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Abstract— In this paper, we explore and validate the feasibility
of using electroencephalography (EEG) based brain—computer
interfaces (BCIs) to issue basic control commands to unmanned
aerial vehicles (UAVs). We focus on integrating human cognitive
motor commands with Internet of Things (IoT) devices, enabling
hands-free UAV control. In our approach, neural signals captured
during motor imagery of a right-hand upward movement and a
left-hand downward movement are translated into discrete UAV
instructions (conceptually analogous to “hover” and “land”
commands). EEG data were acquired from a 14-channel Emotiv
Epoc X headset worn by 10 participants, and features such as band
power in key frequency bands were extracted. A lightweight
decision tree classifier was trained and evaluated in a leave-one-
participant-out (LOPO) cross-validation scheme to assess how well
the model generalizes across individuals. The results indicate that
certain participants can achieve classification accuracies above
65% for the two mental commands, although average accuracy
across all subjects was modest (~55%). These findings highlight
both the promise and the challenges of EEG-based hands-free
drone control. They demonstrate the potential of neural interfaces
as a bridge between human thought and machine action in IoT
contexts, while also underscoring the need for improved signal
processing and personalization to handle inter-subject variability.
This work lays important groundwork for more advanced BCI-
driven UAYV control frameworks, aiming toward intuitive human—
IoT interactions in high-impact domains.

Keywords— Brain—Computer Interface (BCI); EEG; UAV
Control; Motor Imagery; Neural Interface; Machine Learning;
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I. INTRODUCTION

Advances in brain—computer interfaces (BCls) and Al have
opened new possibilities for direct communication between
human thought and external devices in various applications,
from assistive robotics to smart environments [2]. In particular,
non-invasive EEG-based BCIs offer a means to integrate with
IoT systems for intuitive, hands-free control of connected
devices [1]. One promising direction is the use of BCI
technology to control UAVs [3] via thought commands, which
could be invaluable when manual control is infeasible (for
instance, for users with motor impairments or in hands-busy
operational scenarios) [2], [3]. Prior studies have demonstrated
that both P300 event-related potential and motor imagery (MI)
paradigms can be harnessed for UAV command and navigation
[10], [11], [12], with reported accuracies as high as ~90% in
controlled settings [4], [5]. These works show that BCIs can
complement (though not yet fully replace) manual controllers by
providing an alternate channel for issuing discrete commands to
drones. Despite these advances, current EEG-based BCls face
challenges including relatively low bitrates, longer command
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selection times, and high variability across users [6], [7]. Motor
imagery-based BCIs in particular typically support only a small
number of distinct commands reliably (often 2-3 classes) due to
the subtlety of EEG patterns and user training requirements [8],
[9]. The novelty of our work lies in introducing a streamlined
approach that focuses on binary motor-imagery commands to
control a UAV, specifically mapping imagined upward versus
downward hand movements to basic drone instructions (“hover”
and “land”). By concentrating on two fundamental commands,
we aim to maximize classification reliability and minimize
latency, establishing a foundational BCI control layer that could
later be expanded to more degrees of freedom. Unlike the most
of prior BCI drone studies that use elaborate signal processing
or visual stimuli (e.g., steady-state evoked potentials), our
approach leverages time-domain EEG features and a simple ML
model (a decision tree). This minimalist strategy tests the
baseline feasibility of a consumer-grade BCI system for drone
control in real-world conditions.

In this paper, we present the methodology and results of our
BCI-UAV integration. We recorded EEG signals from 10
participants performing motor imagery of two opposite hand
motions and extracted a feature set comprising band-power and
statistical measures from multiple EEG channels. We evaluated
classification performance using a rigorous leave-one-
participant-out validation to assess how well the model can
generalize to unseen individuals. The results demonstrate the
potential for achieving above-chance, hands-free command of a
UAV through EEG signals. We discuss how our findings
compare to prior work and analyze the substantial inter-subject
variability observed, attributing it to factors such as individual
differences in neural signatures (a phenomenon related to “BCI
illiteracy” where a notable subset of users struggles with MI-BCI
control) [10], [11]. The implications of limiting the system to
binary commands are also examined, arguing that even a two-
command BCI can be practically useful for high-level UAV
supervision. Finally, we outline the limitations of the current
study — including the modest accuracy and small sample size —
and suggest directions for future improvements, such as
incorporating adaptive algorithms or hybrid BCI paradigms to
enhance reliability and command complexity.

[I. MATERIALS AND METHODS

A.  Participants

Ten volunteers (8 males and 2 females, ages 20-30) were
recruited for the study (referred to as P01, P02, etc). All
participants were right-handed and had normal or corrected-to-
normal vision. None reported any neurological disorders. We
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recorded Dbasic demographics including age, gender,
handedness and prior BCI experience as shown in Table I.
Notably, three participants had some prior exposure to BCI use,
while the others were naive first-time users. This information
was collected to examine whether factors like BCI experience
might influence performance. All participants gave informed
consent before the experiment and were instructed on the
procedure. The study focused on within-subject binary
classification of imagined movements, but data from all
participants were later combined to evaluate generalization
across individuals. Fig.1 shows the Emotiv Epoc X setup.

