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Abstract— In this paper, we explore and validate the feasibility 
of using electroencephalography (EEG) based brain–computer 
interfaces (BCIs) to issue basic control commands to unmanned 
aerial vehicles (UAVs). We focus on integrating human cognitive 
motor commands with Internet of Things (IoT) devices, enabling 
hands-free UAV control. In our approach, neural signals captured 
during motor imagery of a right-hand upward movement and a 
left-hand downward movement are translated into discrete UAV 
instructions (conceptually analogous to “hover” and “land” 
commands). EEG data were acquired from a 14-channel Emotiv 
Epoc X headset worn by 10 participants, and features such as band 
power in key frequency bands were extracted. A lightweight 
decision tree classifier was trained and evaluated in a leave-one-
participant-out (LOPO) cross-validation scheme to assess how well 
the model generalizes across individuals. The results indicate that 
certain participants can achieve classification accuracies above 
65% for the two mental commands, although average accuracy 
across all subjects was modest (~55%). These findings highlight 
both the promise and the challenges of EEG-based hands-free 
drone control. They demonstrate the potential of neural interfaces 
as a bridge between human thought and machine action in IoT 
contexts, while also underscoring the need for improved signal 
processing and personalization to handle inter-subject variability. 
This work lays important groundwork for more advanced BCI-
driven UAV control frameworks, aiming toward intuitive human–
IoT interactions in high-impact domains.

Keywords— Brain–Computer Interface (BCI); EEG; UAV 
Control; Motor Imagery; Neural Interface; Machine Learning; 
IoT; Hands-Free Operation; Emotiv Epoc.

I. INTRODUCTION

Advances in brain–computer interfaces (BCIs) and AI have 
opened new possibilities for direct communication between 
human thought and external devices in various applications, 
from assistive robotics to smart environments [2]. In particular, 
non-invasive EEG-based BCIs offer a means to integrate with 
IoT systems for intuitive, hands-free control of connected 
devices [1]. One promising direction is the use of BCI 
technology to control UAVs [3] via thought commands, which 
could be invaluable when manual control is infeasible (for 
instance, for users with motor impairments or in hands-busy 
operational scenarios) [2], [3]. Prior studies have demonstrated 
that both P300 event-related potential and motor imagery (MI) 
paradigms can be harnessed for UAV command and navigation
[10], [11], [12], with reported accuracies as high as ~90% in 
controlled settings [4], [5]. These works show that BCIs can 
complement (though not yet fully replace) manual controllers by 
providing an alternate channel for issuing discrete commands to 
drones. Despite these advances, current EEG-based BCIs face 
challenges including relatively low bitrates, longer command 

selection times, and high variability across users [6], [7]. Motor 
imagery-based BCIs in particular typically support only a small 
number of distinct commands reliably (often 2–3 classes) due to 
the subtlety of EEG patterns and user training requirements [8],
[9]. The novelty of our work lies in introducing a streamlined 
approach that focuses on binary motor-imagery commands to 
control a UAV, specifically mapping imagined upward versus 
downward hand movements to basic drone instructions (“hover” 
and “land”). By concentrating on two fundamental commands, 
we aim to maximize classification reliability and minimize 
latency, establishing a foundational BCI control layer that could 
later be expanded to more degrees of freedom. Unlike the most 
of prior BCI drone studies that use elaborate signal processing 
or visual stimuli (e.g., steady-state evoked potentials), our 
approach leverages time-domain EEG features and a simple ML
model (a decision tree). This minimalist strategy tests the 
baseline feasibility of a consumer-grade BCI system for drone 
control in real-world conditions.

In this paper, we present the methodology and results of our 
BCI-UAV integration. We recorded EEG signals from 10 
participants performing motor imagery of two opposite hand 
motions and extracted a feature set comprising band-power and 
statistical measures from multiple EEG channels. We evaluated 
classification performance using a rigorous leave-one-
participant-out validation to assess how well the model can 
generalize to unseen individuals. The results demonstrate the 
potential for achieving above-chance, hands-free command of a 
UAV through EEG signals. We discuss how our findings 
compare to prior work and analyze the substantial inter-subject 
variability observed, attributing it to factors such as individual 
differences in neural signatures (a phenomenon related to “BCI 
illiteracy” where a notable subset of users struggles with MI-BCI 
control) [10], [11]. The implications of limiting the system to 
binary commands are also examined, arguing that even a two-
command BCI can be practically useful for high-level UAV 
supervision. Finally, we outline the limitations of the current 
study – including the modest accuracy and small sample size –
and suggest directions for future improvements, such as 
incorporating adaptive algorithms or hybrid BCI paradigms to 
enhance reliability and command complexity.

II. MATERIALS AND METHODS

A. Participants

Ten volunteers (8 males and 2 females, ages 20–30) were 
recruited for the study (referred to as P01, P02, etc). All 
participants were right-handed and had normal or corrected-to-
normal vision. None reported any neurological disorders. We 
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recorded basic demographics including age, gender, 
handedness and prior BCI experience as shown in Table .
Notably, three participants had some prior exposure to BCI use, 
while the others were naive first-time users. This information 
was collected to examine whether factors like BCI experience 
might influence performance. All participants gave informed 
consent before the experiment and were instructed on the 
procedure. The study focused on within-subject binary 
classification of imagined movements, but data from all 
participants were later combined to evaluate generalization 
across individuals. Fig.1 shows the Emotiv Epoc X setup. 

