across various scales. In

addition, pruning techniques and knowledge distillation are

applied to enhance model accuracy while reducing the num-

ber of parameters, achieving a balance between efficiency

and effectiveness in real-time detection. The experimental

results demonstrate that GH-YOLOx outperforms existing

lightweight models in both detection rate and computational

efficiency. Our approach aims to harness the full potential

of YOLOv8 within a more extensive framework, ultimately

aiming to improve detection accuracy and operational effi-

ciency without undermining the lightweight advantages that

models like GH-YOLOx provide.

B. Paper 2

The study proposes a diverse embedding-based composite

reconstruction (DECR) method for unsupervised defect de-

tection in color fabrics, which addresses the limitations of

existing techniques that rely solely on pixel-level or feature-

level reconstruction. To solve the problem of reconstruction

noise and improve defect localization, DECR integrates a

composite reconstruction (CR) strategy that simultaneously

captures pixel-level details and feature-level semantics. Ad-

ditionally, a multi-scale dual source feature aggregation

(MDSFA) module is introduced to extract comprehensive

feature information across different resolutions, while a

multi-variate embedding extension (MEE) module generates

diverse embeddings to improve data diversity. Experimental

results demonstrate that DECR effectively reduces noise

interference and achieves state-of-the-art performance in

detecting and localizing fabric defects. Our approach using

YOLOv8 aims to be simpler compared to DECR, which

requires managing complex modules for diverse embedding-

based composite reconstruction and extensive parameter tun-

ing during training.

C. Paper 3

The authors propose a Phased Noise Enhanced Multiple

Feature Discrimination Network (PNMFD) to enhance the

detection of subtle fabric defects, which are often challenging

to identify due to their complexity and rarity. To solve this

problem, they utilized a phased noise enhancement strategy

to simulate high-quality anomalies in the feature space,

allowing better perception and reconstruction of defects.

Additionally, the network incorporates a dual branch multi-

feature discrimination module to improve the distinction of

detailed textural features while employing a subsampling

technique to reduce redundancy and ensure efficient in-

ference speed. Extensive experiments on the AITEX and

Kaggle Fabric datasets demonstrate that the proposed method

significantly outperforms existing state-of-the-art approaches

in terms of image and pixel-level accuracy. Our approach

using YOLOv8 aims to be more simple compared to PNMFD

which would require implementing phased noise enhance-

ment and managing dual discriminators

D. Paper 4

In [4], the study proposes a defect segmentation model

based on deep learning to enhance the detection of steel sur-

face defects. Integrates ResNet50 for deep feature extraction,

along with Residual Block, Residual Squeeze-and-Excitation

Block, and Residual Refinement Module to improve seg-

mentation accuracy. A custom dataset was created using

images from a real production line, ensuring diverse defect

representation. Additionally, Synthetic Defect Generation

techniques were employed to augment the dataset, improving

the robustness and effectiveness of the model in industrial

applications. Our proposed solution uses a model that can

detect any flaws in the fabric without the need to train it any

further unless necessary. This helps the company save money

while ensuring the quality of the fabric. In our solution,

YOLOv8 is the model used to detect any imperfections in the

fabric. This simplifies the detection process and can achieve

the same accurate result, as long as the dataset provides

enough information about the imperfections.

E. Paper 5

Int [5], the authors propose an AI-powered fabric inspec-

tion system that enhances textile quality control through a

safe human–robot collaboration model using deep convolu-

tional neural networks (DCNNs). Their goal is to automate

defect detection while allowing humans to verify results,
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improving accuracy and workplace safety. They used an

anthropomorphic robot (UR5) equipped with a camera and

photoelectric sensor, integrated with an enhanced YOLOv8n-

based DCNN model trained on 13 defect types. The system

incorporates transfer learning, data augmentation, and a

real-time alert mechanism, achieving 97.49% mean Average

Precision (mAP) while maintaining a low inference time and

high recall and precision. Our solution is to use only a camera

that records fabric defects, saving resources and achieving

the same results.

