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Abstract—Security Operations Centres increasingly operate 
in cloud environments and must serve multiple tenants while 
processing vast, heterogeneous telemetry. Signature- and rule 
based defences alone struggle with novel attack behaviours, alert 
volume, and dispersed context. This paper synthesises how open, 
cloud-based architectures combined with machine learning can 
support a multitenant Security Operations Centre designed as a 
managed service. A parametric keyword search using “Elastic 
Stack” or “OpenSearch” with cybersecurity keywords was 
conducted, and thirteen selected case studies were retained and 
analysed across architecture, methods, telemetry, and operating 
practices. 

Across studies, a recurring foundation appears: an open 
telemetry plane based on the Elastic technology stack, container 
orchestration for horizontal scale and tenant isolation, and 
optional streaming with Apache Kafka and Apache Spark for 
real-time workloads. Standard components include containerised 
honeypots with malware enrichment, intrusion detection engines 
such as Suricata at the edge for prevention and network security 
monitoring, and automated remediation through rule engines 
with explicit safety rails (rate limits, blast-radius caps, canary 
actions, and rollback). Observed learning approaches include 
gradient-boosted decision trees for labelled network flow records, 
deep learning for sequence-rich traffic, principal component 
analysis with local outlier factor for unlabelled system and 
application logs, streaming combinations of clustering and 
nearest-neighbour classification, and evolutionary ensembles for 
user behaviour analytics. Key implications include selecting 
methods based on data reality and explainability needs, placing 
computation to meet latency and burst constraints, and enforcing 
tenant-scoped alerting and case management. The paper offers a 
practical blueprint for building transparent, scalable, and tenant 
aware Security Operations Centres using open technologies and 
machine learning. 

I. INTRODUCTION 
Enterprises and public infrastructures now generate 

massive, heterogeneous telemetry: cloud control planes, 
microservices logs, network flows, OT/SCADA signals, and 
application traces. Conventional signature- and rule-based 
defences struggle in this setting because (i) novel/low-and-slow 
attacks evade static rules, (ii) alert volumes exceed analyst 
capacity, and (iii) context needed to triage an alert is scattered 
across systems. Open, cloud-native analytics stacks, especially 
the Elastic/ELK Stack (Elasticsearch, Logstash, Kibana, Beats), 
and, in some contexts, OpenSearch, are widely deployed to 
collect, normalise, index, and visualise such telemetry at scale, 

frequently forming the backbone of modern SOC pipelines. 
They feature prominently as transparent, extensible backbones 
for collection, indexing, visualisation, and ML-assisted 
detection in multitenant settings. Modern Security Operations 
Centres (SOCs) must detect advanced threats in robust, 
heterogeneous log streams while serving multiple tenants with 
distinct visibility and compliance needs. Traditional rule- and 
signature-driven tools struggle with data volume, diversity, and 
zero-day behaviours, which have accelerated adoption of open, 
cloud-ready analytics stacks that embed machine learning (ML) 
for anomaly detection and triage [1]–[8]. Broader evidence 
shows rapid uptake of data-driven and artificial-intelligence 
techniques in complex, high-stakes settings outside security, 
reinforcing the need for modern analytics in operations centres 
[9]. Successful adoption also depends on workforce readiness 
and the digitalisation of human-capital practices that support 
new analytics workflows, as shown in adjacent domains [10]. 

Open architectures also interoperate readily with 
containerised sensors and cloud-native observability, 
improving explainability (feature importances, thresholds, drift 
checks) and per-tenant transparency via scoped dashboards and 
role-based access [2], [6], [8]. These characteristics make them 
strong candidates for a multitenant SOC offered as an open 
cloud service. 

