
Multitenant Cybersecurity Operations Center
Designed as an Open Cloud Service with Machine

Learning Elements
Ivana Gabrišová*, Gabriel Koman

University of Žilina,
Univerzitná 8215/1, 010 26 Žilina, Slovak republic

gabrisova10@stud.uniza.sk*, gabriel.koman@fri.uniza.sk

Abstract—Security Operations Centres increasingly operate
in cloud environments and must serve multiple tenants while
processing vast, heterogeneous telemetry. Signature- and rule
based defences alone struggle with novel attack behaviours, alert
volume, and dispersed context. This paper synthesises how open,
cloud-based architectures combined with machine learning can
support a multitenant Security Operations Centre designed as a
managed service. A parametric keyword search using “Elastic
Stack” or “OpenSearch” with cybersecurity keywords was
conducted, and thirteen selected case studies were retained and
analysed across architecture, methods, telemetry, and operating
practices.

Across studies, a recurring foundation appears: an open
telemetry plane based on the Elastic technology stack, container
orchestration for horizontal scale and tenant isolation, and
optional streaming with Apache Kafka and Apache Spark for
real-time workloads. Standard components include containerised
honeypots with malware enrichment, intrusion detection engines
such as Suricata at the edge for prevention and network security
monitoring, and automated remediation through rule engines
with explicit safety rails (rate limits, blast-radius caps, canary
actions, and rollback). Observed learning approaches include
gradient-boosted decision trees for labelled network flow records,
deep learning for sequence-rich traffic, principal component
analysis with local outlier factor for unlabelled system and
application logs, streaming combinations of clustering and
nearest-neighbour classification, and evolutionary ensembles for
user behaviour analytics. Key implications include selecting
methods based on data reality and explainability needs, placing
computation to meet latency and burst constraints, and enforcing
tenant-scoped alerting and case management. The paper offers a
practical blueprint for building transparent, scalable, and tenant
aware Security Operations Centres using open technologies and
machine learning.

I. INTRODUCTION
Enterprises and public infrastructures now generate

massive, heterogeneous telemetry: cloud control planes,
microservices logs, network flows, OT/SCADA signals, and
application traces. Conventional signature- and rule-based
defences struggle in this setting because (i) novel/low-and-slow
attacks evade static rules, (ii) alert volumes exceed analyst
capacity, and (iii) context needed to triage an alert is scattered
across systems. Open, cloud-native analytics stacks, especially
the Elastic/ELK Stack (Elasticsearch, Logstash, Kibana, Beats),
and, in some contexts, OpenSearch, are widely deployed to
collect, normalise, index, and visualise such telemetry at scale,

frequently forming the backbone of modern SOC pipelines.
They feature prominently as transparent, extensible backbones
for collection, indexing, visualisation, and ML-assisted
detection in multitenant settings. Modern Security Operations
Centres (SOCs) must detect advanced threats in robust,
heterogeneous log streams while serving multiple tenants with
distinct visibility and compliance needs. Traditional rule- and
signature-driven tools struggle with data volume, diversity, and
zero-day behaviours, which have accelerated adoption of open,
cloud-ready analytics stacks that embed machine learning (ML)
for anomaly detection and triage [1]–[8]. Broader evidence
shows rapid uptake of data-driven and artificial-intelligence
techniques in complex, high-stakes settings outside security,
reinforcing the need for modern analytics in operations centres
[9]. Successful adoption also depends on workforce readiness
and the digitalisation of human-capital practices that support
new analytics workflows, as shown in adjacent domains [10].

Open architectures also interoperate readily with
containerised sensors and cloud-native observability,
improving explainability (feature importances, thresholds, drift
checks) and per-tenant transparency via scoped dashboards and
role-based access [2], [6], [8]. These characteristics make them
strong candidates for a multitenant SOC offered as an open
cloud service.