Fig. 1. Device setup (Emotiv Epoc X). Placement of electrodes on the 
participant's head (left), downward movement (middle), upward movement 
(right)

TABLE I. PARTICIPANTS DEMOGRAPHICS

No. Sex Age Handedness
BCI 
Exp.

P01 M 29 Right No
P02 F 23 Right No
P03 M 20 Right Yes
P04 M 20 Right No
P05 M 25 Right Yes
P06 M 27 Right No
P07 M 21 Right No
P08 M 28 Right Yes
P09 F 30 Right No
P10 M 24 Right No

B. Experimental Procedure

Participants first completed training sessions in EmotivBCI to 
associate imagined upward and downward movements with 
classifier profiles [17], [18]. The training interface provided 
visual feedback on success/failure within 8-second trials. An 
example of the EmotivBCI training interface is shown in Fig. 2.

Fig. 2. Training interface (EmotivBCI). The reference box with 8-second 
timer per training to execute the command “upward”, “downward”, “neutral”. 
Training results: goal not reached (left), goal reached (right)

Each participant engaged in a series of sessions involving MI
tasks corresponding to two distinct drone control commands. 
The chosen mental tasks were imagining a right-hand upward 
motion (as if signaling a drone to rise or hover in place) and
imagining a left-hand downward motion (as if signaling the 
drone to descend or land). These two actions were selected for 
their intuitive mapping to basic UAV behaviors and their 

mutually exclusive nature. During an initial calibration phase, 
participants underwent training using the EmotivBCI software 
tool. This training presented visual cues and timers guiding the 
participant to perform or imagine the specified hand movement 
for a few seconds at a time, interleaved with rest (neutral) 
periods. Participants were instructed to vividly imagine the 
kinesthetic sensation of raising or lowering their arm (some 
participants also subtly performed the motion to reinforce the 
imagery) while the BCI system learned their EEG patterns for 
each command [10], [11]. Each mental command (“upward”, 
“downward”) was trained in multiple trials (on the order of 10–
20 repetitions per command) until the software indicated a 
stable detection profile for that user [12], [13]. A neutral state 
(no movement/relaxed) was also recorded to serve as a baseline 
in the training process [7].

After calibration, each participant proceeded to the 
execution phase using the EmotivPro software. In this phase, 
live EEG data were recorded as participants attempted to issue 
binary commands to a virtual drone purely by performing the 
learned motor imagery tasks. Participants sat comfortably and, 
at prompted intervals, imagined the designated upward or 
downward hand movement without any overt physical 
movement. No visual flicker or P300 stimuli were used; only 
the participant’s self-paced motor imagery triggered the 
commands [4], [6]. Each session consisted of a sequence of 
trials where the participant was cued (visually or by an audio 
cue) to perform a particular imagery (up or down) for a few 
seconds. Each trial’s EEG data was labeled accordingly (1 for 
“Upward” imagery, 0 for “Downward” imagery). Sufficient rest 
was given between trials to avoid fatigue. Across the session, 
an equal number of upward and downward trials were recorded 
per participant to ensure a balanced dataset (for example, 40 
trials each, totaling ~80 trials per participant, depending on 
individual pacing and data quality) [9]. Participants were 
monitored to minimize eye blinks or muscle artifacts during 
imagery [20]. The entire experiment typically lasted around 30–
45 minutes per participant, including setup, training, and 
execution [3]. Power Spectral Density (PSD) analysis [16],
between the two motor imagery movements are shown as seen 
in Fig.3.

Fig. 3. PSD analysis (frequency-domain differences). Frequency domain 
power distribution during ‘upward’ and ‘downward’ hand movement

C. Data Acquisition
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EEG signals were acquired using the Emotiv Epoc X 
headset [17], [18], a wireless 14-channel EEG device designed 
for BCI applications. The electrodes are arranged according to 
the International 10–20 system as shown in Fig.4 [7], covering 
frontal, temporal, parietal, and occipital regions. Saline-based 
wet sensors were placed at locations including AF3/AF4, 
F3/F4, F7/F8, T7/T8, P7/P8, O1/O2, with two reference 
electrodes (CMS/DRL) providing a baseline. The device 
transmits EEG data at 128 Hz sampling rate (with 16-bit 
resolution), which is sufficient to capture the frequency bands 
of interest for motor imagery (up to beta range) [12], [13].
During the experiment, the headset was connected to a 
computer running EmotivPro, which recorded the raw EEG 
signals from all channels simultaneously as the participant 
performed the tasks. The recording software also time-stamped 
and labeled each trial based on the cues, allowing 
synchronization of EEG segments with the intended command 
(up or down).