III. DETECTING FLAWS ON FABRIC WITH

COMPUTER VISION

A. Preliminary Concepts

This sections presents the main concepts used in our work.

We use computer vision to detect flaws and damage in fabric

using an 8-megapixel camera.

Definition 1 (Machine Learning [6]): a branch of artificial
intelligence that enables machines and computers to imitate
human learning, allowing them to enhance their accuracy
and performance through greater data exposure and experi-
ence.

Example 1 (Machine Learning [11]): in Figure 1, we can
see a confusion matrix illustrating how well a machine learn-
ing model classifies the 10 most commonly used verbs and
the 10 most common nouns, demonstrating its effectiveness
in everyday applications.

Fig. 1. Using machine learning to classify the most common used verbs 
and nouns [11]

Definition 2 (Computer Vision [7]): is a branch of artificial
intelligence that uses machine learning and neural networks
to enable computers and systems to extract meaningful in-
sights from digital media and respond with recommendations
or actions when defects or problems are detected.

Example 1 (Computer Vision [8]): In Figure 2, we can see
the techniques of computer vision used to extract the color
palette of clothing.

Fig. 2. Using Computer Vision techniques to extract color palette [8]

Definition 3 (Supabase [9]): an open source serverless
back-end platform that serves as an alternative to Firebase. It
enables developers to create high-performance applications
with minimal setup, using a PostgreSQL database.

Example 1 (Supabase [12]): In Figure 3, we can see a
bucket created to save avatar pictures, which are organized
under folders

Fig. 3. Using Supabase for storing images [12]

Definition 4 (YOLOv8 [10]): a computer vision model de-
veloped by Ultralytics. It is designed for tasks such as object
detection, image classification, and instance segmentation.

Example 1 (YOLOv8 [13]): In Figuer 4, we can see a
modified YOLOv8 model to detect road cracks with better
accuracy

Fig. 4. Using a custom model of YOLOv8 to detect road defects [13]
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B. Methods

1) Architecture: The contribution of this research is the

use of computer vision and machine learning algo-

rithms to detect defects and damage in fabric, then

generate reports to ensure quality control and automa-

tion. In Figure 5, we can see the proposed physical

architecture for the solution.

Fig. 5. Physical Architecture of the web application

• Firewall: The firewall filters users who are not

authorized to access the web application.

• Camera: The camera is used by the model to detect

flaws and damage in the textile.

• Raspberry Pi: This is used to connect the model

to the camera and run model inference while also

registering results in the backend.

• Supabase Backend: The backend provides infor-

mation for the frontend to show.

• Supabase Database: Cloud database used to store

website data and flaw reports generated by the

model.

• Vue Frontend: The frontend of the web application

uses the Vue framework to display all the infor-

mation necessary for the user to facilitate quality

control.

2) Flaw and Damage Dataset: The second contribution

of this study is a collection of real photos taken on

the fabric production line. Each one has been pre-

processed and tagged accordingly for the training of

the model.

3) Web Application: The third contribution of this study

is a web application that presents all the flaws detected

by the model. The application offers the essential

functions for the user to manage the quality control

of textiles:

• Camera List: The camera list option offers a list of

all installed cameras. This allows quality control

staff to identify the camera, its location, and its

state (active, inactive, or blurry).

• Camera view: This function allows the user to se-

lect a camera and view the recording and detection

process. Moreover, this function lists the last report

registered by the model.

• Report list: This function lists all the reports of the

Fig. 6. YOLOv8 Architecture

flaws and damages detected by the model. Each

record lists the location and date of the detection.