There are different reasons why AI/ML is critical for cyber
anomaly detection. (i) AI/ML is sensitive to rare/novel patterns.
Unsupervised and statistical, as well as semi-supervised
methods, can identify deviations in unlabelled, evolving log
streams where labelled attacks are scarce [11], [13]. (ii) It is
used for sequence and context modelling since deep models
can capture temporal dependencies in traffic and process
behaviours that deterministic rules miss [14]. (iii) Tree-based
models and statistical projections expose feature importances or
residuals, helping analysts validate or dismiss alerts quickly in
dashboards, which is essential in ensuring explainability for
decision support [6], [11], [14]. (iv) Embedded in open
pipelines, model outputs can drive self-healing actions or
prioritised playbooks, shrinking mean-time-to-respond
(MTTR) [3], [6]. Multitenant SOCs benefit from scoped
dashboards and auditable ML logic (thresholds, clusters,
features) so each tenant can self-inspect without data leakage
[2], [6], [8]. In this paper, anomaly denotes a statistical or
behavioral deviation; confirming maliciousness requires human

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 58 --

or playbook-driven triage with contextual correlation. ML
surfaces candidates, it does not ‘detect zero-days’ by itself.

At the same time, data diversity, drift, and operational
constraints make it crucial to understand which ML approaches
fit which telemetry and where to run them (stream vs. batch;
edge vs. core), and how open architectures implement
multitenancy and automation. Open deployments in the case
studies, ranging from self-healing in multi-clouds [3] to
containerised honeypots [2], IoT/IDS architectures for smart
cities [4], and microservices observability [8], provide
grounded evidence of what works and where it breaks.

Using parametrically selected 13 case studies, the purpose
of this article is to identify which ML/AI algorithms and open
architectural patterns are used for anomaly/threat detection
suitable for a multitenant, cloud-based SOC. Findings are
synthesised across data types, pipelines, and outcomes, and
highlight design implications for a tenant-aware managed
service.

II. METHODOLOGY

A parametric literature review was performed on the Web
of Science (WoS) platform. Searches combined the static
element “Elastic Stack/ELK Stack” or “OpenSearch” with
additional keywords: AI, ML, SOC, anomaly detection,
cybersecurity, security operations, security monitoring, and
alerting. The “Elastic/ELK Stack” branch yielded 31
publications, and the “OpenSearch” branch yielded 2. The 33
results were screened by (i) English language, (ii) full-text
availability, and (iii) thematic relevance to anomaly
detection/ML within SOC pipelines. Thirteen publications met
the criteria and form the sole evidence base for this article.

III. OPEN CLOUD ARCHITECTURES FOR A MULTITENANT SOC

A. Self-healing multi-cloud services with ELK
A containerised multi-agent architecture leverages ELK and

a Drools rule engine, illustrating how detection can feed
automated actions while maintaining SLA targets in multi-cloud
environments. The proposed architecture is deployed across
multi-clouds, with Filebeat – Logstash – Elasticsearch – Kibana
for telemetry and a Drools rules engine for diagnosis and
remediation [3]. All automated actions must be guarded by
safety rails, per-tenant rate limits, blast-radius caps, canary
execution, and automatic rollback, so a faulty fix cannot
propagate across tenants. Filebeat standardises collection;
Logstash applies input/filter/output pipelines; Elasticsearch
provides distributed search/analytics; Kibana acts as the
management/visualisation plane. This design shows how
detection outputs can trigger automated corrective actions (e.g.,
service restarts, ticketing), turning ML/statistical signals into
self-healing behaviour suitable for multitenant SLAs.

B. Containerized honeypots with ELK
Cowrie (SSH/Telnet), Dionaea (multi-protocol), and Glastopf

(web) were deployed as Docker containers, shipping JSON logs
with Beats, processed in Logstash, indexed in Elasticsearch, and
visualised in Kibana; alerts are generated by the platform’s

alerting rules/connectors (not the dashboards). VirusTotal
enrichment was integrated for captured malware, and the
deployment ran for 92 days, collecting 2,750,654 connection
attempts with rich protocol/credential/command distributions.
Operational caveat: honeypots disproportionately capture
opportunistic scanning and commodity malware; they must be
strictly isolated (network segmentation, default-deny egress
with allow-lists, fake/non-production credentials) and monitored
for pivot attempts to prevent lateral movement into tenant
environments. That demonstrates a lightweight, horizontally
scalable threat-intel layer that plugs directly into SOC
workflows and can be scoped per tenant via index/role policies
[2].