Fig. 4. Emotiv Epoc X electrodes configuration

All recordings were conducted in a quiet lab environment 
with the participant seated comfortably to reduce movement 
artifacts. We took basic measures to ensure signal quality: 
electrode impedances were checked prior to recording, and a 
stable wireless connection was maintained. The Emotiv Epoc 
X’s built-in filtering and ADC hardware provided baseline 
noise filtering. Nonetheless, EEG data inherently contained 
some artifacts from eye blinks, facial muscle activity, and any
residual movements. We decided to preserve as much of the raw 
signal characteristics as possible for analysis rather than 
aggressively cleaning the data, in order to capture the true 
challenges of using a consumer-grade EEG in practical settings
[8].

D. Data Preprocessing

The raw EEG data from each session were initially processed 
using Emotiv’s software and then exported for offline analysis. 
We applied basic preprocessing steps uniformly to all 
participant data. First, a bandpass filter (approx. 0.5–40 Hz) was 
applied to remove DC drift and high-frequency noise, limiting 
the analysis to the standard EEG frequency range that includes 
delta (0.5–4 Hz) through beta (~30 Hz) and low gamma (~40 
Hz). Line noise (50/60 Hz) was mitigated via notch filtering if 
necessary (Emotiv’s system includes built-in notch filters) [16].
We kept preprocessing minimal and consistent: no extensive 
artifact removal (such as independent component analysis) was 
performed at this stage [9]. The rationale was to retain natural 

variability and not overfit the data to any specific participant by 
manually excluding segments. However, obviously corrupted 
segments (e.g., if a sensor detached or saturated during a trial) 
were noted and could be excluded from feature extraction.

Next, we segmented the continuous EEG data into epochs 
corresponding to each trial. Typically, an epoch covered the 
duration of the motor imagery command (e.g., a 5–8 second 
window during which the participant imagined the movement, 
as prompted) [10]. Each epoch was labelled 0 or 1 according to 
the commanded class. No baseline correction was applied 
beyond what the bandpass filtering accomplished, since each 
trial’s mean could be near zero after filtering. We also did not 
down sample further; the data at 128 Hz was directly used for 
feature computation [12]. To summarize, preprocessing yielded 
a collection of labeled EEG epochs per participant, each 
containing multi-channel time-series data primarily in the 0.5–
40 Hz range, ready for feature extraction.

E. Feature Extraction

From each trial’s preprocessed EEG segment, we extracted a 
comprehensive feature vector characterizing the brainwave 
patterns for that trial. We focused on frequency-domain power 
features and simple statistical measures that are commonly 
employed in BCI signal analysis. In particular, band power 
features were computed for four canonical EEG frequency 
bands: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and 
beta (12–30 Hz) [10], [12], [5]. For each of the 14 EEG 
channels, the signal was digitally band-pass filtered to isolate 
these bands, and the signal power in that band was calculated 
(averaged over the epoch duration). We define the band-power 
feature for channel i in band b (for example, F3 in alpha band) 
as the mean squared amplitude of the EEG signal in that 
frequency range over time:

Where is the EEG sample of channel after filtering
to band , and is the total number of samples [16].This band 
power is essentially the signal variance in that frequency band 
(since the EEG is zero-mean after filtering) and reflects the 
intensity of that band’s activity during the task. By extracting 
delta (δ), theta (θ), alpha (α), and beta (β) power from each of 
the 14 channels, we obtained an initial set of 14 x 4 = 56
features. (The Emotiv Epoc X provides 14 effective EEG 
channels; the two reference channels are not used as 
independent features). In addition to band powers, we 
engineered a number of time-domain features to enrich the 
feature set. These included the variance of the raw EEG signal 
on each channel (which, as noted, is closely related to band 
power but without band-specific filtering), as well as signal
energy measures (total power across all frequencies up to 40 Hz 
for each channel). We also computed composite features such 
as ratios of power between bands on the same channel (for 
example, alpha/beta ratio on a channel, which can be 
informative of engagement vs. relaxation) and across 
symmetric channels (e.g., difference in beta power between left 
and right motor cortex areas). These additional features were 
chosen to capture potential asymmetries and cross-band 
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interactions relevant to motor imagery. After including these, 
the total feature vector size was expanded to 84 features per 
trial. In our final dataset, we had 84 features per trial (each trial 
corresponding to one instance of either upward or downward 
imagery) [13].

All features were normalized (z-scored) across the dataset 
to have zero mean and unit variance prior to classification. This 
standardization was done using statistics computed from the 
training data folds only, to avoid any information leakage into 
the test fold during cross-validation. Feature selection was not 
aggressively performed at this stage; however, we did keep 
track of features with extremely low variance or consistently 
high correlation, as these could be pruned in future iterations to 
simplify the model (see Results for an analysis of feature 
variance and correlation). The full feature matrix thus had 
dimensions of samples by 84 features, where is the total 
number of trials from all participants combined.

F. Classification and Evaluation

We employed a decision tree classifier as the ML model to 
distinguish between the two mental command classes. A 
decision tree (using the CART algorithm with the Gini impurity 
criterion) [19] was chosen for its interpretability and low 
computational requirements, aligning with the concept of a 
“weak AI” or lightweight model [21]. This model can highlight 
which features (channels/bands) are most informative by its 
branching structure, thus offering insight into 
neurophysiological relevance in addition to making predictions. 

