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Abstract— Manual inspection of textile defects is time-
consuming, error-prone, and limits industrial scalability. The
following paper presents the design and evaluation of an intel-
ligent web-based system that automates fabric defect detection
using deep learning and computer vision. The proposed solution
integrates a YOLOv8-based model trained on a custom dataset
comprising over 6,000 images, augmented from an initial 2,404,
representing three common defect types: holes, lines, and stains.
The system is deployed via a web application connected to
a camera and a cloud hosted backend, enabling real-time
detection and reporting. Eight YOLOv8 and YOLOvS-OBB
models were trained and evaluated using multi-label and single-
label strategies. Results show that single-label YOLOvS8-OBB
models achieve superior accuracy, with the best model reaching
an mAP@0.5 of 0.954. The study highlights the benefits of
rotation-aware detection and class-specific training in industrial
contexts. Future work includes expanding the dataset, enabling
real-time video processing, and deploying the solution in live
production environments.

1. INTRODUCTION

Manual inspection of fabric defects has long been a
standard practice in the textile industry to ensure the quality
of the product. However, these methods are limited by factors
such as reduced attention span, human exhaustion, and high
time consumption [14]. Inspectors have to work long shifts,
finding faults, damages, writing reports, and responding ac-
cordingly. Furthermore, human inspection is not very precise
because of human exhaustion. Human inspectors have an
accuracy rate of approximately 60-70%, with performance
declining as fatigue sets in [15].

Fabric defects can significantly reduce the commercial
value of textile products. The presence of defects can reduce
the price of fabrics by more than 50% [16]. Ensuring quality
and physical integrity is a key priority for the industry to sell
their textiles. To avoid waste of materials and resources is
important to identify and correct any defects or production
problems, which optimizes the production and maximizes
the profitability [17]. Considering the limitations of manual
inspections, industries face many challenges for detecting
flaws and tear in textiles, which comes at the cost of
effectiveness and increases waste of materials.

The complexity of fabric defects further complicates de-
tection efforts. There are over 235 identified types of fabric
defects, each varying in appearance and severity [18]. This
vast variability poses challenges for both manual inspection
and automated systems. Early computer vision approaches,
such as analyzing gray-pixel-value distributions or histogram
statistics, have struggled with accuracy and adaptability to
real-world conditions [18]. Additionally, manual inspection
of fabric flaws presents several significant challenges that

affect the efficiency and reliability of quality control pro-
cesses. Manual inspection speeds are limited, often less than
20 meters per minute, making it inefficient for high-volume
production [19].

Although various automated inspection techniques have
been proposed, many fail to generalize across real-world
production environments. Earlier models often rely on hand-
crafted features or shallow classifiers that lack robustness
and require frequent re-tuning. Deep learning models have
emerged as promising alternatives, but many are not op-
timized for real-time use, demand excessive computing
resources, or lack integration into scalable, user-friendly
applications. Therefore, there remains a gap in deployable,
accurate, and efficient systems designed specifically for tex-
tile inspection.

Furthermore, the textile industry holds significant rele-
vance in the Peruvian economy. As of 2020, it contributed
approximately 6.3% to the manufacturing GDP and 0.8% to
the national GDP [20]. The sector is also a major source of
employment, generating around 400,000 jobs directly [20].
Despite its economic importance, many textile companies
in Peru still rely on traditional manual inspection methods,
which limit scalability, reduce quality consistency, and hinder
global competitiveness. Therefore, improving fabric inspec-
tion processes is essential not only for quality assurance but
also for boosting industrial efficiency and supporting national
economic growth.

Given the limitations of manual inspection and the
high complexity of defect types, there is a growing need
for intelligent, automated solutions that can enhance
detection accuracy and operational efficiency. Advances in
computer vision and deep learning offer promising tools
for addressing these challenges. In this study, we propose
the development of an intelligent web application that
integrates the YOLOv8 object detection model, trained with
a custom-labeled dataset of fabric defects. This system
aims to provide fast, accurate, and scalable defect detection
tailored to the needs of the textile industry. Our approach
focuses on balancing detection performance with usability
and deployment feasibility.