There are different reasons why AI/ML is critical for cyber 
anomaly detection. (i) AI/ML is sensitive to rare/novel patterns. 
Unsupervised and statistical, as well as semi-supervised 
methods, can identify deviations in unlabelled, evolving log 
streams where labelled attacks are scarce [11], [13]. (ii) It is 
used for sequence and context modelling since deep models 
can capture temporal dependencies in traffic and process 
behaviours that deterministic rules miss [14]. (iii) Tree-based 
models and statistical projections expose feature importances or 
residuals, helping analysts validate or dismiss alerts quickly in 
dashboards, which is essential in ensuring explainability for 
decision support [6], [11], [14]. (iv) Embedded in open 
pipelines, model outputs can drive self-healing actions or 
prioritised playbooks, shrinking mean-time-to-respond 
(MTTR) [3], [6]. Multitenant SOCs benefit from scoped 
dashboards and auditable ML logic (thresholds, clusters, 
features) so each tenant can self-inspect without data leakage 
[2], [6], [8]. In this paper, anomaly denotes a statistical or 
behavioral deviation; confirming maliciousness requires human 
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or playbook-driven triage with contextual correlation. ML 
surfaces candidates, it does not ‘detect zero-days’ by itself. 

At the same time, data diversity, drift, and operational 
constraints make it crucial to understand which ML approaches 
fit which telemetry and where to run them (stream vs. batch; 
edge vs. core), and how open architectures implement 
multitenancy and automation. Open deployments in the case 
studies, ranging from self-healing in multi-clouds [3] to 
containerised honeypots [2], IoT/IDS architectures for smart 
cities [4], and microservices observability [8], provide 
grounded evidence of what works and where it breaks. 

Using parametrically selected 13 case studies, the purpose 
of this article is to identify which ML/AI algorithms and open 
architectural patterns are used for anomaly/threat detection 
suitable for a multitenant, cloud-based SOC. Findings are 
synthesised across data types, pipelines, and outcomes, and 
highlight design implications for a tenant-aware managed 
service. 

II. METHODOLOGY

A parametric literature review was performed on the Web 
of Science (WoS) platform. Searches combined the static 
element “Elastic Stack/ELK Stack” or “OpenSearch” with 
additional keywords: AI, ML, SOC, anomaly detection, 
cybersecurity, security operations, security monitoring, and 
alerting. The “Elastic/ELK Stack” branch yielded 31 
publications, and the “OpenSearch” branch yielded 2. The 33 
results were screened by (i) English language, (ii) full-text 
availability, and (iii) thematic relevance to anomaly 
detection/ML within SOC pipelines. Thirteen publications met 
the criteria and form the sole evidence base for this article. 

III. OPEN CLOUD ARCHITECTURES FOR A MULTITENANT SOC

A. Self-healing multi-cloud services with ELK 
A containerised multi-agent architecture leverages ELK and 

a Drools rule engine, illustrating how detection can feed 
automated actions while maintaining SLA targets in multi-cloud 
environments. The proposed architecture is deployed across 
multi-clouds, with Filebeat – Logstash – Elasticsearch – Kibana 
for telemetry and a Drools rules engine for diagnosis and 
remediation [3]. All automated actions must be guarded by 
safety rails, per-tenant rate limits, blast-radius caps, canary 
execution, and automatic rollback, so a faulty fix cannot 
propagate across tenants. Filebeat standardises collection; 
Logstash applies input/filter/output pipelines; Elasticsearch 
provides distributed search/analytics; Kibana acts as the 
management/visualisation plane. This design shows how 
detection outputs can trigger automated corrective actions (e.g., 
service restarts, ticketing), turning ML/statistical signals into 
self-healing behaviour suitable for multitenant SLAs. 