C. Elastic sustainability for IoT smart cities
SUESSA, a Sustainable & Ultra-Elastic Stack Security

Architecture, places Suricata (IDS/IPS/NSM) alongside ELK
and an ML-based alert module to classify/threshold events
before notifying administrators [4]. The architecture addresses
three pain points: sustainability, cohesiveness, and automation
in high-volume IoT settings by layering traffic
pipelining/monitoring, multi-stage filtering, and visualisation.
Several background insights on smart-city risks and big-data
security are summarised as cited in [4].

D. Microservices observability
A taxonomy over purpose, parameters, scope

(system/service/network), deployment (Kubernetes, Docker),
and tooling (OpenTelemetry, Prometheus, Grafana,
Jaeger/Loki) is proposed as a result of a survey involving
Observability frameworks for containerised microservices [8].
In SOC terms, these controls complement ELK by providing
distributed tracing and metrics that, combined with logs, support
ML-driven anomaly detection and tenant-scoped visibility in
cloud-native environments. The survey of microservices
observability underscores combining logs, metrics, and traces
with ML for anomaly detection at the system, service, and
network levels. The toolbox (e.g., OpenTelemetry, Prometheus,
Grafana, Jaeger/Loki) complements ELK in cloud-native SOCs
and supports tenant scoping at the platform layer [8].

E. SIEM complement, validation, and observability scoring

ELK is analysed as a big-data complement to traditional
SIEM for correlation, alerting, and analytics in CSIRT/SOC
operations [1]; works show validation loops via attack
simulation (e.g., AttackIQ) feeding ELK dashboards [5] and
observability scoring for SCADA/OT security with ATT&CK
mapped simulations [12]. Common patterns include per-tenant
indices and RBAC in ELK, horizontal scaling (Kubernetes), and
streaming buffers (Kafka – Spark) to protect indexing during
bursts, key to maintaining tenant SLAs without cross-tenant
impact [2], [3], [4], [6], [7], [13], [15]. Alerting rules,
connectors, and case management must also be tenant-scoped
(e.g., separate spaces or case projects) to prevent cross-tenant
data exposure during triage.

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 59 --

IV. MACHINE LEARNING AND AI METHODS USED FOR SOC
ANOMALY DETECTION

1) Supervised tree-based learning (XGBoost): XGBoost is
used for NetFlow anomaly/threat prediction with interpretable
feature importances (e.g., ports, bytes, duration) and analyst
friendly outputs rendered in Kibana [14]. Strengths include
high accuracy on labelled traffic and explainability that
support triage; limitations include label scarcity and drift,
necessitating retraining and threshold reviews.

2) Deep learning: DNN and RNN are evaluated on traffic
streams; performance depends on data balance/feature
engineering and can lag tree ensembles on attack-only subsets.
Applied to traffic sequences to model temporal dependencies
and complex feature interactions [14]. Useful on mixed
streams and sequence-heavy tasks; requires careful class
balance, feature engineering, and runtime resources.

3) Unsupervised/statistical: PCA with a high-quantile
threshold and LOF corroboration detects outliers in Postfix
logs; ELK visualises time series and feature vectors for analyst
triage. For Postfix mail logs, ELK assembles program-ratio
vectors over short windows; PCA separates normal and
abnormal subspaces and uses a high-quantile threshold on
residual errors to flag anomalies; LOF provides outlier
corroboration across k values [11]. Advantages include label
efficiency and transparency; tuning windows/scaling is
critical.

4) Hybrid streaming: In Kafka – Spark ML – ELK
pipelines, k-Means clusters online traffic, while k-NN rapidly
classifies new points, emitting detections to ELK for
persistence and dashboards [13]. That keeps real-time
detection upstream from the indexer to protect ingestion when
traffic spikes.

5) Ensemble/evolutionary methods for UBA: A Kubernetes
hosted ELK framework pairs distributed evolutionary
ensembles with semi-supervised scoring to flag deviations in
user/application behaviour at scale, explicitly addressing
missing/unbalanced data [15]. That is suited to multitenant
environments where behaviours differ by tenant and data
completeness varies.

6) Rule-based automation: Drools rules map detection
outputs to self-healing actions in multi-cloud services,
reducing time-to-mitigation and human toil. Self-healing rules
convert detections into deterministic actions (restarts, ticket
creation, evidence collation), reducing responder toil and
latency in multi-cloud SOC operations [3]. Rules are
transparent and easy to extend; upkeep is needed as
environments evolve.