Fig. 1. Device setup (Emotiv Epoc X). Placement of electrodes on the
participant's head (left), downward movement (middle), upward movement
(right)

TABLE I. PARTICIPANTS DEMOGRAPHICS

No. Sex Age Handedness BCI
Exp.
PO1 M 29 Right No
P02 F 23 Right No
P03 M 20 Right Yes
P04 M 20 Right No
P05 M 25 Right Yes
PO6 M 27 Right No
P07 M 21 Right No
P08 M 28 Right Yes
P09 F 30 Right No
P10 M 24 Right No

B. Experimental Procedure

Participants first completed training sessions in EmotivBCI to
associate imagined upward and downward movements with
classifier profiles [17], [18]. The training interface provided
visual feedback on success/failure within 8-second trials. An
example of the EmotivBClI training interface is shown in Fig. 2.

-
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Fig. 2. Training interface (EmotivBCI). The reference box with 8-second
timer per training to execute the command “upward”, “downward”, “neutral”.
Training results: goal not reached (left), goal reached (right)

Each participant engaged in a series of sessions involving MI
tasks corresponding to two distinct drone control commands.
The chosen mental tasks were imagining a right-hand upward
motion (as if signaling a drone to rise or hover in place) and
imagining a left-hand downward motion (as if signaling the
drone to descend or land). These two actions were selected for
their intuitive mapping to basic UAV behaviors and their

65

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

mutually exclusive nature. During an initial calibration phase,
participants underwent training using the EmotivBCI software
tool. This training presented visual cues and timers guiding the
participant to perform or imagine the specified hand movement
for a few seconds at a time, interleaved with rest (neutral)
periods. Participants were instructed to vividly imagine the
kinesthetic sensation of raising or lowering their arm (some
participants also subtly performed the motion to reinforce the
imagery) while the BCI system learned their EEG patterns for
each command [10], [11]. Each mental command (“upward”,
“downward”) was trained in multiple trials (on the order of 10—
20 repetitions per command) until the software indicated a
stable detection profile for that user [12], [13]. A neutral state
(no movement/relaxed) was also recorded to serve as a baseline
in the training process [7].

After calibration, each participant proceeded to the
execution phase using the EmotivPro software. In this phase,
live EEG data were recorded as participants attempted to issue
binary commands to a virtual drone purely by performing the
learned motor imagery tasks. Participants sat comfortably and,
at prompted intervals, imagined the designated upward or
downward hand movement without any overt physical
movement. No visual flicker or P300 stimuli were used; only
the participant’s self-paced motor imagery triggered the
commands [4], [6]. Each session consisted of a sequence of
trials where the participant was cued (visually or by an audio
cue) to perform a particular imagery (up or down) for a few
seconds. Each trial’s EEG data was labeled accordingly (1 for
“Upward” imagery, 0 for “Downward” imagery). Sufficient rest
was given between trials to avoid fatigue. Across the session,
an equal number of upward and downward trials were recorded
per participant to ensure a balanced dataset (for example, 40
trials each, totaling ~80 trials per participant, depending on
individual pacing and data quality) [9]. Participants were
monitored to minimize eye blinks or muscle artifacts during
imagery [20]. The entire experiment typically lasted around 30—
45 minutes per participant, including setup, training, and
execution [3]. Power Spectral Density (PSD) analysis [16],
between the two motor imagery movements are shown as seen
in Fig.3.

‘Upward' Movement

Fower (dB)

Freauency [Hr)

“Denmtrward” Mcvenent

Power (93]

Frequency [H)

Fig. 3. PSD analysis (frequency-domain differences). Frequency domain
power distribution during ‘upward’ and ‘downward’ hand movement

C. Data Acquisition




ISSN 2305-7254

EEG signals were acquired using the Emotiv Epoc X
headset [17], [18], a wireless 14-channel EEG device designed
for BCI applications. The electrodes are arranged according to
the International 10-20 system as shown in Fig.4 [7], covering
frontal, temporal, parietal, and occipital regions. Saline-based
wet sensors were placed at locations including AF3/AF4,
F3/F4, F7/F8, T7/T8, P7/P8, 0O1/02, with two reference
electrodes (CMS/DRL) providing a baseline. The device
transmits EEG data at 128 Hz sampling rate (with 16-bit
resolution), which is sufficient to capture the frequency bands
of interest for motor imagery (up to beta range) [12], [13].
During the experiment, the headset was connected to a
computer running EmotivPro, which recorded the raw EEG
signals from all channels simultaneously as the participant
performed the tasks. The recording software also time-stamped
and labeled each trial based on the cues, allowing
synchronization of EEG segments with the intended command
(up or down).