B. Containerized honeypots with ELK 
Cowrie (SSH/Telnet), Dionaea (multi-protocol), and Glastopf 

(web) were deployed as Docker containers, shipping JSON logs 
with Beats, processed in Logstash, indexed in Elasticsearch, and 
visualised in Kibana; alerts are generated by the platform’s 

alerting rules/connectors (not the dashboards). VirusTotal 
enrichment was integrated for captured malware, and the 
deployment ran for 92 days, collecting 2,750,654 connection 
attempts with rich protocol/credential/command distributions. 
Operational caveat: honeypots disproportionately capture 
opportunistic scanning and commodity malware; they must be 
strictly isolated (network segmentation, default-deny egress 
with allow-lists, fake/non-production credentials) and monitored 
for pivot attempts to prevent lateral movement into tenant 
environments. That demonstrates a lightweight, horizontally 
scalable threat-intel layer that plugs directly into SOC 
workflows and can be scoped per tenant via index/role policies 
[2]. 

C. Elastic sustainability for IoT smart cities 
SUESSA, a Sustainable & Ultra-Elastic Stack Security 

Architecture, places Suricata (IDS/IPS/NSM) alongside ELK 
and an ML-based alert module to classify/threshold events 
before notifying administrators [4]. The architecture addresses 
three pain points: sustainability, cohesiveness, and automation 
in high-volume IoT settings by layering traffic 
pipelining/monitoring, multi-stage filtering, and visualisation. 
Several background insights on smart-city risks and big-data 
security are summarised as cited in [4]. 

D. Microservices observability 
A taxonomy over purpose, parameters, scope 

(system/service/network), deployment (Kubernetes, Docker), 
and tooling (OpenTelemetry, Prometheus, Grafana, 
Jaeger/Loki) is proposed as a result of a survey involving 
Observability frameworks for containerised microservices [8]. 
In SOC terms, these controls complement ELK by providing 
distributed tracing and metrics that, combined with logs, support 
ML-driven anomaly detection and tenant-scoped visibility in 
cloud-native environments. The survey of microservices 
observability underscores combining logs, metrics, and traces 
with ML for anomaly detection at the system, service, and 
network levels. The toolbox (e.g., OpenTelemetry, Prometheus, 
Grafana, Jaeger/Loki) complements ELK in cloud-native SOCs 
and supports tenant scoping at the platform layer [8]. 

E. SIEM complement, validation, and observability scoring 

ELK is analysed as a big-data complement to traditional 
SIEM for correlation, alerting, and analytics in CSIRT/SOC 
operations [1]; works show validation loops via attack 
simulation (e.g., AttackIQ) feeding ELK dashboards [5] and 
observability scoring for SCADA/OT security with ATT&CK 
mapped simulations [12]. Common patterns include per-tenant 
indices and RBAC in ELK, horizontal scaling (Kubernetes), and 
streaming buffers (Kafka – Spark) to protect indexing during 
bursts, key to maintaining tenant SLAs without cross-tenant 
impact [2], [3], [4], [6], [7], [13], [15]. Alerting rules, 
connectors, and case management must also be tenant-scoped 
(e.g., separate spaces or case projects) to prevent cross-tenant 
data exposure during triage. 
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IV. MACHINE LEARNING AND AI METHODS USED FOR SOC
ANOMALY DETECTION 

1) Supervised tree-based learning (XGBoost): XGBoost is
used for NetFlow anomaly/threat prediction with interpretable 
feature importances (e.g., ports, bytes, duration) and analyst 
friendly outputs rendered in Kibana [14]. Strengths include 
high accuracy on labelled traffic and explainability that 
support triage; limitations include label scarcity and drift, 
necessitating retraining and threshold reviews. 

2) Deep learning: DNN and RNN are evaluated on traffic
streams; performance depends on data balance/feature 
engineering and can lag tree ensembles on attack-only subsets. 
Applied to traffic sequences to model temporal dependencies 
and complex feature interactions [14]. Useful on mixed 
streams and sequence-heavy tasks; requires careful class 
balance, feature engineering, and runtime resources. 

3) Unsupervised/statistical: PCA with a high-quantile
threshold and LOF corroboration detects outliers in Postfix 
logs; ELK visualises time series and feature vectors for analyst 
triage. For Postfix mail logs, ELK assembles program-ratio 
vectors over short windows; PCA separates normal and 
abnormal subspaces and uses a high-quantile threshold on 
residual errors to flag anomalies; LOF provides outlier 
corroboration across k values [11]. Advantages include label 
efficiency and transparency; tuning windows/scaling is 
critical. 