V. DATA TYPES AND TELEMETRY SOURCES

1) Network telemetry (NetFlow): Bytes, packets, ports,
duration, and protocol are effective for supervised and
sequence-based models; classic worm/DDoS exemplars are
used for evaluation and dashboard validation.
Source/destination ports, bytes, packets, duration, protocol,
and interface IDs are often most predictive for supervised

models; visual validation in ELK helps investigate flagged
flows [14].

2) System/application logs: Postfix program ratios over
short windows feed PCA/LOF to surface spam/abuse
anomalies, with ELK for correlation and visualisation [11].

3) IoT/IDS signals: Suricata alerts and diverse sensor
streams underpin SUESSA’s multi-layer filtering and ML
alerting workflow [4].

4) Honeypot data: SSH/Telnet/HTTP/SMB attempts,
credential/command distributions, and malware samples
enriched with VirusTotal enhance knowledge of attacker
behaviour and families. Credentials, command sequences,
protocol distributions, and malware samples (with VirusTotal
results) illuminate attacker behaviour and support rule/model
updates [2].

5) Microservices signals: Logs, traces, metrics for system-,
service-, and network-level observability; ML methods include
clustering, thresholding, and supervised classifiers depending
on signal type [8].

VI. OPERATIONAL PATTERNS THAT MAKE ML ACTIONABLE

1) Stream-before-index: Kafka – Spark put in front of ELK
for compute-heavy or bursty ML, helps indexing remain stable
and detections arrive with low latency [13].

2) Enrichment: Threat intel (e.g., VirusTotal) and context
(geo, asset tags, tenant IDs) attached during Logstash/ingest
improves analyst decisions without extra queries [2], [6].

3) Validation loops: Attack simulation and observability
scoring can be used (ATT&CK-mapped) to validate coverage,
calibrate thresholds, and demonstrate control efficacy to each
tenant [12], [5].

4) Automation: Detections can be bridged to
Drools/playbooks for self-healing and case creation with
supporting evidence, shortening MTTR and standardising
responses [3], [4].

5) Tenant isolation: Enforced per-tenant indices/roles,
resource quotas, and horizontal scaling on Kubernetes help
avoid noisy neighbour effects and preserve data boundaries
[2], [15], [6], [7], [8].

VII. COMPARISON

SOCs built as open cloud services face high heterogeneity
in telemetry (NetFlow, system/app logs, IDS alerts,
traces/metrics), variable latency budgets, and uneven label
availability across tenants. Directly comparing algorithms
without anchoring them in data reality and pipeline placement
leads to “algorithm shopping” that rarely survives production.
The two tables in this section therefore serve complementary
purposes: Table 1 maps each method to the telemetry it needs
and where it runs in an open stack (ELK, Kafka – Spark,
Kubernetes), and Table 2 summarises strengths and limitations
that matter for multitenant operations, such as explainability,
drift sensitivity, and operational overhead. Together, they
translate the 13 case studies into a design aid for selecting

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 60 --

methods that are feasible, explainable, and maintainable in
SOC.

Case studies show that where detection runs is as important
as what model is used. For example, pushing compute “left”
with Kafka – Spark absorbs bursts and preserves indexing
throughput when near-real-time action is needed [13], while
keeping analytics beside indexing enables tight dashboard
driven triage and record-keeping in ELK [1], [2], [6], [7], [11],
[14]. Inline controls in IoT/OT (e.g., Suricata) must sit on the
traffic path and then feed ELK for cross-tenant analytics [4].
The placement view also exposes multitenancy mechanics, per
tenant indices/RBAC, stream partitioning, and container
orchestration, which several studies relied on to prevent noisy
neighbour effects and preserve data boundaries [2], [3], [15],
[6], [8].

Table I. shows what telemetry each method consumes and
where it typically runs within open SOC stacks (ELK, Kafka –
Spark, Kubernetes). It can be used to map tenants’ data realities
to the right computational tier.