We trained and tested the classifier using a leave-one-
participant-out (LOPO) cross-validation scheme to rigorously 
evaluate how the system performs on an unseen individual [21].
In LOPO, we train the model on data from 9 out of the 10 
participants and use the held-out participant’s data exclusively 
for testing. This process is repeated 10 times, each time with a 
different participant as the test set, so that we obtain 
performance metrics for every participant as an independent test 
case. LOPO is a stringent evaluation because it simulates the 
real-world scenario of applying a trained BCI model to a new 
user without any subject-specific recalibration. During each 
LOPO fold, the decision tree was fitted to the training set (using 
only the participants in that fold’s training pool). No post-
pruning of the tree was performed, as we did not observe severe 
overfitting given the limited model complexity and small 
feature set relative to training size. We recorded the predictions 
of the model on the held-out participant’s trials and compared 
them to the true labels to compute classification metrics. The 
primary performance metric was accuracy (the proportion of 
trials correctly classified). However, given the potential 
imbalance or differential difficulty in detecting one command 
vs the other, we also calculated precision and recall for each 
class, taking the “Upward” command as the positive class for 
convention. We define these metrics in terms of true positives 
(TP), true negatives (TN), false positives (FP), and false 
negatives (FN) for the positive class (command “Up” = 1) as 
follows:

These metrics were computed per participant (i.e., per fold) 
to assess how performance varies among individuals. In each 
fold’s results, we also identified which class had the higher 
precision and which class had the lower recall, as an indicator 
of any bias in the classifier’s predictions for that participant. 
Because our task is balanced (each participant contributed 
roughly equal trials of each class), accuracy is a reasonable 
summary metric; but precision and recall help diagnose whether 
the classifier tends to favor one command over the other (e.g., 
always predicting “Up” would yield high recall for “Up” but 
low precision for it, and poor recall for “Down”). Finally, we 
aggregated the outcomes from all folds to compute the mean 
and range of accuracy across participants, and we analyzed
instances of particularly high or low performance to glean 
insights (for example, whether the participants with prior BCI 
experience fared better, or whether certain EEG patterns 
correlate with success).

All data processing and classification steps were 
implemented in Python using libraries such as MNE for EEG 
filtering and scikit-learn for ML. The use of a simple classifier 
without extensive parameter tuning was intentional to provide a 
baseline; more complex models (e.g., deep neural networks) 
were outside the scope of this initial investigation.

III. RESULTS

A. EEG Feature Extraction

1. Mean and Variance: An overview of the extracted
features’ distribution is shown in Fig. 5, which plots the 
absolute mean and variance of each EEG feature across all trials 
and participants. 

Fig. 5. Variance of EEG band-power features across all participants (P01–
P10). (Top) Mean variance values per frequency band across electrodes, 
highlighting stable and redundant features. (Bottom) Boxplots showing 
feature-wise variance distributions, with high-variance outliers corresponding 
to noisy or highly discriminative channels.

Each feature corresponds to a specific electrode–frequency 
band pair (for band-power features) or a specific statistical 
measure on a given channel. As seen in the top graph of Fig. 5, 
features derived from the frontal region in the beta band 
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(approximately 12–30 Hz, e.g., channels F3-Beta and F4-Beta) 
exhibited the highest mean values. This suggests that during the 
motor imagery tasks, these frontal areas produce consistently 
stronger EEG signals in the beta frequency range, aligning with
the known role of the frontal cortex (and motor cortex, which is 
near F3/F4) in motor planning and execution. In contrast, 
features from occipital channels in lower frequencies (e.g., O1-
Delta, O2-Theta) showed near-zero mean activation, indicating 
minimal involvement of the occipital (visual) areas in this task, 
as expected. 

The variance analysis (bottom graph of Fig. 5) highlights the 
stability of each feature. Most features had modest variance, but 
a few exhibited very low variance (<0.01 across all trials). For 
instance, certain occipital channel features in delta/theta bands 
were nearly constant, reinforcing that those carry little 
information for our motor imagery task. Such low-variance 
features are likely redundant or noise and could be removed to 
streamline the classifier with negligible loss of information. On 
the other hand, extremely high variance was noted in some 
features (e.g., an electrode–band combination prone to artifacts 
for one or two participants). While high variance can indicate 
meaningful dynamic changes, it can also point to inconsistency 
or contamination (for example, a feature spiking due to muscle 
artifacts in some trials). 

These observations suggest that a future step could involve 
feature selection: dropping consistently flat features and closely 
examining features with excessive variance for potential artifact 
influence. Overall, the mean/variance profiles confirm that the 
feature set captures known neurophysiological patterns, frontal 
beta activity for motor tasks, and also includes some 
channels/frequencies that might be pruned for efficiency.

2. Autocorrelation: To further investigate the temporal
dynamics of the EEG features, Fig. 6 presents the 
autocorrelation function for selected features (each subplot 
corresponding to one feature), computed across time lags within 
each trial. 