Our main contributions are as follows:

o We are developing an intelligent web application which
detects flaws and damages on fabric using computer
vision.

o We propose a combined dataset, using of public and
manually captured images, containing over 6,000 im-
ages. The dataset includes the 3 most common types of
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defects: holes, lines and stains.
o We propose an simple architecture involving one camera
for the flaw detection on textiles

This paper is distributed in the following sections: In
first place, we review the related works about the use of
computer vision in flaw detection and its effectiveness in
the automatization of quality control in Section II. In second
place, we discuss about some preliminary concepts related
to our research, describing its main contribution with more
detail in Section III. In addition, the procedures and exper-
iments that were carried out in this study will be explained
in Section IV. In the end, we will analyze the results and
show the main conclusions of the project, closing with some
recommendations for future works in Section V.

II. RELATED WORKS

The detection of defects in fabric using intelligent sys-
tems has been widely explored through various innovative
approaches. The following works present diverse strategies,
ranging from lightweight neural networks and composite
reconstruction methods to phased noise enhancement and
human-robot collaboration models. Each contributes unique
techniques aimed at improving accuracy, efficiency, and
adaptability in defect detection.

A. Paper 1

The authors propose GH-YOLOx, a lightweight network
for comprehensive fabric anomaly detection that addresses
the high computational resource consumption often associ-
ated with such tasks. They solved this problem by integrating
ghost convolutions and a hierarchical backbone network
(GHNetV2), together with the use of dynamic convolutions,
feature fusion modules, and a shared group convolution
head to efficiently detect anomalies across various scales. In
addition, pruning techniques and knowledge distillation are
applied to enhance model accuracy while reducing the num-
ber of parameters, achieving a balance between efficiency
and effectiveness in real-time detection. The experimental
results demonstrate that GH-YOLOx outperforms existing
lightweight models in both detection rate and computational
efficiency. Our approach aims to harness the full potential
of YOLOVS within a more extensive framework, ultimately
aiming to improve detection accuracy and operational effi-
ciency without undermining the lightweight advantages that
models like GH-YOLOx provide.

B. Paper 2

The study proposes a diverse embedding-based composite
reconstruction (DECR) method for unsupervised defect de-
tection in color fabrics, which addresses the limitations of
existing techniques that rely solely on pixel-level or feature-
level reconstruction. To solve the problem of reconstruction
noise and improve defect localization, DECR integrates a
composite reconstruction (CR) strategy that simultaneously
captures pixel-level details and feature-level semantics. Ad-
ditionally, a multi-scale dual source feature aggregation
(MDSFA) module is introduced to extract comprehensive
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feature information across different resolutions, while a
multi-variate embedding extension (MEE) module generates
diverse embeddings to improve data diversity. Experimental
results demonstrate that DECR effectively reduces noise
interference and achieves state-of-the-art performance in
detecting and localizing fabric defects. Our approach using
YOLOVS aims to be simpler compared to DECR, which
requires managing complex modules for diverse embedding-
based composite reconstruction and extensive parameter tun-
ing during training.

C. Paper 3

The authors propose a Phased Noise Enhanced Multiple
Feature Discrimination Network (PNMFD) to enhance the
detection of subtle fabric defects, which are often challenging
to identify due to their complexity and rarity. To solve this
problem, they utilized a phased noise enhancement strategy
to simulate high-quality anomalies in the feature space,
allowing better perception and reconstruction of defects.
Additionally, the network incorporates a dual branch multi-
feature discrimination module to improve the distinction of
detailed textural features while employing a subsampling
technique to reduce redundancy and ensure efficient in-
ference speed. Extensive experiments on the AITEX and
Kaggle Fabric datasets demonstrate that the proposed method
significantly outperforms existing state-of-the-art approaches
in terms of image and pixel-level accuracy. Our approach
using YOLOVS8 aims to be more simple compared to PNMFD
which would require implementing phased noise enhance-
ment and managing dual discriminators

D. Paper 4

In [4], the study proposes a defect segmentation model
based on deep learning to enhance the detection of steel sur-
face defects. Integrates ResNet50 for deep feature extraction,
along with Residual Block, Residual Squeeze-and-Excitation
Block, and Residual Refinement Module to improve seg-
mentation accuracy. A custom dataset was created using
images from a real production line, ensuring diverse defect
representation. Additionally, Synthetic Defect Generation
techniques were employed to augment the dataset, improving
the robustness and effectiveness of the model in industrial
applications. Our proposed solution uses a model that can
detect any flaws in the fabric without the need to train it any
further unless necessary. This helps the company save money
while ensuring the quality of the fabric. In our solution,
YOLOVS is the model used to detect any imperfections in the
fabric. This simplifies the detection process and can achieve
the same accurate result, as long as the dataset provides
enough information about the imperfections.