Fig. 4. Emotiv Epoc X electrodes configuration

All recordings were conducted in a quiet lab environment
with the participant seated comfortably to reduce movement
artifacts. We took basic measures to ensure signal quality:
electrode impedances were checked prior to recording, and a
stable wireless connection was maintained. The Emotiv Epoc
X’s built-in filtering and ADC hardware provided baseline
noise filtering. Nonetheless, EEG data inherently contained
some artifacts from eye blinks, facial muscle activity, and any
residual movements. We decided to preserve as much of the raw
signal characteristics as possible for analysis rather than
aggressively cleaning the data, in order to capture the true
challenges of using a consumer-grade EEG in practical settings

[8].

D. Data Preprocessing

The raw EEG data from each session were initially processed
using Emotiv’s software and then exported for offline analysis.
We applied basic preprocessing steps uniformly to all
participant data. First, a bandpass filter (approx. 0.5-40 Hz) was
applied to remove DC drift and high-frequency noise, limiting
the analysis to the standard EEG frequency range that includes
delta (0.5—4 Hz) through beta (~30 Hz) and low gamma (~40
Hz). Line noise (50/60 Hz) was mitigated via notch filtering if
necessary (Emotiv’s system includes built-in notch filters) [16].
We kept preprocessing minimal and consistent: no extensive
artifact removal (such as independent component analysis) was
performed at this stage [9]. The rationale was to retain natural
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variability and not overfit the data to any specific participant by
manually excluding segments. However, obviously corrupted
segments (e.g., if a sensor detached or saturated during a trial)
were noted and could be excluded from feature extraction.

Next, we segmented the continuous EEG data into epochs
corresponding to each trial. Typically, an epoch covered the
duration of the motor imagery command (e.g., a 5-8 second
window during which the participant imagined the movement,
as prompted) [10]. Each epoch was labelled 0 or 1 according to
the commanded class. No baseline correction was applied
beyond what the bandpass filtering accomplished, since each
trial’s mean could be near zero after filtering. We also did not
down sample further; the data at 128 Hz was directly used for
feature computation [12]. To summarize, preprocessing yielded
a collection of labeled EEG epochs per participant, each
containing multi-channel time-series data primarily in the 0.5—
40 Hz range, ready for feature extraction.

E. Feature Extraction

From each trial’s preprocessed EEG segment, we extracted a
comprehensive feature vector characterizing the brainwave
patterns for that trial. We focused on frequency-domain power
features and simple statistical measures that are commonly
employed in BCI signal analysis. In particular, band power
features were computed for four canonical EEG frequency
bands: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8—12 Hz), and
beta (12-30 Hz) [10], [12], [5]. For each of the 14 EEG
channels, the signal was digitally band-pass filtered to isolate
these bands, and the signal power in that band was calculated
(averaged over the epoch duration). We define the band-power
feature for channel 7 in band b (for example, F3 in alpha band)
as the mean squared amplitude of the EEG signal in that
frequency range over time:

1w ,
BP;, = NZ[xi,b m]*,
n=1

Where x; 5, (n) is the EEG sample of channel i after filtering
to band b, and N is the total number of samples [16].This band
power is essentially the signal variance in that frequency band
(since the EEG is zero-mean after filtering) and reflects the
intensity of that band’s activity during the task. By extracting
delta (), theta (0), alpha (o), and beta (B) power from each of
the 14 channels, we obtained an initial set of 14 x 4 = 56
features. (The Emotiv Epoc X provides 14 effective EEG
channels; the two reference channels are not used as
independent features). In addition to band powers, we
engineered a number of time-domain features to enrich the
feature set. These included the variance of the raw EEG signal
on each channel (which, as noted, is closely related to band
power but without band-specific filtering), as well as signal
energy measures (total power across all frequencies up to 40 Hz
for each channel). We also computed composite features such
as ratios of power between bands on the same channel (for
example, alpha/beta ratio on a channel, which can be
informative of engagement vs. relaxation) and across
symmetric channels (e.g., difference in beta power between left
and right motor cortex areas). These additional features were
chosen to capture potential asymmetries and cross-band
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interactions relevant to motor imagery. After including these,
the total feature vector size was expanded to 84 features per
trial. In our final dataset, we had 84 features per trial (each trial
corresponding to one instance of either upward or downward

imagery) [13].

All features were normalized (z-scored) across the dataset
to have zero mean and unit variance prior to classification. This
standardization was done using statistics computed from the
training data folds only, to avoid any information leakage into
the test fold during cross-validation. Feature selection was not
aggressively performed at this stage; however, we did keep
track of features with extremely low variance or consistently
high correlation, as these could be pruned in future iterations to
simplify the model (see Results for an analysis of feature
variance and correlation). The full feature matrix thus had
dimensions of T samples by 84 features, where T is the total
number of trials from all participants combined.

F. Classification and Evaluation

We employed a decision tree classifier as the ML model to
distinguish between the two mental command classes. A
decision tree (using the CART algorithm with the Gini impurity
criterion) [19] was chosen for its interpretability and low
computational requirements, aligning with the concept of a
“weak AI” or lightweight model [21]. This model can highlight
which features (channels/bands) are most informative by its
branching  structure, thus  offering  insight into
neurophysiological relevance in addition to making predictions.