Fig. 6. Autocorrelation plots of EEG features. (Top) Beta-band activity over 
motor cortex electrodes (C3, C4) shows sustained rhythmicity during motor 
imagery. (Bottom) Theta-band activity demonstrates faster decay, reflecting 
less stable oscillatory structure across participants. 

Autocorrelation measures how similar a signal is to itself 
after a time shift, and it reveals the presence of rhythmic or 
persistent patterns in the data. As expected, all features exhibit 
a strong autocorrelation peak at lag 0 (correlation = 1 by 
definition). Beyond lag 0, we observed two general patterns. 
For many features, especially those from sensorimotor-related 
channels (e.g., electrodes over parietal cortex) in the alpha and 
beta bands, the autocorrelation decays gradually over a range of 
50–200 ms before dropping to near zero. This gradual decay 
suggests the presence of oscillatory neural rhythms (like the mu 
rhythm around 10 Hz or beta oscillations ~20 Hz) which impart 
temporal structure to the signal. Such structure is expected 
during MI, as the brain engages oscillatory sensorimotor 
patterns. In contrast, a subset of features (often those from
channels or bands not strongly engaged by the task) showed a 
very rapid drop-off in autocorrelation, essentially becoming 
uncorrelated at even small lags. These flat autocorrelation 
profiles imply that the feature is dominated by broadband noise 
or random fluctuations rather than a repeatable pattern. For 
example, an electrode over occipital cortex during an 

imagination of hand movement might show quickly 
decorrelating activity, since it’s mostly noise relative to the task. 

Importantly, none of the features displayed pathological 
autocorrelation (e.g., sustained high correlation at large lags that 
could indicate unremoved trends). The features that showed 
structured autocorrelation (gradual decay) likely correspond to 
meaningful neural signals (such as ongoing alpha/ beta rhythms 
modulated by MI), whereas those that were almost delta-
correlated (spiky at lag 0 and nearly zero afterwards) might be 
candidates for exclusion or down-weighting in classification.
Preserving features with richer autocorrelation structure is 
beneficial because they reflect the dynamic nature of the brain’s 
response to motor imagery . In summary, the autocorrelation 
analysis confirms that a significant portion of our features 
capture temporally structured EEG activity consistent with 
sensorimotor rhythms, whereas others behave like noise. This 
justifies efforts to optimize the feature set by focusing on 
features that carry temporal information relevant to the task. 
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3. Feature Correlations: We examined pairwise correlations
between all features to identify redundant features and 
interdependencies. Fig. 7 depicts the Pearson correlation matrix 
(heatmap) for the full feature set. 

Fig.7. Correlation matrix of EEG band-power features. (Left) Correlations 
across frontal and motor cortex electrodes. (Right) High correlations (>0.9) 
between symmetric electrode pairs (e.g., F3–F4, C3–C4) indicating 
redundancy and potential for dimensionality reduction. 

Several interesting patterns emerge. We observe distinct 
clusters of high correlation among features that are 
physiologically related. For example, features from symmetric 
electrode sites on opposite hemispheres (such as F3 and F4, or 
T7 and T8) often show strong positive correlation across trials. 
This implies that when, say, left-frontal beta power increases 
during a trial, right-frontal beta power tends to also increase, 
which is reasonable given bilateral cortical involvement in 
imagined movement. Similarly, features from the same 
electrode but adjacent frequency bands are correlated – e.g., at 
electrode P8, the alpha-band power and beta-band power have 
moderate correlation, possibly reflecting a general level of 
arousal or engagement affecting both bands simultaneously.
These correlations suggest some redundancy: a model might not 
need both features if one can predict the other. We also note that 
certain features are virtually uncorrelated (correlation near 0) 
with most others, indicating they might carry unique 
information (for instance, a feature in delta band might capture 
a different aspect of the signal than features in higher bands). 

theta feature) suggests our feature set includes complementary 
information streams. This is advantageous for classification, as 
combining uncorrelated features can improve the classifier’s 
ability to distinguish classes. The correlation matrix thus 
provides a map of feature space, indicating which features 
cluster together. In summary, Fig. 3 indicates that while many 
features are interrelated (especially symmetric channels and 
close frequency bands), there are also sufficiently independent 
features that capture different facets of the EEG data. 
Managing the few strongly redundant features (r > 0.9) could 
streamline the model, but otherwise the diversity of features is 
likely beneficial. 

4. Feature Distributions: We also visualized the distribution
of feature values to identify outliers and gauge overall signal 
quality. Fig. 8 shows horizontal boxplots for a selection of 
features (for brevity, not all 84 are shown in one figure, but 
representative ones across different channels and bands). Each 
boxplot summarizes the feature’s values over all trials (pooled 
from all participants). The median, interquartile range, and any 
extreme points are indicated. We found that for most features, 
the central 50% of values fell in a plausible physiological range 
(e.g., EEG band power values that are consistent with typical 
EEG magnitudes). However, some features exhibited 
significant outliers. For example, Betaband power at electrode 
F8 showed several trials with values far above the upper 
quartile, and Alpha band power at O2 had a few unusually low
points. Investigating these revealed that such outliers often 
corresponded to specific participants or trials where transient 
artifacts occurred – e.g., a muscle tension or jaw movement
causing a burst in high-frequency power at F8, or momentary 
signal dropouts at O2 leading to abnormally low power. In 
general, frontal and temporal sites tended to have more high-
value outliers (likely muscle-related), while occipital sites had 
occasional low outliers (possibly due to momentary 
disconnections). Crucially, the presence of outliers did not skew
the classifier training unduly, because the decision tree is 
relatively robust to monotonic transformations and outliers (it
splits ranges based on ordering). Nevertheless, these outliers 
flag opportunities for improved preprocessing: techniques like 