E. Paper 5

Int [5], the authors propose an Al-powered fabric inspec-
tion system that enhances textile quality control through a
safe human-robot collaboration model using deep convolu-
tional neural networks (DCNNSs). Their goal is to automate
defect detection while allowing humans to verify results,
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improving accuracy and workplace safety. They used an
anthropomorphic robot (URS) equipped with a camera and
photoelectric sensor, integrated with an enhanced YOLOvS8n-
based DCNN model trained on 13 defect types. The system
incorporates transfer learning, data augmentation, and a
real-time alert mechanism, achieving 97.49% mean Average
Precision (mAP) while maintaining a low inference time and
high recall and precision. Our solution is to use only a camera
that records fabric defects, saving resources and achieving
the same results.

III. DETECTING FLAWS ON FABRIC WITH
COMPUTER VISION

A. Preliminary Concepts

This sections presents the main concepts used in our work.
We use computer vision to detect flaws and damage in fabric
using an 8-megapixel camera.

Definition 1 (Machine Learning [6]): a branch of artificial
intelligence that enables machines and computers to imitate
human learning, allowing them to enhance their accuracy
and performance through greater data exposure and experi-
ence.

Example 1 (Machine Learning [11]): in Figure I, we can
see a confusion matrix illustrating how well a machine learn-
ing model classifies the 10 most commonly used verbs and
the 10 most common nouns, demonstrating its effectiveness
in everyday applications.

=

Accuracy (%)
- 190

Tap 10 Frequently Used Nouns

- 40

Top 10 Frequently Used Verbs

3004015 16 17 15 13

TR o9 W o2
I J

I I
Top 10 Frequently Used Nouns  Top 10 Frequently Used Verbs

Fig. 1. Using machine learning to classify the most common used verbs
and nouns [11]

Definition 2 (Computer Vision [7]): is a branch of artificial
intelligence that uses machine learning and neural networks
to enable computers and systems to extract meaningful in-
sights from digital media and respond with recommendations
or actions when defects or problems are detected.

Example 1 (Computer Vision [8]): In Figure 2, we can see
the techniques of computer vision used to extract the color
palette of clothing.
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Fig. 2. Using Computer Vision techniques to extract color palette [8]

Definition 3 (Supabase [9]): an open source serverless
back-end platform that serves as an alternative to Firebase. It
enables developers to create high-performance applications
with minimal setup, using a PostgreSQL database.

Example 1 (Supabase [12]): In Figure 3, we can see a
bucket created to save avatar pictures, which are organized
under folders

Fig. 3. Using Supabase for storing images [12]

Definition 4 (YOLOVS [10]): a computer vision model de-
veloped by Ultralytics. It is designed for tasks such as object
detection, image classification, and instance segmentation.

Example 1 (YOLOVS [13]): In Figuer 4, we can see a
modified YOLOvS model to detect road cracks with better
accuracy

Fig. 4. Using a custom model of YOLOvS to detect road defects [13]
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B. Methods

1y

2)

3)

Architecture: The contribution of this research is the
use of computer vision and machine learning algo-
rithms to detect defects and damage in fabric, then
generate reports to ensure quality control and automa-
tion. In Figure 5, we can see the proposed physical
architecture for the solution.

Fig. 5. Physical Architecture of the web application

o Firewall: The firewall filters users who are not
authorized to access the web application.

o Camera: The camera is used by the model to detect
flaws and damage in the textile.

o Raspberry Pi: This is used to connect the model
to the camera and run model inference while also
registering results in the backend.

o Supabase Backend: The backend provides infor-
mation for the frontend to show.

o Supabase Database: Cloud database used to store
website data and flaw reports generated by the
model.

o Vue Frontend: The frontend of the web application
uses the Vue framework to display all the infor-
mation necessary for the user to facilitate quality
control.

Flaw and Damage Dataset: The second contribution
of this study is a collection of real photos taken on
the fabric production line. Each one has been pre-
processed and tagged accordingly for the training of
the model.