We trained and tested the classifier using a leave-one-
participant-out (LOPO) cross-validation scheme to rigorously
evaluate how the system performs on an unseen individual [21].
In LOPO, we train the model on data from 9 out of the 10
participants and use the held-out participant’s data exclusively
for testing. This process is repeated 10 times, each time with a
different participant as the test set, so that we obtain
performance metrics for every participant as an independent test
case. LOPO is a stringent evaluation because it simulates the
real-world scenario of applying a trained BCI model to a new
user without any subject-specific recalibration. During each
LOPO fold, the decision tree was fitted to the training set (using
only the participants in that fold’s training pool). No post-
pruning of the tree was performed, as we did not observe severe
overfitting given the limited model complexity and small
feature set relative to training size. We recorded the predictions
of the model on the held-out participant’s trials and compared
them to the true labels to compute classification metrics. The
primary performance metric was accuracy (the proportion of
trials correctly classified). However, given the potential
imbalance or differential difficulty in detecting one command
vs the other, we also calculated precision and recall for each
class, taking the “Upward” command as the positive class for
convention. We define these metrics in terms of true positives
(TP), true negatives (TN), false positives (FP), and false
negatives (FN) for the positive class (command “Up” = 1) as
follows:

TP+TN
TP+ TN+ FP +FN’

Accuracy =
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L TP
Precision = m,
TP
Recall = m ,

These metrics were computed per participant (i.e., per fold)
to assess how performance varies among individuals. In each
fold’s results, we also identified which class had the higher
precision and which class had the lower recall, as an indicator
of any bias in the classifier’s predictions for that participant.
Because our task is balanced (each participant contributed
roughly equal trials of each class), accuracy is a reasonable
summary metric; but precision and recall help diagnose whether
the classifier tends to favor one command over the other (e.g.,
always predicting “Up” would yield high recall for “Up” but
low precision for it, and poor recall for “Down”). Finally, we
aggregated the outcomes from all folds to compute the mean
and range of accuracy across participants, and we analyzed
instances of particularly high or low performance to glean
insights (for example, whether the participants with prior BCI
experience fared better, or whether certain EEG patterns
correlate with success).

All data processing and classification steps were
implemented in Python using libraries such as MNE for EEG
filtering and scikit-learn for ML. The use of a simple classifier
without extensive parameter tuning was intentional to provide a
baseline; more complex models (e.g., deep neural networks)
were outside the scope of this initial investigation.

III. RESULTS

A. EEG Feature Extraction

1. Mean and Variance: An overview of the extracted
features’ distribution is shown in Fig. 5, which plots the
absolute mean and variance of each EEG feature across all trials
and participants.

Fig. 5. Variance of EEG band-power features across all participants (PO1—
P10). (Top) Mean variance values per frequency band across electrodes,
highlighting stable and redundant features. (Bottom) Boxplots showing
feature-wise variance distributions, with high-variance outliers corresponding
to noisy or highly discriminative channels.

Each feature corresponds to a specific electrode—frequency
band pair (for band-power features) or a specific statistical
measure on a given channel. As seen in the top graph of Fig. 5,
features derived from the frontal region in the beta band
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(approximately 12-30 Hz, e.g., channels F3-Beta and F4-Beta)
exhibited the highest mean values. This suggests that during the
motor imagery tasks, these frontal areas produce consistently
stronger EEG signals in the beta frequency range, aligning with
the known role of the frontal cortex (and motor cortex, which is
near F3/F4) in motor planning and execution. In contrast,
features from occipital channels in lower frequencies (e.g., O1-
Delta, O2-Theta) showed near-zero mean activation, indicating
minimal involvement of the occipital (visual) areas in this task,
as expected.

The variance analysis (bottom graph of Fig. 5) highlights the
stability of each feature. Most features had modest variance, but
a few exhibited very low variance (<0.01 across all trials). For
instance, certain occipital channel features in delta/theta bands
were nearly constant, reinforcing that those carry little
information for our motor imagery task. Such low-variance
features are likely redundant or noise and could be removed to
streamline the classifier with negligible loss of information. On
the other hand, extremely high variance was noted in some
features (e.g., an electrode—band combination prone to artifacts
for one or two participants). While high variance can indicate
meaningful dynamic changes, it can also point to inconsistency
or contamination (for example, a feature spiking due to muscle
artifacts in some trials).

These observations suggest that a future step could involve
feature selection: dropping consistently flat features and closely
examining features with excessive variance for potential artifact
influence. Overall, the mean/variance profiles confirm that the
feature set captures known neurophysiological patterns, frontal
beta activity for motor tasks, and also includes some
channels/frequencies that might be pruned for efficiency.