In a few cases, we found very high correlation (r > 0.9) 
between specific feature pairs. For instance, the pair F3-Theta 
and F4-Theta had an almost identical response pattern across all 
trials, as did O1- Alpha and O2-Alpha. Such highly redundant 
features introduce multicollinearity, which can unnecessarily 
complicate the classifier and possibly reduce generalization if 
the model tries to give weight to both. In future work, one could 
remove or merge one of each highly correlated pair (using 
techniques like principal component analysis or just dropping

artifact subspace removal or trial rejection could be applied to 
handle extreme cases. Notably, none of the features had a 
median that was zero or extreme, confirming that our earlier 
filtering steps (bandpass, etc.) kept the data within sensible 
ranges. The spread of most boxplots is moderate, indicating that
while there is subject-to-subject variability, the feature ranges 
overlap significantly between participants – a condition that at 
least allows a single model to attempt generalization. In 
summary, Fig. 8 suggests that the overall feature distributions 
are reasonable, with only a minority of trials showing aberrant 
values. Outliers, where present, are explainable by artifacts, and 
their effect might be mitigated by robust statistics or trimming 
in future work. The median differences between features also 
reiterate which features have higher typical values (e.g., frontal 
beta features) versus lower (occipital delta), complementing the 
mean analysis. 
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Fig.8. Boxplot distributions of EEG band-power features. (Top) Alpha-band 
distributions showing moderate spread with few outliers. (Bottom) Beta-band 
distributions with extreme outliers in motor cortex channels, likely caused by
muscle artifacts or involuntary movements.

B. Classification Performance (LOPO Cross-Validation) 

We evaluated the classification of “Upward vs. Downward” 
motor imagery for each participant using the LOPO scheme 
described earlier. The overall accuracy of the system varied 
substantially across individuals. It ranged from a low of 39% 
(for the worst-case participant, which is below the 50% chance 
level for a binary task) up to a high of 66% (for the best-
performing participant) [9], [13], [19]. The mean accuracy
across the 10 participants was 55.5%, which is only slightly 
above chance, reflecting the challenge of building a one-size-
fits-all model for EEG patterns.  

Detailed performance metrics for each participant are 
summarized in Table II. We report each participant’s accuracy, 
as well as the precision and recall for the better-classified class 
(“Best Class Precision”) and the weaker class (“Weak Class 
Recall”), to illustrate any bias in the classifier’s decisions.  

TABLE II. LOPO AND DECISION TREE SUMMARY 

No. Accuracy 
Best Class 
Precision 

Weak Class 
Recall 

Notes 

P01 0.48 
0.48 

(Class-1)
0.28 

(Class-1) Low Separability 

P02 0.39 
0.41 

(Class-1)
0.26 

(Class-1)
Difficult Sample; 

Likely Noisy 

P03 0.55 
0.60 

(Class-0)
0.24 

(Class-1)
High False 
Negatives 

P04 0.52 
0.51 

(Class-1)
0.35 

(Class-0)
Inverse Balance in

Performance 

P05 0.49 
0.50 

(Class-1)
0.33 

(Class-0)
Struggles With 
0→1 Confusion

P06 0.62 
0.65 

(Class-1)
0.49 

(Class-1)
Good Class 

Balance 

P07 0.64 
0.69 

(Class-0)
0.56 

(Class-1)

Best 
Generalization So 

Far 

P08 0.55 
0.58 

(Class-0)
0.53 

(Class-1)

Balanced But 
Average 

Performance 

P09 0.66 
0.69 

(Class-1)
0.63 

(Class-1)
Best Classifier 
Performance 

P10 0.65 
0.69 

(Class-1)
0.56 

(Class-1)
Excellent 

Participant-Wise 
Balance 

Notably, two participants (P09 and P10) achieved the 
highest accuracies, 66% and 65% respectively. These 
participants’ models not only got more trials correct overall, but 
also exhibited relatively balanced precision and recall between 
the two command classes (for instance, P09’s precision and 
recall for the target class were 0.69 and 0.63, both fairly high –
indicating the model was good at detecting both “Up” and 
“Down” for them). This suggests that their EEG signals during 
the two imagery tasks were more separable and consistent. 

In contrast, the participant with the lowest accuracy (P02, 
39%) showed a strong bias: the model often misclassified one 
of the classes for them. Specifically, P02’s precision for the 
“Downward” class was only 0.41 and the recall for “Upward” 
was 0.26, meaning the classifier frequently confused their 
Downward imagery as Upward (many false positives for Up) 
and also missed many of their Up trials (false negatives). This 
points to low separability in their EEG patterns – P02’s data 
might be an example of a participant for whom the EEG signals 
did not show clear distinctions between the two mental 
commands (possibly an instance of BCI illiteracy or simply 
poor signal quality that day). 