4) Hybrid streaming: In Kafka – Spark ML – ELK
pipelines, k-Means clusters online traffic, while k-NN rapidly 
classifies new points, emitting detections to ELK for 
persistence and dashboards [13]. That keeps real-time 
detection upstream from the indexer to protect ingestion when 
traffic spikes. 

5) Ensemble/evolutionary methods for UBA: A Kubernetes
hosted ELK framework pairs distributed evolutionary 
ensembles with semi-supervised scoring to flag deviations in 
user/application behaviour at scale, explicitly addressing 
missing/unbalanced data [15]. That is suited to multitenant 
environments where behaviours differ by tenant and data 
completeness varies. 

6) Rule-based automation: Drools rules map detection
outputs to self-healing actions in multi-cloud services, 
reducing time-to-mitigation and human toil. Self-healing rules 
convert detections into deterministic actions (restarts, ticket 
creation, evidence collation), reducing responder toil and 
latency in multi-cloud SOC operations [3]. Rules are 
transparent and easy to extend; upkeep is needed as 
environments evolve. 

V. DATA TYPES AND TELEMETRY SOURCES 

1) Network telemetry (NetFlow): Bytes, packets, ports,
duration, and protocol are effective for supervised and 
sequence-based models; classic worm/DDoS exemplars are 
used for evaluation and dashboard validation. 
Source/destination ports, bytes, packets, duration, protocol, 
and interface IDs are often most predictive for supervised 

models; visual validation in ELK helps investigate flagged 
flows [14]. 

2) System/application logs: Postfix program ratios over
short windows feed PCA/LOF to surface spam/abuse 
anomalies, with ELK for correlation and visualisation [11]. 

3) IoT/IDS signals: Suricata alerts and diverse sensor
streams underpin SUESSA’s multi-layer filtering and ML 
alerting workflow [4]. 

4) Honeypot data: SSH/Telnet/HTTP/SMB attempts,
credential/command distributions, and malware samples 
enriched with VirusTotal enhance knowledge of attacker 
behaviour and families. Credentials, command sequences, 
protocol distributions, and malware samples (with VirusTotal 
results) illuminate attacker behaviour and support rule/model 
updates [2]. 

5) Microservices signals: Logs, traces, metrics for system-,
service-, and network-level observability; ML methods include 
clustering, thresholding, and supervised classifiers depending 
on signal type [8]. 

VI. OPERATIONAL PATTERNS THAT MAKE ML ACTIONABLE

1) Stream-before-index: Kafka – Spark put in front of ELK
for compute-heavy or bursty ML, helps indexing remain stable 
and detections arrive with low latency [13]. 

2) Enrichment: Threat intel (e.g., VirusTotal) and context
(geo, asset tags, tenant IDs) attached during Logstash/ingest 
improves analyst decisions without extra queries [2], [6]. 

3) Validation loops: Attack simulation and observability
scoring can be used (ATT&CK-mapped) to validate coverage, 
calibrate thresholds, and demonstrate control efficacy to each 
tenant [12], [5]. 

4) Automation: Detections can be bridged to
Drools/playbooks for self-healing and case creation with 
supporting evidence, shortening MTTR and standardising 
responses [3], [4]. 

5) Tenant isolation: Enforced per-tenant indices/roles,
resource quotas, and horizontal scaling on Kubernetes help 
avoid noisy neighbour effects and preserve data boundaries 
[2], [15], [6], [7], [8]. 