4) Computer Vision Model Architecture: The architecture

chosen for the project is YOLO v8. This architecture

achieves a state-of-the-art balance between accuracy

(mean Average Precision - mAP) and inference speed

while boasting a mature and well-established ecosys-

tem, efficient training processes, and relatively lower

memory requirements compared to many other state-

of-the-art models. YOLOv8 was selected over newer

versions such as YOLOv9 and YOLOv11 due to its

proven balance of accuracy, speed, and model sim-

plicity, which make it well-suited for deployment in

real-time or resource-constrained environments. While

YOLOv9 and YOLOv11 introduce advanced features

such as Neural Architecture Search (NAS), improved

quantization techniques, or more complex attention

mechanisms, these enhancements often come at the

cost of increased computational overhead and reduced

interpretability. YOLOv8, by contrast, offers a stream-

lined architecture with C2f modules, anchor-free detec-

tion, and built-in support for detection, segmentation,

and classification—making it highly versatile and easy

to train or fine-tune with custom datasets. Furthermore,

its widespread community support, extensive docu-

mentation, and export options (e.g., ONNX, TensorRT)

provide practical advantages for integration into a wide

range of applications without sacrificing performance.

The YOLOv8 architecture is composed of three main

components: the backbone, the neck, and the head

(as illustrated in Fig6) . The backbone is responsible

for extracting visual features from the input image

and utilizes C2f (Concatenate-to-Fuse) modules, which

enhance gradient flow and computational efficiency.

The neck, built using a combination of Path Aggre-

gation Network (PAN) and Feature Pyramid Network

(FPN), fuses multi-scale features to improve detection

of objects at various sizes. Finally, the head is de-

coupled and handles the final predictions, including

bounding boxes, objectness scores, class probabilities,

and optional segmentation masks.
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IV. EXPERIMENTS

This section presents the experiments conducted in our

project, the requirements for replicating them, and an anal-

ysis of the results obtained after this process.

A. Experimental Protocol

All experiments were conducted using Google Colab Pro

with the High RAM runtime, which provides access to a

Tesla T4 GPU (16 GB VRAM), approximately 56 GB of

RAM, and a shared virtualized 2-core Intel Xeon CPU. The

Colab environment allowed the use of GPU acceleration,

which was essential for training all eight YOLOv8-based

models within reasonable time constraints. Training and

inference were carried out using Ultralytics’ YOLOv8

framework within Jupyter Notebooks. The yolov8n (nano)

variant was selected for all models due to its reduced

computational footprint, enabling fast prototyping and

deployment on Colab without exceeding resource quotas.

The dataset used combines several public sources and

manually curated data. It includes:

• Fabric Defects Dataset (Saleem, 2024), aggregating:

• Fabric Defect Dataset (Ranathunga, 2020)

• Fabric Stain Dataset (Pathirana, 2020)

• Aitex Fabric Dataset (Silvestre-Blanes et al., 2019)

• Dataset from Peng et al. (2020)

• FabricSpotDefect Dataset [Sumaya et al., 2024]

• 100 user-provided images, annotated manually.

• Annotations include both bounding boxes and polygon-

based labels (for diagonal line defects). The images

feature three main defect classes: holes, lines, and

stains.

To improve model generalization and compensate for class

imbalance, the original final dataset was extended from

2,404 to over 6,000 images through data augmentation. The

following augmentation techniques were applied:

• Horizontal flip
• Brightness adjustment (ranging from −15% to +15%)

• Gaussian blur (with a radius of up to 2.5 pixels)

These transformations were applied probabilistically dur-

ing training to preserve the natural characteristics of fabric

textures while enhancing defect variability. The resulting

synthetic samples significantly enriched the dataset, partic-

ularly for underrepresented defect types such as holes and

stains.

For training, the dataset was split into:

• 70% training (70 images)

• 20% validation (20 images)

• 10% test (10 images)

A public version of the dataset is available at:

https://app.roboflow.com/fabric-defect-detection-zunat/my-

first-project-bw4o9/3

A public version of the code is available at:

https://github.com/SebGonS/tp1

The web app was developed on a laptop with an AMD

Ryzen 7 7735HS CPU, and NVIDIA GeForce RTX 4060

GPU and 32 GB of RAM at 4800 Mhz. The web application

was developed with VS Code, Vue.js version 3.5.16, Vuetify

3 and JavaScript.