The Algorithms in Table I. and II. include:

 A: XGBoost (supervised) [14]
 B: DNN / RNN (deep) [14]
 C: PCA (+ LOF corroboration) [11]
 D: k-Means + k-NN (hybrid streaming) [13]
 E: Evolutionary ensemble UBA [15]
 F: Rule-based self-healing (Drools) [3]
 G: Suricata + ML alert module (SUESSA) [4]
 H: Honeypot telemetry + enrichment [2]
 I: Observability-driven anomaly detection [8].

TABLE I. PLACEMENT

 Data & Features Where It Runs / Pipeline

A NetFlow: bytes, packets,
ports, duration, protocol

Batch/near-real-time model service; scores
and metadata indexed to ELK for

dashboards

B Network flow sequences
/ temporal patterns

Sidecar or parallel analytics service to
ELK ingestion; sequence modelling

results visualised in Kibana (alerts come
from alerting rules/connectors)

C
Postfix mail log vectors

(program ratios over
short windows)

Logstash – Elasticsearch features;
PCA/LOF job produces anomaly scores

back into ELK

D Streaming NetFlow
features

Kafka – Spark ML – ELK,
clustering/classification upstream; ELK

stores alerts/contexts

E Multi-source user/app
behaviour logs

ELK on Kubernetes with distributed
evolutionary learners; semi-supervised

risk scores per user/app

F Cloud/service events and
health logs

ELK analytics – Drools action engine for
remediation/ticketing; feedback into ELK

G IDS alerts + IoT/sensor
metadata

Suricata inline; ELK for analytics; ML
module thresholds and routes alerts to

responders

H Cowrie/Dionaea/Glastopf
logs; VirusTotal results

Docker sensors – Beats/Logstash – ELK;
enrichment at ingest for analyst context

I Logs, traces, metrics
(SLO/SLA)

OpenTelemetry/Prometheus/Grafana
alongside ELK; correlation feeds SOC

triage

If tenants have labelled NetFlow samples, it is best to
favour XGBoost with ELK for explainable triage [14]. For

unlabelled logs (e.g., mail), PCA/LOF plugs in with minimal
ops change [11]. For bursting traffic or strict real-time SLAs, it
is best to move compute left with Kafka – Spark, then persist to
ELK [13]. In IoT/OT or inline prevention scenarios, to keep
Suricata close to the wire and use ELK for cross-tenant
analytics [4]. For user behaviour analytics at scale, deployment
of evolutionary ensembles on Kubernetes with tenant-aware
indices [15]. Where automation matters (SLA/SRE), the
connection of ELK detections to Drools for self-healing [3]. In
cloud-native apps, it is recommended to combine logs, traces,
and metrics with ELK to localise faults quickly across tenants
[8].

Different tenants bring different constraints. Where labels
are scarce, unsupervised/statistical approaches (e.g., PCA with
LOF) deliver quick wins and transparent thresholds [11].
Where labels exist (historical incidents, red-team traffic),
XGBoost offers strong accuracy with feature importances that
analysts can defend in tenant-facing reviews [6], [14]. Deep
models capture temporal effects but require tuning and careful
management of imbalances [14]. For behavioural baselining
across diverse users/apps, evolutionary ensembles proved
robust under missing/unbalanced data but raise governance
complexity in multitenant settings [15]. Finally, rule engines
convert detections into self-healing actions that reduce MTTR,
an operational outcome repeatedly emphasised in multi-cloud
scenarios [3], [4].

Table II. summarises why to pick each method and what to
watch for in multitenant operations (drift, imbalance,
governance).

TABLE II. TRADE-OFFS

 Strengths Limitations

A

High precision/recall on labelled
attack flows; feature importances
expose tenant-visible reasons in
ELK dashboards; integrates with
alert rules/connectors and case

workflows; supports ATT&CK-
mapped validation

Requires per-tenant
retraining/drift checks; label

scarcity outside exercises; risk of
cross-tenant leakage if models

are trained on mixed data
without isolation;

performance can swing during
traffic bursts

B

Models temporal behaviours
(beaconing, staged intrusion)

across streams; can run near real-
time with streaming features;

useful where sequence context
matters

Opaque explanations for tenant
reviews; heavier

compute/latency budgets;
sensitive to class imbalance and

ops variance across tenants; strict
model governance needed

C

Transparent thresholds/residuals
that analysts can defend to

tenants; quick to operationalise
in ELK; works with unlabelled
logs; easy per-tenant baselining