Web Application: The third contribution of this study
is a web application that presents all the flaws detected
by the model. The application offers the essential
functions for the user to manage the quality control
of textiles:

o Camera List: The camera list option offers a list of
all installed cameras. This allows quality control
staff to identify the camera, its location, and its
state (active, inactive, or blurry).

o Camera view: This function allows the user to se-
lect a camera and view the recording and detection
process. Moreover, this function lists the last report
registered by the model.

o Report list: This function lists all the reports of the
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Fig. 6. YOLOVS8 Architecture

flaws and damages detected by the model. Each
record lists the location and date of the detection.

4) Computer Vision Model Architecture: The architecture

chosen for the project is YOLO v8. This architecture
achieves a state-of-the-art balance between accuracy
(mean Average Precision - mAP) and inference speed
while boasting a mature and well-established ecosys-
tem, efficient training processes, and relatively lower
memory requirements compared to many other state-
of-the-art models. YOLOv8 was selected over newer
versions such as YOLOvVY and YOLOvVI11 due to its
proven balance of accuracy, speed, and model sim-
plicity, which make it well-suited for deployment in
real-time or resource-constrained environments. While
YOLOV9 and YOLOvVI11 introduce advanced features
such as Neural Architecture Search (NAS), improved
quantization techniques, or more complex attention
mechanisms, these enhancements often come at the
cost of increased computational overhead and reduced
interpretability. YOLOVS, by contrast, offers a stream-
lined architecture with C2f modules, anchor-free detec-
tion, and built-in support for detection, segmentation,
and classification—making it highly versatile and easy
to train or fine-tune with custom datasets. Furthermore,
its widespread community support, extensive docu-
mentation, and export options (e.g., ONNX, TensorRT)
provide practical advantages for integration into a wide
range of applications without sacrificing performance.
The YOLOVS architecture is composed of three main
components: the backbone, the neck, and the head
(as illustrated in Fig6) . The backbone is responsible
for extracting visual features from the input image
and utilizes C2f (Concatenate-to-Fuse) modules, which
enhance gradient flow and computational efficiency.
The neck, built using a combination of Path Aggre-
gation Network (PAN) and Feature Pyramid Network
(FPN), fuses multi-scale features to improve detection
of objects at various sizes. Finally, the head is de-
coupled and handles the final predictions, including
bounding boxes, objectness scores, class probabilities,
and optional segmentation masks.
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IV. EXPERIMENTS

This section presents the experiments conducted in our
project, the requirements for replicating them, and an anal-
ysis of the results obtained after this process.

A. Experimental Protocol

All experiments were conducted using Google Colab Pro
with the High RAM runtime, which provides access to a
Tesla T4 GPU (16 GB VRAM), approximately 56 GB of
RAM, and a shared virtualized 2-core Intel Xeon CPU. The
Colab environment allowed the use of GPU acceleration,
which was essential for training all eight YOLOvS8-based
models within reasonable time constraints. Training and
inference were carried out using Ultralytics’ YOLOvS
framework within Jupyter Notebooks. The yolov8n (nano)
variant was selected for all models due to its reduced
computational footprint, enabling fast prototyping and
deployment on Colab without exceeding resource quotas.

The dataset used combines several public sources and
manually curated data. It includes:

o Fabric Defects Dataset (Saleem, 2024), aggregating:
Fabric Defect Dataset (Ranathunga, 2020)

Fabric Stain Dataset (Pathirana, 2020)

Aitex Fabric Dataset (Silvestre-Blanes et al., 2019)
Dataset from Peng et al. (2020)

FabricSpotDefect Dataset [Sumaya et al., 2024]

100 user-provided images, annotated manually.
Annotations include both bounding boxes and polygon-
based labels (for diagonal line defects). The images
feature three main defect classes: holes, lines, and
stains.

To improve model generalization and compensate for class
imbalance, the original final dataset was extended from
2,404 to over 6,000 images through data augmentation. The
following augmentation techniques were applied:

o Horizontal flip

o Brightness adjustment (ranging from —15% to +15%) | Model

o Gaussian blur (with a radius of up to 2.5 pixels)

These transformations were applied probabilistically dur-
ing training to preserve the natural characteristics of fabric
textures while enhancing defect variability. The resulting
synthetic samples significantly enriched the dataset, partic-
ularly for underrepresented defect types such as holes and
stains.