VII. COMPARISON

SOCs built as open cloud services face high heterogeneity 
in telemetry (NetFlow, system/app logs, IDS alerts, 
traces/metrics), variable latency budgets, and uneven label 
availability across tenants. Directly comparing algorithms 
without anchoring them in data reality and pipeline placement 
leads to “algorithm shopping” that rarely survives production. 
The two tables in this section therefore serve complementary 
purposes: Table 1 maps each method to the telemetry it needs 
and where it runs in an open stack (ELK, Kafka – Spark, 
Kubernetes), and Table 2 summarises strengths and limitations 
that matter for multitenant operations, such as explainability, 
drift sensitivity, and operational overhead. Together, they 
translate the 13 case studies into a design aid for selecting 
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methods that are feasible, explainable, and maintainable in 
SOC. 

Case studies show that where detection runs is as important 
as what model is used. For example, pushing compute “left” 
with Kafka – Spark absorbs bursts and preserves indexing 
throughput when near-real-time action is needed [13], while 
keeping analytics beside indexing enables tight dashboard 
driven triage and record-keeping in ELK [1], [2], [6], [7], [11], 
[14]. Inline controls in IoT/OT (e.g., Suricata) must sit on the 
traffic path and then feed ELK for cross-tenant analytics [4]. 
The placement view also exposes multitenancy mechanics, per 
tenant indices/RBAC, stream partitioning, and container 
orchestration, which several studies relied on to prevent noisy 
neighbour effects and preserve data boundaries [2], [3], [15], 
[6], [8]. 

Table I. shows what telemetry each method consumes and 
where it typically runs within open SOC stacks (ELK, Kafka – 
Spark, Kubernetes). It can be used to map tenants’ data realities 
to the right computational tier. 

The Algorithms in Table I. and II. include: 

 A: XGBoost (supervised) [14] 
 B: DNN / RNN (deep) [14] 
 C: PCA (+ LOF corroboration) [11] 
 D: k-Means + k-NN (hybrid streaming) [13] 
 E: Evolutionary ensemble UBA [15] 
 F: Rule-based self-healing (Drools) [3] 
 G: Suricata + ML alert module (SUESSA) [4] 
 H: Honeypot telemetry + enrichment [2] 
 I: Observability-driven anomaly detection [8]. 

TABLE I.  PLACEMENT 

 Data & Features Where It Runs / Pipeline 

A NetFlow: bytes, packets,  
ports, duration, protocol 

Batch/near-real-time model service; scores 
and metadata indexed to ELK for 

dashboards 

B Network flow sequences 
/ temporal patterns 

Sidecar or parallel analytics service to 
ELK ingestion; sequence modelling 

results visualised in Kibana (alerts come 
from alerting rules/connectors) 

C 
Postfix mail log vectors 

(program ratios over 
short windows) 

Logstash – Elasticsearch features; 
PCA/LOF job produces anomaly scores 

back into ELK 

D Streaming NetFlow 
features 

Kafka – Spark ML – ELK, 
clustering/classification upstream; ELK 

stores alerts/contexts 

E Multi-source user/app 
behaviour logs 

ELK on Kubernetes with distributed 
evolutionary learners; semi-supervised 

risk scores per user/app 

F Cloud/service events and 
health logs 

ELK analytics – Drools action engine for 
remediation/ticketing; feedback into ELK 

G IDS alerts + IoT/sensor 
metadata 

Suricata inline; ELK for analytics; ML 
module thresholds and routes alerts to 

responders 

H Cowrie/Dionaea/Glastopf 
logs; VirusTotal results 

Docker sensors – Beats/Logstash – ELK; 
enrichment at ingest for analyst context 

I Logs, traces, metrics 
(SLO/SLA) 

OpenTelemetry/Prometheus/Grafana 
alongside ELK; correlation feeds SOC 

triage 
 

If tenants have labelled NetFlow samples, it is best to 
favour XGBoost with ELK for explainable triage [14]. For 

unlabelled logs (e.g., mail), PCA/LOF plugs in with minimal 
ops change [11]. For bursting traffic or strict real-time SLAs, it 
is best to move compute left with Kafka – Spark, then persist to 
ELK [13]. In IoT/OT or inline prevention scenarios, to keep 
Suricata close to the wire and use ELK for cross-tenant 
analytics [4]. For user behaviour analytics at scale, deployment 
of evolutionary ensembles on Kubernetes with tenant-aware 
indices [15]. Where automation matters (SLA/SRE), the 
connection of ELK detections to Drools for self-healing [3]. In 
cloud-native apps, it is recommended to combine logs, traces, 
and metrics with ELK to localise faults quickly across tenants 
[8]. 