Seasonality and campaign surges
inflate false positives;

baselines must be tenant-
specific; scaling/window choices

impact stability; limited attack
semantics without enrichment

D

Upstream, stream-time detection
(Kafka – Spark) preserves ELK
ingestion under bursts; partitions
naturally by tenant/topic; flags
zero-day-like deviations fast

Concept drift/cluster churn
across tenants; choosing k per

tenant; requires mature
streaming SRE; harder to back-
explain to tenant stakeholders

E

Per-user/app risk scores robust to
missing/unbalanced data; scales
across tenants on Kubernetes;
good for insider/behavioural

deviations

Model sprawl and update
governance; privacy/RBAC
constraints for cross-tenant

platforms; explanations may be
coarse without added features;

needs tenant-scoped
indexes/cases

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 61 --

F

Deterministic, auditable
remediation; drives MTTR

down; easy to enforce per-tenant
guardrails (rate limits, blast-
radius caps, canary, rollback)

Rule brittleness/drift; continuous
upkeep; mis-scoped rules risk

cross-tenant impact; must
log/audit changes

G

Inline prevention + analytics;
multi-layer pipeline fits IoT/OT
tenants; elastic back-end (ELK)

for tenant reporting and
ATT&CK alignment

Device heterogeneity needs per-
tenant tuning; resource overhead

at the edge; false positives in
noisy environments; ops

complexity at scale

H

Rapid threat-intel harvest for
detection engineering; low

resource; improves rules/models;
can be scoped per tenant

Bias toward opportunistic scans;
strict isolation and egress allow-
listing required to prevent pivot;

not preventive by itself; data
may not reflect targeted

campaigns

I

Fuses logs/metrics/traces for
faster root cause and tenant

SLOs; natural fit with tenant-
scoped spaces and case

management

Cardinality explosion and
sampling trade-offs; correlation

noise across services; integration
complexity across multiple

tenants and platforms

If explainability for tenant-facing alerts is required,
XGBoost or PCA should be preferred, where feature
attributions/thresholds are visible in ELK [11], [14]. When
facing sparse labels, it is recommended to leverage PCA/LOF
or streaming clustering and add human-in-the-loop labelling
over time [11], [13]. For automated remediation (SRE/SLA) to
pair any detector with Drools rules to standardise actions and
evidence capture [3]. For multi-tenant microservices, it is the
combination of observability tooling with ELK, so each tenant
gets scoped, actionable context without leakage [8] and for
IoT/OT tenants, Suricata at the edge and consolidate analytics
in ELK to balance inline protection with cross-tenant insights
[4].

Recommendations for using the tables:

 Start with data reality: if a tenant offers labelled
NetFlow, Table I. points to XGBoost collocated with
ELK or upstream scoring; Table II. clarifies
accuracy/explainability and the need for drift
monitoring.

 If telemetry is unlabelled (e.g., mail/system logs), Table
I. routes you to PCA/LOF inside the ELK analytics
loop; Table II. warns about windowing/seasonality.

 For strict latency or bursting traffic, Table I. directs
detection to Kafka – Spark; Table II. highlights concept
drift handling and streaming ops maturity.

 In IoT/OT or inline contexts, Table I. keeps Suricata on
the wire with ELK analytics; Table II. flags tuning
across heterogeneous devices.

 Where automation is a goal, pair any detector with
Drools/playbooks (Table I.) and consult Table II. to
anticipate rule upkeep and audit needs.

 For tenant transparency, prefer methods with auditable
thresholds/attributions (PCA/LOF, tree ensembles) and
surface them in per-tenant Kibana spaces.

VIII. CONCLUSION
This review of 13 case studies shows that a multitenant

SOC offered as an open cloud service is most effective when it
couples an ELK-centred telemetry plane with fit-for-data ML
elements, validated and governed through attack

simulation/observability loops, and operationalised via
automation. Architecturally, the recurring backbone consists of
ELK on containers/Kubernetes, with optional Kafka and Spark
for stream-time analytics. This setup supports per-tenant
indices/RBAC, scales horizontally, and absorbs bursts without
degrading other tenants.