2. Autocorrelation: To further investigate the temporal
dynamics of the EEG features, Fig. 6 presents the
autocorrelation function for selected features (each subplot
corresponding to one feature), computed across time lags within
each trial.

Autocorrelation measures how similar a signal is to itself
after a time shift, and it reveals the presence of rhythmic or
persistent patterns in the data. As expected, all features exhibit
a strong autocorrelation peak at lag 0 (correlation = 1 by
definition). Beyond lag 0, we observed two general patterns.
For many features, especially those from sensorimotor-related
channels (e.g., electrodes over parietal cortex) in the alpha and
beta bands, the autocorrelation decays gradually over a range of
50-200 ms before dropping to near zero. This gradual decay
suggests the presence of oscillatory neural rhythms (like the mu
rhythm around 10 Hz or beta oscillations ~20 Hz) which impart
temporal structure to the signal. Such structure is expected
during MI, as the brain engages oscillatory sensorimotor
patterns. In contrast, a subset of features (often those from
channels or bands not strongly engaged by the task) showed a
very rapid drop-off in autocorrelation, essentially becoming
uncorrelated at even small lags. These flat autocorrelation
profiles imply that the feature is dominated by broadband noise
or random fluctuations rather than a repeatable pattern. For
example, an electrode over occipital cortex during an
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Fig. 6. Autocorrelation plots of EEG features. (Top) Beta-band activity over
motor cortex electrodes (C3, C4) shows sustained rhythmicity during motor
imagery. (Bottom) Theta-band activity demonstrates faster decay, reflecting
less stable oscillatory structure across participants.

imagination of hand movement might show quickly
decorrelating activity, since it’s mostly noise relative to the task.

Importantly, none of the features displayed pathological
autocorrelation (e.g., sustained high correlation at large lags that
could indicate unremoved trends). The features that showed
structured autocorrelation (gradual decay) likely correspond to
meaningful neural signals (such as ongoing alpha/ beta rhythms
modulated by MI), whereas those that were almost delta-
correlated (spiky at lag 0 and nearly zero afterwards) might be
candidates for exclusion or down-weighting in classification.
Preserving features with richer autocorrelation structure is
beneficial because they reflect the dynamic nature of the brain’s
response to motor imagery . In summary, the autocorrelation
analysis confirms that a significant portion of our features
capture temporally structured EEG activity consistent with
sensorimotor rhythms, whereas others behave like noise. This
justifies efforts to optimize the feature set by focusing on
features that carry temporal information relevant to the task.
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3. Feature Correlations: We examined pairwise correlations
between all features to identify redundant features and
interdependencies. Fig. 7 depicts the Pearson correlation matrix
(heatmap) for the full feature set.

Several interesting patterns emerge. We observe distinct
clusters of high correlation among features that are
physiologically related. For example, features from symmetric
electrode sites on opposite hemispheres (such as F3 and F4, or
T7 and T8) often show strong positive correlation across trials.
This implies that when, say, left-frontal beta power increases
during a trial, right-frontal beta power tends to also increase,
which is reasonable given bilateral cortical involvement in
imagined movement. Similarly, features from the same
electrode but adjacent frequency bands are correlated — e.g., at

electrode P8, the alpha-band power and beta-band power have
moderate correlation, possibly reflecting a general level of
arousal or engagement affecting both bands simultaneously.
These correlations suggest some redundancy: a model might not
need both features if one can predict the other. We also note that
certain features are virtually uncorrelated (correlation near 0)
with most others, indicating they might carry unique
information (for instance, a feature in delta band might capture
a different aspect of the signal than features in higher bands).

Feature Correlation Matrix
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Fig.7. Correlation matrix of EEG band-power features. (Left) Correlations
across frontal and motor cortex electrodes. (Right) High correlations (>0.9)
between symmetric electrode pairs (e.g., F3—-F4, C3—-C4) indicating
redundancy and potential for dimensionality reduction.

In a few cases, we found very high correlation (r > 0.9)
between specific feature pairs. For instance, the pair F3-Theta
and F4-Theta had an almost identical response pattern across all
trials, as did O1- Alpha and O2-Alpha. Such highly redundant
features introduce multicollinearity, which can unnecessarily
complicate the classifier and possibly reduce generalization if
the model tries to give weight to both. In future work, one could
remove or merge one of each highly correlated pair (using
techniques like principal component analysis or just dropping
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one). On the positive side, the presence of low or zero-
correlation pairs (e.g., a frontal beta feature vs. an occipital
theta feature) suggests our feature set includes complementary
information streams. This is advantageous for classification, as
combining uncorrelated features can improve the classifier’s
ability to distinguish classes. The correlation matrix thus
provides a map of feature space, indicating which features
cluster together. In summary, Fig. 3 indicates that while many
features are interrelated (especially symmetric channels and
close frequency bands), there are also sufficiently independent
features that capture different facets of the EEG data.
Managing the few strongly redundant features (r > 0.9) could
streamline the model, but otherwise the diversity of features is
likely beneficial.