For training, the dataset was split into:

e 70% training (70 images)
e 20% validation (20 images)
o 10% test (10 images)

A public version of the dataset is available at:
https://app.roboflow.com/fabric-defect-detection-zunat/my-
first-project-bw409/3
A public version of the
https://github.com/SebGonS/tp1

code 1is available at:
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The web app was developed on a laptop with an AMD
Ryzen 7 7735HS CPU, and NVIDIA GeForce RTX 4060
GPU and 32 GB of RAM at 4800 Mhz. The web application
was developed with VS Code, Vue.js version 3.5.16, Vuetify
3 and JavaScript.

The objective of these experiments was to evaluate the ef-
fect of two variables on fabric defect detection performance:

1) Detection Mode: Multi-label vs. Single-label training
2) Model Architecture: Standard YOLOv8 vs. YOLOVS8-
OBB (Oriented Bounding Boxes)

To this end, eight models were trained:
e 4 YOLOVS models:

— 1 Multi-label (hole, stain, line)
— 3 Single-label (one for each defect type)

¢ 4 YOLOVS-OBB models:
— 1 Multi-label
— 3 Single-label
All models were trained using identical hyperparameters
(epochs, batch size, augmentation probability) to ensure
fairness. Evaluation metrics include:

e MAP@0.5

e mAP@0.5:0.95

o Precision, Recall, and F1-Score

YOLOV8 models use a decoupled head architecture with
CSPDarknet backbones. The YOLOv8-0BB models extend
this by adding rotation angle regression, enabling them
to handle defects with non-axis-aligned geometries (e.g.,
diagonal lines). While this introduces a slight increase in
model complexity and training time, it improves precision
for elongated and rotated objects. In terms of computational
cost, both remain efficient due to the use of the yolov8n
variant.

B. Results
Multi-label Model Performance:

TABLE 1. MULTI-LABEL MODELS RESULTS

mAP@0.5| mAP@0.5:0.95 | Precision | Recall |F1-Score
["YOLOvS8-OBB| 0.803 0.621 0.720 | 0.697 0.708
‘ YOLOv8 0.650 0.444 0.689 | 0.599 0.641
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Table I shows the main performance metrics for both
multi-label models.

Overall Performance Metrics

Per-Class Average Precision (AP50)

Fig. 7. YOLOv8 Model Evaluation

Fig. 7 allows a visualization of the performance metrics
shown in Table 1 while also displaying the mAP@0.5 score
for each of the trained labels of the YOLOv8 model.
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Per-Class Average Precision (AP50)

0.803

&

Fig. 8. YOLOvV8-OBB Evaluation

Fig. 8 shows the same metrics and indicators of the
previous image but for the YOLOvV8-OBB model.

Single-Label Model Performance:

As seen in Table 1 and Table 2 single-label models out-
performed their multi-label counterparts across all metrics.
This supports the hypothesis that dedicated training on
isolated classes reduces inter-class confusion and enables
more accurate detection of subtle defect patterns. Notably,
YOLOV8-OBB continued to outperform YOLOVS in this
setting as well, especially for line and stain defects.

C. Discussion

The experiments clearly demonstrate the following:

o Orientation-aware detection (YOLOvV8-OBB) pro-
vides measurable performance gains for non-axis-
aligned defects, especially lines.

Single-label training results in significantly better
class-specific performance than multi-label models,
likely due to reduced label interference.
YOLOVS-OBB combined with class-specific training
achieved the best overall results in terms of both mAP
and per-class precision/recall.

These findings indicate that, for applications such as textile
quality control, leveraging specialized, lightweight OBB
detectors per defect type is an effective strategy under
computational constraints. While multi-label models offer
convenience and generalized inference, they underperform
when compared to tailored, defect-specific models. Future
work may explore model ensembling, real-time deployment,
and active learning strategies to further reduce annotation
costs and improve system robustness.

V. CONCLUSIONS AND PERSPECTIVES

This project presented the design, development, and eval-
uation of a computer vision-based web application for au-
tomated fabric defect detection, tailored to the needs of the
textile industry. The proposed solution integrated Ultralytics’
YOLOVS object detection models into a fully functional web
application capable of real-time defect reporting. It addressed
limitations of traditional manual inspection, such as low
accuracy, slow throughput, and inconsistency, by automating
the process using deep learning and cloud-based deployment.