Methodologically, four families of approaches recur: (i) tree
ensembles (e.g., XGBoost) for labelled NetFlow, offering
accuracy and analyst-friendly feature importances; (ii) deep
models for sequence-aware traffic analysis where data and
tuning capacity exist; (iii) unsupervised/statistical methods
(e.g., PCA with LOF) for unlabelled log streams, delivering
fast, transparent anomaly surfacing; and (iv) hybrid streaming
(k-Means + k-NN) to catch zero-day behaviours without
overwhelming the indexer. For user and application behaviour,
evolutionary ensembles provide robustness under
missing/unbalanced data at a multitenant scale. Crucially,
several studies convert detections into deterministic actions
(self-healing with Drools) and assurance evidence (ATT&CK
mapped simulations; observability scoring), tightening MTTR
and trust with each tenant. In IoT/OT and smart-city contexts,
Suricata + ELK + ML balances inline prevention with cross-
tenant analytics; containerised honeypots plus enrichment
supply low-cost attacker intelligence to refine rules and models.
ELK also complements traditional SIEM by adding big-data
scale and analyst-oriented visualisation.

A multitenant SOC delivered as an open cloud service
should be anchored on ELK (Elasticsearch, Logstash, Kibana,
Beats), deployed on containers/Kubernetes for horizontal
scaling, per-tenant indices, and role-based access, ensuring
isolation and transparent dashboards for each tenant. Stream
processing should be placed in front of ELK when tenants
require strict latency or face bursty traffic, keeping indexing
stable while running online detection upstream. In IoT/OT
contexts, Suricata inline should be kept at the edge for
prevention/NSM and funnel enriched events to ELK for cross-
tenant analytics and reporting. Containerised honeypots can be
used to harvest attacker behaviours at low cost and feed
enrichment back into rules and models. The loop can then be
closed with attack simulation and observability scoring to
verify coverage against ATT&CK and demonstrate posture
improvements to each tenant.

Methods should be selected according to data realities and
explainability requirements: XGBoost fits settings with labelled
NetFlow and a need for defensible feature importances;
PCA/LOF or streaming clustering (k-Means + k-NN) suits
unlabelled or rapidly evolving logs; DNN/RNN are best
reserved for sequence-heavy traffic where tuning capacity
exists; and evolutionary ensembles are appropriate for tenant
specific user/application behaviour under missing or
imbalanced data. Detections should be integrated with rule
engines (e.g., Drools) to standardise remediation and reduce
MTTR. At the same time, drift monitoring, retraining
schedules, and audit trails should be instrumented so tenants
can review thresholds, attributions, and actions directly in
ELK/Kibana.

Findings reflect 13 WoS-sourced publications filtered
around ELK/OpenSearch, which may bias coverage toward

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 62 --

ELK-family stacks and under-represent other open pipelines;
only two OpenSearch-related items surfaced, limiting parity
analysis. The corpus mixes prototypes, deployments, and
surveys with non-uniform datasets and metrics, constraining
direct meta-comparison of algorithms. Several results derive
from single organisations, honeypots, or specific IoT/OT
testbeds, so external validity across sectors and threat mixes is
cautious. Some studies lack released datasets/code or consistent
evaluation protocols, which reduces reproducibility and hinders
exact benchmarking.

In conclusion, SOC architects and platform engineers
should prioritise standardised, privacy-preserving multitenant
benchmarks (flows, logs, traces) with ATT&CK-mapped
ground truth so detectors and pipeline placements can be
compared fairly. Data science/MLOps teams should build drift-
aware, explainable MLOps for the SOC, continuous drift
checks, tenant-visible attributions/thresholds, and full audit
trails, integrated with ELK spaces and case management, which
will improve transparency and trust. SREs and data platform
owners should conduct a systematic evaluation of Kafka –
Spark vs. ELK-side placement under bursty loads and tight
SLAs, including resource governance and cost-to-detect per
tenant. IoT/OT security teams, advancing multitenancy with
device-class–aware tuning, lightweight edge models, and strict
isolation in cross-tenant analytics is essential. Research groups
and vendors should focus on extending behaviour analytics
with evolutionary, federated, or semi-supervised learning to
handle missing labels and privacy constraints better. Security
leadership and governance, formalise automation safety
(rollback, blast-radius limits, canary remediation) and measure
MTTR versus false-action trade-offs should be a priority.
Finally, procurement and platform decision-makers should run
like-for-like OpenSearch vs. ELK evaluations for ML-assisted
anomaly detection in multitenant SOCs, and
observability/platform teams, deepen observability–security
fusion (logs/metrics/traces with ELK analytics) that will
accelerate tenant-scoped root-cause analysis.