4. Feature Distributions: We also visualized the distribution
of feature values to identify outliers and gauge overall signal
quality. Fig. 8 shows horizontal boxplots for a selection of
features (for brevity, not all 84 are shown in one figure, but
representative ones across different channels and bands). Each
boxplot summarizes the feature’s values over all trials (pooled
from all participants). The median, interquartile range, and any
extreme points are indicated. We found that for most features,
the central 50% of values fell in a plausible physiological range
(e.g., EEG band power values that are consistent with typical
EEG magnitudes). However, some features exhibited
significant outliers. For example, Betaband power at electrode
F8 showed several trials with values far above the upper
quartile, and Alpha band power at O2 had a few unusually low
points. Investigating these revealed that such outliers often
corresponded to specific participants or trials where transient
artifacts occurred — e.g., a muscle tension or jaw movement
causing a burst in high-frequency power at F8, or momentary
signal dropouts at O2 leading to abnormally low power. In
general, frontal and temporal sites tended to have more high-
value outliers (likely muscle-related), while occipital sites had
occasional low outliers (possibly due to momentary
disconnections). Crucially, the presence of outliers did not skew
the classifier training unduly, because the decision tree is
relatively robust to monotonic transformations and outliers (it
splits ranges based on ordering). Nevertheless, these outliers
flag opportunities for improved preprocessing: techniques like
artifact subspace removal or trial rejection could be applied to
handle extreme cases. Notably, none of the features had a
median that was zero or extreme, confirming that our earlier
filtering steps (bandpass, etc.) kept the data within sensible
ranges. The spread of most boxplots is moderate, indicating that
while there is subject-to-subject variability, the feature ranges
overlap significantly between participants — a condition that at
least allows a single model to attempt generalization. In
summary, Fig. 8 suggests that the overall feature distributions
are reasonable, with only a minority of trials showing aberrant
values. Outliers, where present, are explainable by artifacts, and
their effect might be mitigated by robust statistics or trimming
in future work. The median differences between features also
reiterate which features have higher typical values (e.g., frontal
beta features) versus lower (occipital delta), complementing the
mean analysis.
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B.  Classification Performance (LOPO Cross-Validation)

We evaluated the classification of “Upward vs. Downward”
motor imagery for each participant using the LOPO scheme
described earlier. The overall accuracy of the system varied
substantially across individuals. It ranged from a low of 39%
(for the worst-case participant, which is below the 50% chance
level for a binary task) up to a high of 66% (for the best-
performing participant) [9], [13], [19]. The mean accuracy
across the 10 participants was 55.5%, which is only slightly
above chance, reflecting the challenge of building a one-size-
fits-all model for EEG patterns.

Detailed performance metrics for each participant are
summarized in Table II. We report each participant’s accuracy,
as well as the precision and recall for the better-classified class
(“Best Class Precision™) and the weaker class (“Weak Class
Recall™), to illustrate any bias in the classifier’s decisions.

Boxplot of EEG Features (Outlier Detection)
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Fig.8. Boxplot distributions of EEG band-power features. (Top) Alpha-band
distributions showing moderate spread with few outliers. (Bottom) Beta-band
distributions with extreme outliers in motor cortex channels, likely caused by
muscle artifacts or involuntary movements.
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TABLE II. LOPO AND DECISION TREE SUMMARY

Best Class Weak Class
No. Accuracy Precision Recall Notes
0.48 0.28
Pol 0.48 (Class-1) (Class-1) Low Separability
0.41 0.26 .
P02 0.39 Difficult Sample;
(Class-1) (Class-1) Likely Noisy
0.60 0.24 .
P03 0.55 High False
(Class-0) (Class-1) Negatives
0.51 0.35 .
P04 0.52 (Class-1) (Class-0) Inverse Balance in
Performance
0.50 0.33 .
P05 0.49 Struggles With
(Class-1) (Class-0) 0—1 Confusion
0.65 0.49
P06 0.62 Good Class
(Class-1) (Class-1) Balance
Best
0.69 0.56 A
P07 0.64 (Class-0) (Class-1) Generalization So
Far
Balanced But
Fo8 055 (C(l)ézf-O) (C(l)ézg-l) Average
Performance
P09 0.66 (C?.69-1) (C(l).63-1) Best Classifier
ass ass Performance
0.69 0.56 Excellent
P10 0.65 (Class-1) (Class-1) Participant-Wise
Balance

Notably, two participants (P09 and P10) achieved the

highest accuracies,

66%

and 65%

respectively. These

participants’ models not only got more trials correct overall, but
also exhibited relatively balanced precision and recall between
the two command classes (for instance, P09’s precision and
recall for the target class were 0.69 and 0.63, both fairly high —
indicating the model was good at detecting both “Up” and
“Down” for them). This suggests that their EEG signals during
the two imagery tasks were more separable and consistent.