Different tenants bring different constraints. Where labels 
are scarce, unsupervised/statistical approaches (e.g., PCA with 
LOF) deliver quick wins and transparent thresholds [11]. 
Where labels exist (historical incidents, red-team traffic), 
XGBoost offers strong accuracy with feature importances that 
analysts can defend in tenant-facing reviews [6], [14]. Deep 
models capture temporal effects but require tuning and careful 
management of imbalances [14]. For behavioural baselining 
across diverse users/apps, evolutionary ensembles proved 
robust under missing/unbalanced data but raise governance 
complexity in multitenant settings [15]. Finally, rule engines 
convert detections into self-healing actions that reduce MTTR, 
an operational outcome repeatedly emphasised in multi-cloud 
scenarios [3], [4]. 

Table II. summarises why to pick each method and what to 
watch for in multitenant operations (drift, imbalance, 
governance). 

TABLE II. TRADE-OFFS 

 Strengths Limitations 

A 

High precision/recall on labelled 
attack flows; feature importances 
expose tenant-visible reasons in 
ELK dashboards; integrates with 
alert rules/connectors and case 

workflows; supports ATT&CK-
mapped validation 

Requires per-tenant 
retraining/drift checks; label 

scarcity outside exercises; risk of 
cross-tenant leakage if models 

are trained on mixed data 
without isolation;  

performance can swing during 
traffic bursts 

B 

Models temporal behaviours 
(beaconing, staged intrusion) 

across streams; can run near real-
time with streaming features; 

useful where sequence context 
matters 

Opaque explanations for tenant 
reviews; heavier 

compute/latency budgets; 
sensitive to class imbalance and 

ops variance across tenants; strict 
model governance needed 

C 

Transparent thresholds/residuals 
that analysts can defend to 

tenants; quick to operationalise 
in ELK; works with unlabelled 
logs; easy per-tenant baselining 

Seasonality and campaign surges 
inflate false positives;  

baselines must be tenant-
specific; scaling/window choices 

impact stability; limited attack 
semantics without enrichment 

D 

Upstream, stream-time detection 
(Kafka – Spark) preserves ELK 
ingestion under bursts; partitions 
naturally by tenant/topic; flags 
zero-day-like deviations fast 

Concept drift/cluster churn 
across tenants; choosing k per 

tenant; requires mature 
streaming SRE; harder to back-
explain to tenant stakeholders 

E 

Per-user/app risk scores robust to 
missing/unbalanced data; scales 
across tenants on Kubernetes; 
good for insider/behavioural 

deviations 

Model sprawl and update 
governance; privacy/RBAC 
constraints for cross-tenant 

platforms; explanations may be 
coarse without added features; 

needs tenant-scoped 
indexes/cases 

ISSN 2305-7254________________________________________PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 61 ----------------------------------------------------------------------------



F 

Deterministic, auditable 
remediation; drives MTTR 

down; easy to enforce per-tenant 
guardrails (rate limits, blast-
radius caps, canary, rollback) 