Through a series of controlled experiments, we trained
and evaluated eight models—four based on the standard

APS0 Score
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YOLOVS architecture and four on the oriented bounding box
extension YOLOvV8-OBB—using both multi-label datasets
and class-specific (single-label) training. The results showed
that models trained for a single class performed significantly
better than multi-label models, and that YOLOv8-OBB con-
sistently outperformed regular YOLOVS, especially in the
detection of defects like lines, which often appear in rotated
or irregular orientations.

The most accurate model, trained specifically on hole
defects using YOLOVS-OBB, reached an mAP@0.5 of 0.954
and an mAP@0.5:0.95 of 0.728, far surpassing the multi-
label baseline. These findings confirm the advantage of using
rotation-aware models and targeted training strategies in
complex industrial contexts. They also validate our initial
hypothesis that defect-specific models can reduce class con-
fusion and enhance detection precision in real-world settings.

Limitations

Despite promising outcomes, the current system has sev-
eral limitations. First, although the dataset was augmented
to over 6,000 images, the number of original images was
relatively small, especially for underrepresented defect types.
This reliance on augmentation could affect generalization
in uncontrolled environments. Second, only three types of
defects were considered—holes, stains, and lines—while real
production environments may involve dozens of different
defect categories with varying shapes, textures, and lighting
sensitivities. Third, all evaluations were conducted on static
images in a simulated environment. Real-world application
will require testing on continuous fabric rolls with variable
lighting and motion, introducing further complexity.

Unaddressed Problems and Open Questions

Several important aspects of real-world deployment re-
main outside the scope of this study. These include:

o Temporal consistency: How to ensure reliable detec-
tion over time when the same defect appears across
multiple frames in video streams.

Environmental variability: How well the system per-
forms under changing lighting conditions, vibration, or
fabric motion.

Adaptive learning: Can the system continuously im-
prove by learning from user corrections or post-
inspection reviews?
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TABLE II. SINGLE-LABEL MODELS RESULTS

Class | Model mAP@0.5 | mAP@0.5:0.95 | Precision | Recall
Hole YOLOvV8-OBB 0.954 0.728 0.959 0914
Hole YOLOvVS 0.844 0.544 0.772 0.776
Line YOLOvV8-OBB 0.919 0.688 0.882 0.816
Line YOLOvVS 0.807 0.629 0.779 0.714
Stain YOLOvVS-OBB 0.954 0.827 0.885 0.902
Stain YOLOV8 0.932 0.733 0.867 0.844
o Quality control thresholds: What level of confidence REFERENCES

is acceptable for triggering a fabric rejection, and how
should this be calibrated?

These questions point to broader challenges in indus-
trial automation that go beyond model accuracy—requiring
considerations of reliability, calibration, and human-machine
collaboration.

Future Perspectives

The results of this work suggest multiple directions for
future exploration:

1) Dataset Expansion: Creating a larger and more di-
verse dataset covering additional defect types (e.g.,
creases, misalignment, color irregularities) from real
production lines.

Edge Deployment: Deploying optimized versions of
the models on embedded systems such as Raspberry
Pi or Jetson Nano for on-site inference without reliance
on cloud infrastructure.

Ensemble Models: Combining multi-label and single-
label models to balance generalization with special-
ization, potentially using decision fusion or weighted
confidence scores.

Active Learning: Implementing feedback loops where
users confirm or reject detections to progressively
improve model accuracy with minimal human inter-
vention.

Video Stream Integration: Moving from image-by-
image inference to real-time video processing with
frame-to-frame consistency checks and defect tracking.
Collaboration with Industry: Validating the system
in operational settings in partnership with textile man-
ufacturers in Peru, to evaluate usability and real-world
ROLI.

2)

3)

4)

5)

6)

Personal Interest and Continuity

This project has sparked a deeper academic and practical
interest in the intersection between artificial intelligence
and industrial automation. We are particularly interested
in extending this work into a broader research effort on
real-time computer vision systems for manufacturing quality
assurance. We believe this topic holds significant social and
economic value, particularly in countries like Peru, where
automation can bridge the gap between traditional practices
and global competitiveness. As such, we plan to pursue
further development of the dataset, application and model,
with a focus on optimizing it for industrial deployment,
gathering additional field data, and publishing subsequent
findings.
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