The objective of these experiments was to evaluate the ef-

fect of two variables on fabric defect detection performance:

1) Detection Mode: Multi-label vs. Single-label training

2) Model Architecture: Standard YOLOv8 vs. YOLOv8-

OBB (Oriented Bounding Boxes)

To this end, eight models were trained:

• 4 YOLOv8 models:

– 1 Multi-label (hole, stain, line)

– 3 Single-label (one for each defect type)

• 4 YOLOv8-OBB models:

– 1 Multi-label

– 3 Single-label

All models were trained using identical hyperparameters

(epochs, batch size, augmentation probability) to ensure

fairness. Evaluation metrics include:

• mAP@0.5
• mAP@0.5:0.95
• Precision, Recall, and F1-Score
YOLOv8 models use a decoupled head architecture with

CSPDarknet backbones. The YOLOv8-OBB models extend

this by adding rotation angle regression, enabling them

to handle defects with non-axis-aligned geometries (e.g.,

diagonal lines). While this introduces a slight increase in

model complexity and training time, it improves precision

for elongated and rotated objects. In terms of computational

cost, both remain efficient due to the use of the yolov8n
variant.

B. Results

Multi-label Model Performance:

TABLE I. MULTI-LABEL MODELS RESULTS

Model mAP@0.5   mAP@0.5:0.95   Precision   Recall   F1-Score
YOLOv8-OBB 0.803 0.621 0.720 0.697 0.708
YOLOv8 0.650 0.444 0.689 0.599 0.641

Table I shows the main performance metrics for both 
multi-label models.

Fig. 7. YOLOv8 Model Evaluation

Fig. 7 allows a visualization of the performance metrics 
shown in Table 1 while also displaying the mAP@0.5 score 
for each of the trained labels of the YOLOv8 model.
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Fig. 8. YOLOv8-OBB Evaluation

Fig. 8 shows the same metrics and indicators of the 
previous image but for the YOLOv8-OBB model.

Single-Label Model Performance:
As seen in Table 1 and Table 2 single-label models out-

performed their multi-label counterparts across all metrics.

This supports the hypothesis that dedicated training on
isolated classes reduces inter-class confusion and enables

more accurate detection of subtle defect patterns. Notably,

YOLOv8-OBB continued to outperform YOLOv8 in this

setting as well, especially for line and stain defects.

C. Discussion
The experiments clearly demonstrate the following:

• Orientation-aware detection (YOLOv8-OBB) pro-

vides measurable performance gains for non-axis-

aligned defects, especially lines.

• Single-label training results in significantly better

class-specific performance than multi-label models,

likely due to reduced label interference.

• YOLOv8-OBB combined with class-specific training
achieved the best overall results in terms of both mAP

and per-class precision/recall.

These findings indicate that, for applications such as textile

quality control, leveraging specialized, lightweight OBB
detectors per defect type is an effective strategy under

computational constraints. While multi-label models offer

convenience and generalized inference, they underperform

when compared to tailored, defect-specific models. Future

work may explore model ensembling, real-time deployment,
and active learning strategies to further reduce annotation

costs and improve system robustness.

V. CONCLUSIONS AND PERSPECTIVES

This project presented the design, development, and eval-

uation of a computer vision-based web application for au-

tomated fabric defect detection, tailored to the needs of the

textile industry. The proposed solution integrated Ultralytics’

YOLOv8 object detection models into a fully functional web

application capable of real-time defect reporting. It addressed

limitations of traditional manual inspection, such as low

accuracy, slow throughput, and inconsistency, by automating

the process using deep learning and cloud-based deployment.
Through a series of controlled experiments, we trained

and evaluated eight models—four based on the standard

YOLOv8 architecture and four on the oriented bounding box

extension YOLOv8-OBB—using both multi-label datasets

and class-specific (single-label) training. The results showed

that models trained for a single class performed significantly

better than multi-label models, and that YOLOv8-OBB con-

sistently outperformed regular YOLOv8, especially in the

detection of defects like lines, which often appear in rotated

or irregular orientations.