Rule brittleness/drift; continuous 
upkeep; mis-scoped rules risk 

cross-tenant impact; must 
log/audit changes 

G 

Inline prevention + analytics; 
multi-layer pipeline fits IoT/OT 
tenants; elastic back-end (ELK) 

for tenant reporting and 
ATT&CK alignment 

Device heterogeneity needs per-
tenant tuning; resource overhead 

at the edge; false positives in 
noisy environments; ops 

complexity at scale 

H 

Rapid threat-intel harvest for 
detection engineering; low 

resource; improves rules/models; 
can be scoped per tenant 

Bias toward opportunistic scans; 
strict isolation and egress allow-
listing required to prevent pivot; 

not preventive by itself; data 
may not reflect targeted 

campaigns 

I 

Fuses logs/metrics/traces for 
faster root cause and tenant 

SLOs; natural fit with tenant-
scoped spaces and case 

management 

Cardinality explosion and 
sampling trade-offs; correlation 

noise across services; integration 
complexity across multiple 

tenants and platforms 

If explainability for tenant-facing alerts is required, 
XGBoost or PCA should be preferred, where feature 
attributions/thresholds are visible in ELK [11], [14]. When 
facing sparse labels, it is recommended to leverage PCA/LOF 
or streaming clustering and add human-in-the-loop labelling 
over time [11], [13]. For automated remediation (SRE/SLA) to 
pair any detector with Drools rules to standardise actions and 
evidence capture [3]. For multi-tenant microservices, it is the 
combination of observability tooling with ELK, so each tenant 
gets scoped, actionable context without leakage [8] and for 
IoT/OT tenants, Suricata at the edge and consolidate analytics 
in ELK to balance inline protection with cross-tenant insights 
[4]. 

Recommendations for using the tables: 

 Start with data reality: if a tenant offers labelled 
NetFlow, Table I. points to XGBoost collocated with 
ELK or upstream scoring; Table II. clarifies 
accuracy/explainability and the need for drift 
monitoring. 

 If telemetry is unlabelled (e.g., mail/system logs), Table 
I. routes you to PCA/LOF inside the ELK analytics 
loop; Table II. warns about windowing/seasonality. 

 For strict latency or bursting traffic, Table I. directs 
detection to Kafka – Spark; Table II. highlights concept 
drift handling and streaming ops maturity. 

 In IoT/OT or inline contexts, Table I. keeps Suricata on 
the wire with ELK analytics; Table II. flags tuning 
across heterogeneous devices. 

 Where automation is a goal, pair any detector with 
Drools/playbooks (Table I.) and consult Table II. to 
anticipate rule upkeep and audit needs. 

 For tenant transparency, prefer methods with auditable 
thresholds/attributions (PCA/LOF, tree ensembles) and 
surface them in per-tenant Kibana spaces. 

VIII. CONCLUSION 
This review of 13 case studies shows that a multitenant 

SOC offered as an open cloud service is most effective when it 
couples an ELK-centred telemetry plane with fit-for-data ML 
elements, validated and governed through attack 

simulation/observability loops, and operationalised via 
automation. Architecturally, the recurring backbone consists of 
ELK on containers/Kubernetes, with optional Kafka and Spark 
for stream-time analytics. This setup supports per-tenant 
indices/RBAC, scales horizontally, and absorbs bursts without 
degrading other tenants. 

Methodologically, four families of approaches recur: (i) tree 
ensembles (e.g., XGBoost) for labelled NetFlow, offering 
accuracy and analyst-friendly feature importances; (ii) deep 
models for sequence-aware traffic analysis where data and 
tuning capacity exist; (iii) unsupervised/statistical methods 
(e.g., PCA with LOF) for unlabelled log streams, delivering 
fast, transparent anomaly surfacing; and (iv) hybrid streaming 
(k-Means + k-NN) to catch zero-day behaviours without 
overwhelming the indexer. For user and application behaviour, 
evolutionary ensembles provide robustness under 
missing/unbalanced data at a multitenant scale. Crucially, 
several studies convert detections into deterministic actions 
(self-healing with Drools) and assurance evidence (ATT&CK 
mapped simulations; observability scoring), tightening MTTR 
and trust with each tenant. In IoT/OT and smart-city contexts, 
Suricata + ELK + ML balances inline prevention with cross-
tenant analytics; containerised honeypots plus enrichment 
supply low-cost attacker intelligence to refine rules and models. 
ELK also complements traditional SIEM by adding big-data 
scale and analyst-oriented visualisation. 