ACKNOWLEDGMENT
Funded by the EU NextGenerationEU through the

Recovery and Resilience Plan for Slovakia under the project
No. 09I05-03-V02-00010.

REFERENCES

[1] R. Andrade and J. Torres, “Enhancing intelligence SOC with big data
tools,” Nov. 2018.

[2] A. Kyriakou and N. Sklavos, “Container-Based Honeypot
Deployment for the Analysis of Malicious Activity,” IEEE Xplore,
Oct. 01, 2018.

[3] H. Mfula and J. K. Nurminen, “Self-Healing Cloud Services in
Private Multi-Clouds,” 2018 International Conference on High
Performance Computing & Simulation (HPCS), Jul. 2018.

[4] B. P. Gautam and S. Norio, “SUESSA: Sustainable & Ultra-Elastic
Stack Security Architecture for Securing IoT Networks of Future
Smart Cities,” 2020 Eighth International Symposium on Computing
and Networking Workshops (CANDARW), Nov. 2020, pp. 387–390.

[5] Abigail, M. Xie, Ryan, C. Sterner, T. Choi, and N. Dong, “SDGen: A
Scalable, Reproducible and Flexible Approach to Generate Real
World Cyber Security Datasets,” Communications in computer and
information science, Jan. 2022, pp. 102–115.

[6] M. D. Poat, J. Lauret, and D. Fedele, “Flexible visualization of a 3rd
party Intrusion Prevention (Security) tool: A use case with the ELK
stack,” Journal of physics. Conference series, vol. 2438, no. 1, Feb.
2023, pp. 1–5.

[7] R. Currie and W. Yuan, “Building a Flexible and Resource-Light
Monitoring Platform for a WLCG-Tier2,” EPJ Web of Conferences,
vol. 295, 2024.

[8] Ummay Faseeha, H. J. Syed, F. Samad, Sehar Zehra, and H. Ahmed,
“Observability in Microservices: An In-Depth Exploration of
Frameworks, Challenges, and Deployment Paradigms,” IEEE Access,
Jan. 2025, pp. 1–1.

[9] M. Mičiak et al., “Effective Education System for Athletes Utilising
Big Data and AI Technology,” Data, vol. 10, no. 7, Jun. 2025, pp.
102–102.

[10] Nikola Štaffenová and Alžbeta Kucharčíková, “Digitalization in the
Human Capital Management,” vol. 11, no. 7, Jul. 2023, pp. 337–337.

[11] C.-P. Tran and D.-K. Tran, “Anomaly Detection in POSTFIX mail
log using Principal Component Analysis,” 2018 10th International
Conference on Knowledge and Systems Engineering (KSE), Nov.
2018, pp. 107–112.

[12] J. Halvorsen, J. Waite, and A. Hahn, “Evaluating the Observability of
Network Security Monitoring Strategies With TOMATO,” IEEE
Access, vol. 7, 2019, pp. 108304–108315.

[13] J. Jose, Talha Ahmed Khan, W. Akbar, Muhammad Afaq, and W.-C.
Song, “An ML Based Anomaly Detection System in real-time data
streams,” 2021 International Conference on Computational Science
and Computational Intelligence (CSCI), Dec. 2021.

[14] C.-T. Yang, Y.-W. Chan, J.-C. L. Liu, Endah Kristiani, and C.-H.
Lai, “Cyberattacks Detection and Analysis in a Network Log System
Using XGBoost with ELK Stack,” Aug. 23, 2021.

[15] G. Folino, C. Otranto Godano, and F. S. Pisani, “An ensemble-based
framework for user behaviour anomaly detection and classification
for cybersecurity,” The Journal of Supercomputing, Jan. 2023.

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 63 --