The most accurate model, trained specifically on hole

defects using YOLOv8-OBB, reached an mAP@0.5 of 0.954

and an mAP@0.5:0.95 of 0.728, far surpassing the multi-

label baseline. These findings confirm the advantage of using

rotation-aware models and targeted training strategies in

complex industrial contexts. They also validate our initial

hypothesis that defect-specific models can reduce class con-

fusion and enhance detection precision in real-world settings.

Limitations

Despite promising outcomes, the current system has sev-

eral limitations. First, although the dataset was augmented

to over 6,000 images, the number of original images was

relatively small, especially for underrepresented defect types.

This reliance on augmentation could affect generalization

in uncontrolled environments. Second, only three types of

defects were considered—holes, stains, and lines—while real

production environments may involve dozens of different

defect categories with varying shapes, textures, and lighting

sensitivities. Third, all evaluations were conducted on static

images in a simulated environment. Real-world application

will require testing on continuous fabric rolls with variable

lighting and motion, introducing further complexity.

Unaddressed Problems and Open Questions

Several important aspects of real-world deployment re-

main outside the scope of this study. These include:

• Temporal consistency: How to ensure reliable detec-

tion over time when the same defect appears across

multiple frames in video streams.

• Environmental variability: How well the system per-

forms under changing lighting conditions, vibration, or

fabric motion.

• Adaptive learning: Can the system continuously im-

prove by learning from user corrections or post-

inspection reviews?
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TABLE II. SINGLE-LABEL MODELS RESULTS

Class Model mAP@0.5 mAP@0.5:0.95 Precision Recall
Hole YOLOv8-OBB 0.954 0.728 0.959 0.914
Hole YOLOv8 0.844 0.544 0.772 0.776
Line YOLOv8-OBB 0.919 0.688 0.882 0.816
Line YOLOv8 0.807 0.629 0.779 0.714
Stain YOLOv8-OBB 0.954 0.827 0.885 0.902
Stain YOLOv8 0.932 0.733 0.867 0.844

• Quality control thresholds: What level of confidence

is acceptable for triggering a fabric rejection, and how

should this be calibrated?

These questions point to broader challenges in indus-

trial automation that go beyond model accuracy—requiring

considerations of reliability, calibration, and human-machine

collaboration.

Future Perspectives

The results of this work suggest multiple directions for

future exploration:

1) Dataset Expansion: Creating a larger and more di-

verse dataset covering additional defect types (e.g.,

creases, misalignment, color irregularities) from real

production lines.

2) Edge Deployment: Deploying optimized versions of

the models on embedded systems such as Raspberry

Pi or Jetson Nano for on-site inference without reliance

on cloud infrastructure.

3) Ensemble Models: Combining multi-label and single-

label models to balance generalization with special-

ization, potentially using decision fusion or weighted

confidence scores.

4) Active Learning: Implementing feedback loops where

users confirm or reject detections to progressively

improve model accuracy with minimal human inter-

vention.

5) Video Stream Integration: Moving from image-by-

image inference to real-time video processing with

frame-to-frame consistency checks and defect tracking.

6) Collaboration with Industry: Validating the system

in operational settings in partnership with textile man-

ufacturers in Peru, to evaluate usability and real-world

ROI.

Personal Interest and Continuity

This project has sparked a deeper academic and practical

interest in the intersection between artificial intelligence

and industrial automation. We are particularly interested

in extending this work into a broader research effort on

real-time computer vision systems for manufacturing quality

assurance. We believe this topic holds significant social and

economic value, particularly in countries like Peru, where

automation can bridge the gap between traditional practices

and global competitiveness. As such, we plan to pursue

further development of the dataset, application and model,

with a focus on optimizing it for industrial deployment,

gathering additional field data, and publishing subsequent

findings.
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