A multitenant SOC delivered as an open cloud service 
should be anchored on ELK (Elasticsearch, Logstash, Kibana, 
Beats), deployed on containers/Kubernetes for horizontal 
scaling, per-tenant indices, and role-based access, ensuring 
isolation and transparent dashboards for each tenant. Stream 
processing should be placed in front of ELK when tenants 
require strict latency or face bursty traffic, keeping indexing 
stable while running online detection upstream. In IoT/OT 
contexts, Suricata inline should be kept at the edge for 
prevention/NSM and funnel enriched events to ELK for cross-
tenant analytics and reporting. Containerised honeypots can be 
used to harvest attacker behaviours at low cost and feed 
enrichment back into rules and models. The loop can then be 
closed with attack simulation and observability scoring to 
verify coverage against ATT&CK and demonstrate posture 
improvements to each tenant. 

Methods should be selected according to data realities and 
explainability requirements: XGBoost fits settings with labelled 
NetFlow and a need for defensible feature importances; 
PCA/LOF or streaming clustering (k-Means + k-NN) suits 
unlabelled or rapidly evolving logs; DNN/RNN are best 
reserved for sequence-heavy traffic where tuning capacity 
exists; and evolutionary ensembles are appropriate for tenant 
specific user/application behaviour under missing or 
imbalanced data. Detections should be integrated with rule 
engines (e.g., Drools) to standardise remediation and reduce 
MTTR. At the same time, drift monitoring, retraining 
schedules, and audit trails should be instrumented so tenants 
can review thresholds, attributions, and actions directly in 
ELK/Kibana. 

Findings reflect 13 WoS-sourced publications filtered 
around ELK/OpenSearch, which may bias coverage toward 
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ELK-family stacks and under-represent other open pipelines; 
only two OpenSearch-related items surfaced, limiting parity 
analysis. The corpus mixes prototypes, deployments, and 
surveys with non-uniform datasets and metrics, constraining 
direct meta-comparison of algorithms. Several results derive 
from single organisations, honeypots, or specific IoT/OT 
testbeds, so external validity across sectors and threat mixes is 
cautious. Some studies lack released datasets/code or consistent 
evaluation protocols, which reduces reproducibility and hinders 
exact benchmarking. 

In conclusion, SOC architects and platform engineers 
should prioritise standardised, privacy-preserving multitenant 
benchmarks (flows, logs, traces) with ATT&CK-mapped 
ground truth so detectors and pipeline placements can be 
compared fairly. Data science/MLOps teams should build drift-
aware, explainable MLOps for the SOC, continuous drift 
checks, tenant-visible attributions/thresholds, and full audit 
trails, integrated with ELK spaces and case management, which 
will improve transparency and trust. SREs and data platform 
owners should conduct a systematic evaluation of Kafka – 
Spark vs. ELK-side placement under bursty loads and tight 
SLAs, including resource governance and cost-to-detect per 
tenant. IoT/OT security teams, advancing multitenancy with 
device-class–aware tuning, lightweight edge models, and strict 
isolation in cross-tenant analytics is essential. Research groups 
and vendors should focus on extending behaviour analytics 
with evolutionary, federated, or semi-supervised learning to 
handle missing labels and privacy constraints better. Security 
leadership and governance, formalise automation safety 
(rollback, blast-radius limits, canary remediation) and measure 
MTTR versus false-action trade-offs should be a priority. 
Finally, procurement and platform decision-makers should run 
like-for-like OpenSearch vs. ELK evaluations for ML-assisted 
anomaly detection in multitenant SOCs, and 
observability/platform teams, deepen observability–security 
fusion (logs/metrics/traces with ELK analytics) that will 
accelerate tenant-scoped root-cause analysis. 
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