Other participants fell in between these extremes. For 
example, P07 reached 64% accuracy, with a slight edge in 
detecting class 0 (“Down”) well (precision 0.69 for class 0) but 
also decent recall for that class (0.56). P04 and P05 were
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Looking across all participants, there is a clear trend of high 
inter-subject variability. Some participants’ brain signal 
patterns generalized well to the group-derived model (those 
with >60% accuracy, such as P06, P07, P09, and P10), whereas 
others did not. This variability underscores the known 
phenomenon that a significant portion of users have difficulty 
achieving reliable control in EEG-based BCIs. In our case, all 
participants were able to complete the tasks, but clearly the ML 
model could not accommodate the idiosyncrasies of each 
person’s EEG within this simple feature space.

To gain insight, we note that participants such as P01 and 
P02 (lowest accuracies) were characterized by low separability 
and noisy data, meaning the classifier likely found no clear rule 
to distinguish their two states. Participants in the middle range 
(e.g., P03, P04, P05, P08) showed specific issues such as high 
false negatives or imbalance in performance (favoring one 
class), which could be due to those individuals consistently 
performing one imagery task more strongly than the other or the 
model being biased. The best performers (P06, P07, P09, P10) 
are noted as having good class balance and generalization, 
which implies their patterns were not only distinct, but also 
somewhat representative of the group – the classifier trained on 
others was still effective on them, hinting that their brain 
responses to MI were “typical” relative to the population data.

In terms of precision and recall aggregated across all 
participants, the model’s precision for the positive class 
(“Upward” imagery) averaged about 0.55, and recall about 
0.46, indicating a slight tendency to over-predict the downward 
(class 0) for some participants (missing upward trials). 
However, these numbers varied widely person to person. No 
significant systematic bias toward one command was observed 
when averaging across all – the inconsistencies largely canceled 
out. 

In summary, the classification results demonstrate proof-of-
concept success in some participants and difficulties in others. 
When a generic model is applied, roughly half the participants 
achieved around 60+% accuracy, whereas the rest hovered near 
chance. This clearly indicates that a one-model-for-all approach 
is suboptimal in EEG BCIs and that personalized calibration is 
likely necessary to reach high control accuracy for each user. 
Nonetheless, the fact that a simple decision tree on basic 
features could exceed chance for a majority of participants (and 
reach mid-60s for the best) is encouraging; it suggests that there 
is a discernible EEG difference between imagining upward vs. 
downward hand movement, even if subtle and user-dependent. 
The performance might be sufficient for a rudimentary two-
command BCI if combined with error mitigation strategies (for 
example, using a “confirm” step or majority voting over 
multiple predictions to execute a drone command only when the 
classifier is confident). 

IV. DISCUSSION

A. Comparison with Prior Work 

The concept of controlling UAVs via BCIs is not new; prior 
research has explored different modalities. For example, steady-
state visual evoked potential (SSVEP)-based systems have 
achieved multiclass drone navigation with accuracies often 
exceeding 90% in controlled laboratory conditions [6], [24],
while P300-based systems have also been used reliably for 
selection tasks [4]. These approaches, however, typically 
require external stimuli and individual calibration. 

Our work instead employed MI, which is more challenging 
due to the subtlety of EEG changes and the phenomenon of BCI 
“inefficiency,” wherein some users cannot produce distinct MI 
signals [10], [9]. Prior MI-based UAV studies have reported 
varying levels of success. For example, Vijayendra et al. 
demonstrated high offline classification precision using a 14-
channel consumer EEG device [12], combined with more 
advanced pre-processing and neural network models. 

In comparison, the present study used only a lightweight 
decision tree model [19], [21]. The highest accuracy observed 
was 66% for P09, closely followed by P10 at 65%. These 
accuracies were achieved without participant-specific 
calibration, underscoring both the feasibility and limitations of 
using generic models. Typically, within-subject MI 
classification can reach 70–80% after training [20], [23], but 
across-subject generalization often falls closer to chance level 
unless advanced techniques such as transfer learning are 
applied. 

B. Inter-Subject Variability 

The A key observation in this study is the large inter-subject 
variability [9][8]. Performance ranged from 39% (P02) to 66% 
(P09). Such variability aligns with findings in BCI literature, 
where it is estimated that 15–30% of users struggle to achieve 
reliable control, a phenomenon referred to as “BCI illiteracy” 
[9], [7]. 

Participants P06, P07, P09, and P10 achieved relatively high 
and balanced accuracies (above 60%), suggesting that their 
EEG signals showed consistent separability between upward 
and downward imagery. In contrast, P02 achieved the lowest 
accuracy, with the classifier frequently misclassifying their 
“Downward” imagery as “Upward.” This result may reflect 
poor signal quality, inconsistent performance of the task, or 
inherently lower separability of neural patterns. 

around 50% accuracy, indicating the classifier was barely 
above random guessing for them. In the case of P04, the 
precision for “Upward” was ~0.51 but recall for “Down” was 
only 0.35, suggesting the model tended to over-predict the 
Upward class (bias toward class 1). 