In contrast, the participant with the lowest accuracy (P02,
39%) showed a strong bias: the model often misclassified one

70

of the classes for them. Specifically, P02’s precision for the
“Downward” class was only 0.41 and the recall for “Upward”
was 0.26, meaning the classifier frequently confused their
Downward imagery as Upward (many false positives for Up)
and also missed many of their Up trials (false negatives). This
points to low separability in their EEG patterns — P02’s data
might be an example of a participant for whom the EEG signals
did not show clear distinctions between the two mental
commands (possibly an instance of BCI illiteracy or simply
poor signal quality that day).

Other participants fell in between these extremes. For
example, P07 reached 64% accuracy, with a slight edge in
detecting class 0 (“Down”) well (precision 0.69 for class 0) but
also decent recall for that class (0.56). P04 and P05 were
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around 50% accuracy, indicating the classifier was barely
above random guessing for them. In the case of P04, the
precision for “Upward” was ~0.51 but recall for “Down” was
only 0.35, suggesting the model tended to over-predict the
Upward class (bias toward class 1).

Looking across all participants, there is a clear trend of high
inter-subject variability. Some participants’ brain signal
patterns generalized well to the group-derived model (those
with >60% accuracy, such as P06, P07, P09, and P10), whereas
others did not. This variability underscores the known
phenomenon that a significant portion of users have difficulty
achieving reliable control in EEG-based BClIs. In our case, all
participants were able to complete the tasks, but clearly the ML
model could not accommodate the idiosyncrasies of each
person’s EEG within this simple feature space.

To gain insight, we note that participants such as POl and
P02 (lowest accuracies) were characterized by low separability
and noisy data, meaning the classifier likely found no clear rule
to distinguish their two states. Participants in the middle range
(e.g., P03, P04, P05, P0O8) showed specific issues such as high
false negatives or imbalance in performance (favoring one
class), which could be due to those individuals consistently
performing one imagery task more strongly than the other or the
model being biased. The best performers (P06, P07, P09, P10)
are noted as having good class balance and generalization,
which implies their patterns were not only distinct, but also
somewhat representative of the group — the classifier trained on
others was still effective on them, hinting that their brain
responses to MI were “typical” relative to the population data.

In terms of precision and recall aggregated across all
participants, the model’s precision for the positive class
(“Upward” imagery) averaged about 0.55, and recall about
0.46, indicating a slight tendency to over-predict the downward
(class 0) for some participants (missing upward trials).
However, these numbers varied widely person to person. No
significant systematic bias toward one command was observed
when averaging across all — the inconsistencies largely canceled
out.

In summary, the classification results demonstrate proof-of-
concept success in some participants and difficulties in others.
When a generic model is applied, roughly half the participants
achieved around 60+% accuracy, whereas the rest hovered near
chance. This clearly indicates that a one-model-for-all approach
is suboptimal in EEG BCls and that personalized calibration is
likely necessary to reach high control accuracy for each user.
Nonetheless, the fact that a simple decision tree on basic
features could exceed chance for a majority of participants (and
reach mid-60s for the best) is encouraging; it suggests that there
is a discernible EEG difference between imagining upward vs.
downward hand movement, even if subtle and user-dependent.
The performance might be sufficient for a rudimentary two-
command BCI if combined with error mitigation strategies (for
example, using a “confirm” step or majority voting over
multiple predictions to execute a drone command only when the
classifier is confident).
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IV. DISCUSSION
A. Comparison with Prior Work

The concept of controlling UAVs via BClIs is not new; prior
research has explored different modalities. For example, steady-
state visual evoked potential (SSVEP)-based systems have
achieved multiclass drone navigation with accuracies often
exceeding 90% in controlled laboratory conditions [6], [24],
while P300-based systems have also been used reliably for
selection tasks [4]. These approaches, however, typically
require external stimuli and individual calibration.

Our work instead employed MI, which is more challenging
due to the subtlety of EEG changes and the phenomenon of BCI
“inefficiency,” wherein some users cannot produce distinct MI
signals [10], [9]. Prior MI-based UAV studies have reported
varying levels of success. For example, Vijayendra et al.
demonstrated high offline classification precision using a 14-
channel consumer EEG device [12], combined with more
advanced pre-processing and neural network models.

In comparison, the present study used only a lightweight
decision tree model [19], [21]. The highest accuracy observed
was 66% for P09, closely followed by P10 at 65%. These
accuracies were achieved without participant-specific
calibration, underscoring both the feasibility and limitations of
using generic models. Typically, within-subject MI
classification can reach 70-80% after training [20], [23], but
across-subject generalization often falls closer to chance level
unless advanced techniques such as transfer learning are
applied.

B. Inter-Subject Variability

The A key observation in this study is the large inter-subject
variability [9][8]. Performance ranged from 39% (P02) to 66%
(P09). Such variability aligns with findings in BCI literature,
where it is estimated that 15-30% of users struggle to achieve
reliable control, a phenomenon referred to as “BCI illiteracy”

(91, [7].

Participants P06, P07, P09, and P10 achieved relatively high
and balanced accuracies (above 60%), suggesting that their
EEG signals showed consistent separability between upward
and downward imagery. In contrast, P02 achieved the lowest
accuracy, with the classifier frequently misclassifying their
“Downward” imagery as “Upward.” This result may reflect
poor signal quality, inconsistent performance of the task, or
inherently lower separability of neural patterns.

Participants in the middle range (P01, P03, P04, P05, PO8)
often showed systematic biases, such as high false negatives in
one class or a tendency toward over-predicting the “Upward”
class. For example, P04 exhibited bias toward class 1
(“Upward”), while P03 showed high false negatives for the
same class. These issues highlight the idiosyncratic nature of
EEG signals and reinforce the need for individualized model
adaptation.
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C. Rationale for Binary MI-based Control

This investigation focused deliberately on a binary
classification problem: distinguishing imagined upward versus
downward movements [3]. This choice was motivated both by
practical and theoretical considerations. From a practical
perspective, starting with two commands simplifies training and
evaluation, and many UAYV control scenarios can be reduced to
binary decisions (e.g., hover vs. land). From a neuroscience
perspective, MI of distinct movements can engage different
cortical areas and rhythms [10], [11]. Although right-hand
upward vs. downward imagery may produce less distinct neural
signatures than left- vs. right-hand imagery, the semantic
mapping to UAV control tasks (up and down) was intuitive.
Prior demonstrations, such as [3], have shown that binary MI
can be sufficient for basic UAV commands, even if accuracy is
modest. Our results, with several participants achieving above
60%, support this rationale.

D. Implications for BCI-Controlled loT Devices

The results show that consumer-grade EEG hardware
(Emotiv Epoc X) can capture signals enabling above-chance
binary classification of motor imagery. This is promising for
integration of BCls into IoT systems, including UAVs, smart
wheelchairs, or simple smart home commands [26]. However,
accuracy levels around 60—-65% are insufficient for standalone
control in safety-critical contexts. Instead, BCIs may serve as a
supervisory layer, providing high-level inputs while
autonomous systems manage low-level navigation or
stabilization. For example, a UAV could execute “land” when
the BCI classifier is highly confident, while uncertain outputs
could be validated by secondary modalities (voice, manual
override). Another implication concerns user training. Some
participants, such as P02, may improve significantly with
repeated practice, feedback, or adaptive algorithms. Studies
show that BCI performance can increase over time as users
learn to produce more consistent neural patterns. Co-adaptive
approaches, in which the system adjusts to the user while the
user learns, may further improve control [27].

E. Limitations and Future Work

Several limitations must be acknowledged. First, the sample
size was small (10 participants), with limited demographic
diversity. Second, data were collected in a single session
without participant-specific calibration, reducing performance
potential. Third, the system was evaluated offline rather than in
real-time on an actual UAV. Finally, only two commands were
considered, limiting functional scope.

Future research directions include:

1. Personalized Calibration: Even short calibration
sessions could adapt the model to each user’s EEG [7],
(8], [9].

Advanced Classification Methods: Deep learning and
Riemannian geometry-based approaches have shown
superior MI performance in competitions [21], [23].

72

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

3. Hybrid BCI Paradigms: Combining MI with P300 or
SSVEP could increase reliability and enable
confirmation mechanisms [4], [6], [14], [24].
Real-Time Implementation: Testing with an actual
UAV to assess information transfer rate, latency, and
user experience [3], [12], [13], [25].

Despite these limitations, the fact that participants like
P09 and P10 achieved above 65% accuracy with no
calibration demonstrates proof-of-concept feasibility. With
personalization, performance could be improved, paving
the way for practical BCI-1oT integration.

IV. CONCLUSION

In this paper, we presented a systematic exploration of an
EEG-based BCI for controlling UAV using binary motor
imagery tasks. Our approach used a consumer-grade 14-channel
Emotiv Epoc X headset, lightweight feature extraction, and a
decision tree classifier.

The results demonstrated proof-of-concept feasibility.
Several participants, such as P09 and P10, achieved accuracies
above 65% without calibration, showing that separable EEG
patterns for imagined upward and downward movements can be
detected even with a simple classifier. However, performance
varied significantly across individuals: P02 achieved only 39%,
while most participants clustered around 50-60%. This inter-
subject variability highlights the limitations of applying a one-
model-fits-all approach to EEG-based BCI systems.

Despite modest average accuracy (55.5%), the study
demonstrates that neural interfaces can provide meaningful
binary control signals for UAV supervision. A binary BCI may
not yet replace manual controllers, but it can serve as a useful
complementary modality — for example, providing a “hover”
or “land” command in safety-critical contexts or serving as an
assistive option for users with motor impairments.

The findings also emphasize the importance of subject-
specific calibration, adaptive algorithms, and potentially hybrid
paradigms to improve performance. Future work should focus
on personalization, real-time implementation, and extension
beyond two commands. With these improvements, BCI-based
UAYV control could become a practical tool in Internet of Things
(IoT) environments, bridging human thought and machine
action.
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