Participants in the middle range (P01, P03, P04, P05, P08) 
often showed systematic biases, such as high false negatives in 
one class or a tendency toward over-predicting the “Upward” 
class. For example, P04 exhibited bias toward class 1 
(“Upward”), while P03 showed high false negatives for the 
same class. These issues highlight the idiosyncratic nature of 
EEG signals and reinforce the need for individualized model 
adaptation. 
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C. Rationale for Binary MI-based Control 

This investigation focused deliberately on a binary 
classification problem: distinguishing imagined upward versus 
downward movements [3]. This choice was motivated both by 
practical and theoretical considerations. From a practical 
perspective, starting with two commands simplifies training and 
evaluation, and many UAV control scenarios can be reduced to 
binary decisions (e.g., hover vs. land). From a neuroscience 
perspective, MI of distinct movements can engage different 
cortical areas and rhythms [10], [11]. Although right-hand
upward vs. downward imagery may produce less distinct neural 
signatures than left- vs. right-hand imagery, the semantic 
mapping to UAV control tasks (up and down) was intuitive. 
Prior demonstrations, such as [3], have shown that binary MI 
can be sufficient for basic UAV commands, even if accuracy is 
modest. Our results, with several participants achieving above 
60%, support this rationale. 

D. Implications for BCI-Controlled IoT Devices 

The results show that consumer-grade EEG hardware 
(Emotiv Epoc X) can capture signals enabling above-chance 
binary classification of motor imagery. This is promising for 
integration of BCIs into IoT systems, including UAVs, smart 
wheelchairs, or simple smart home commands [26]. However, 
accuracy levels around 60–65% are insufficient for standalone 
control in safety-critical contexts. Instead, BCIs may serve as a 
supervisory layer, providing high-level inputs while 
autonomous systems manage low-level navigation or 
stabilization. For example, a UAV could execute “land” when 
the BCI classifier is highly confident, while uncertain outputs 
could be validated by secondary modalities (voice, manual 
override). Another implication concerns user training. Some 
participants, such as P02, may improve significantly with 
repeated practice, feedback, or adaptive algorithms. Studies 
show that BCI performance can increase over time as users 
learn to produce more consistent neural patterns. Co-adaptive 
approaches, in which the system adjusts to the user while the 
user learns, may further improve control [27]. 

E. Limitations and Future Work 

Several limitations must be acknowledged. First, the sample 
size was small (10 participants), with limited demographic 
diversity. Second, data were collected in a single session 
without participant-specific calibration, reducing performance 
potential. Third, the system was evaluated offline rather than in 
real-time on an actual UAV. Finally, only two commands were 
considered, limiting functional scope. 

Future research directions include: 

1. Personalized Calibration: Even short calibration
sessions could adapt the model to each user’s EEG [7],
[8], [9].

2. Advanced Classification Methods: Deep learning and
Riemannian geometry-based approaches have shown
superior MI performance in competitions [21], [23].

3. Hybrid BCI Paradigms: Combining MI with P300 or
SSVEP could increase reliability and enable
confirmation mechanisms [4], [6], [14], [24].

4. Real-Time Implementation: Testing with an actual
UAV to assess information transfer rate, latency, and
user experience [3], [12], [13], [25].

Despite these limitations, the fact that participants like 
P09 and P10 achieved above 65% accuracy with no 
calibration demonstrates proof-of-concept feasibility. With 
personalization, performance could be improved, paving 
the way for practical BCI–IoT integration. 

IV. CONCLUSION

In this paper, we presented a systematic exploration of an 
EEG-based BCI for controlling UAV using binary motor 
imagery tasks. Our approach used a consumer-grade 14-channel 
Emotiv Epoc X headset, lightweight feature extraction, and a 
decision tree classifier. 

The results demonstrated proof-of-concept feasibility. 
Several participants, such as P09 and P10, achieved accuracies 
above 65% without calibration, showing that separable EEG 
patterns for imagined upward and downward movements can be 
detected even with a simple classifier. However, performance 
varied significantly across individuals: P02 achieved only 39%, 
while most participants clustered around 50–60%. This inter-
subject variability highlights the limitations of applying a one-
model-fits-all approach to EEG-based BCI systems. 

Despite modest average accuracy (55.5%), the study 
demonstrates that neural interfaces can provide meaningful 
binary control signals for UAV supervision. A binary BCI may 
not yet replace manual controllers, but it can serve as a useful 
complementary modality — for example, providing a “hover” 
or “land” command in safety-critical contexts or serving as an 
assistive option for users with motor impairments. 

The findings also emphasize the importance of subject-
specific calibration, adaptive algorithms, and potentially hybrid 
paradigms to improve performance. Future work should focus 
on personalization, real-time implementation, and extension 
beyond two commands. With these improvements, BCI-based 
UAV control could become a practical tool in Internet of Things 
(IoT) environments, bridging human thought and machine 
action. 
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