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Abstract—In this paper, we present a novel framework that inte-
grates Machine Learning (ML) with Lean Construction practices
to address construction industry challenges in quality management
and waste reduction. While Lean Construction offers solutions,
its effectiveness is often limited by manual processes such as data
collection and processing. Our primary novelty is the application
of ML-based methods to predict contractor performance using
historical data, an approach not widely explored previously. We
address this by developing a custom web application to automate
the collection of audit data from a large-scale real-world oil
refinery construction project spanning 586 hectares. This data
was employed to train several ML models to predict contractor
performance grades. Our results demonstrate the framework’s
effectiveness, with the models achieving high predictive accuracy
of over 85%, showing their potential to provide reliable, data-
driven insights.

Index Terms—Lean Construction, Machine Learning, Predictive
Analytics, Contractor Performance

I. INTRODUCTION

Construction projects are inherently complex and often struggle

with quality due to the dynamic interaction of tasks, disciplines,

and stakeholders. With typical cost overruns between 15% and

28% due to poor planning and inefficient management, the

industry increasingly turns to tools that emphasize automation,

digitization, and intelligent data processing. Within this shift,

Lean Construction methodology stands out as a powerful frame-

work for continuous improvement, offering formal performance

metrics and the ability to eliminate waste, potentially resolving

up to 90% of defects [1]. The integration of digital tools for

construction data collection and processing further enhance

Lean practices by improving safety compliance and enabling

near real-time project quality monitoring [2]. These tools also

facilitate the incorporation of Artificial Intelligence (AI) and

Machine Learning (ML) to create predictive models that support

smarter data-driven planning from the earliest stages of a

project.

As the construction sector embraces data-rich environments,

ML emerges as a cornerstone of intelligent Lean practices.

Its ability to process vast amounts of data collected at the

construction site and detect hidden patterns allows project

teams to anticipate issues before they escalate. Unlike tra-

ditional construction data processing approaches, which are

largely descriptive, ML empowers Lean systems to become

more adaptive, efficient, and responsive. The integration of

ML techniques can improve operational efficiency and optimize

resource allocation. The capability of ML models to analyze

real-time site data can revolutionize construction planning and

forecasting. Using historical data analytics, these models can

generalize across different projects and provide predictive in-

sights to improve projects’ outcomes. This is critical, given

that traditional construction methods often struggle to take full

advantage of Lean methodology frameworks.

In this paper, we investigate the employment of ML-based

methods to improve the Lean methodology and support its

application in a real construction project. To facilitate the use

of these ML-based methods, we develop an accessible web

application that allows to automate the data collection and

processing from the construction site, and integrates studied

ML-based methods to grade the quality of work conducted

by contractors and produce predictions on the future grades

based on the historical data. To verify our approach, we present

a case study of various ML-based methods with the data

collected earlier in a real-world construction project. Results

show promising performance, with predicted grades accuracy

exceeding 80%. These findings contribute to the development

of practical tools aimed at enhancing efficiency and quality in

construction projects while reinforcing Lean principles through

data-driven decision-making.

This paper makes three primary contributions: (1) we inves-

tigate and propose a novel application of ML-based methods

to advance Lean construction by predicting contractor perfor-

mance grades using historical data from a real-world project,

addressing a gap in existing research; (2) to support this

methodology, we designed and implemented a web applica-

tion to digitize Lean workflows, which facilitates automated

data acquisition, processing, and preparation for ML model

input; (3) we conducted a case study to identify the most

effective ML-based methods for predicting contractor grades

and to demonstrate a practical use case where insights derived

from historical data collected in a real construction project

can support more informed contractor selection. The practical

impact of this approach relies on objective, data-driven evidence

rather than abstract qualitative assessments, with the potential

to reduce project costs and enhance overall quality.

Our work strengthens the Lean Construction philosophy by

inserting data-driven intelligence into continuous improvement

cycles. ML models transform audit data into predictive insights,

allowing a prompt identification of performance risks and
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TABLE I. COMPARISON OF STUDIES INTEGRATING ML INTO CONSTRUCTION SETTINGS

Studies\Criteria Used ML Method Integration with
Lean Construction
Frameworks

Performance Predic-
tion Using Historical
Data

Providing Digital
Tools for Data Col-
lection/Processing

Hu et al. (2020) [3] Data Analysis Decision
Support Tool

Lean waste reduction
framework

No No

Velezmoro Abanto et
al. (2021) [4]

Artificial Neural Net-
works

Lean scheduling models No No

Rahaman et al. (2022)
[5]

Big Data Analysis No direct Lean integra-
tion

No No

Harichandran et al.
(2020) [6]

Support Vector Machine No direct Lean integra-
tion

No No

Liu et al. (2019) [7] Bayesian infer-
ence–based method

No direct Lean integra-
tion

No No

Florez et al. (2020)
[8]

K-nearest neighbor,
Deep Neural Network

Productivity
improvement (Lean
methodology)

Yes, for task produc-
tivity

No

Mostofi et al. (2021)
[9]

Node2vec-based recom-
mendation system

No direct Lean integra-
tion

Yes, contractor
recommendation
based on historical
performance data

Yes, digital contractor
records

Sholeh et al. (2022)
[10]

Particle Swarm Opti-
mization

No direct Lean integra-
tion

No No

Lam et al. (2020) [11] Support Vector
Machine, Artificial
Neural Networks

No direct Lean integra-
tion

No No

This Study (2025) Random Forest,
XGBoost, SVR,
LightGBM

Lean quality auditing Yes, prediction
of contractor
performance grades

Yes, digital platform
for audit data collec-
tion

preventing rework. This are two key aspects of waste reduction

– a major goal of Lean practices. Moreover, by providing

standardized, objective assessments of contractor performance,

our tools advance Lean´s goal of fostering transparency and

learning across projects, representing a high impact contribution

toward the digital transformation of Lean practices.

II. RELATED WORK

The integration of Lean methodologies with digital tools and

ML is redefining how construction projects are managed. Stud-

ies confirm that Lean principles significantly improve project

performance by increasing efficiency and reducing costs, while

ML helps align project goals with these principles for more

successful outcomes. The synergy between Lean and data

analysis enables smarter resource planning and execution, as

emphasized by Hu et al. [3] and Velezmoro-Abanto et al. [4].

Specific data-driven applications further illustrate this trend; for

example, Rahaman et al. [5] used Big Data analytics to enhance

operational efficiency, while others have applied Support Vector

Machines (SVM) to infer construction activities in real-time [6]

or developed decision-support systems to optimize equipment

management [7].

Another critical application of ML in construction is predict-

ing and mitigating project risks. Researchers have developed

frameworks to anticipate project delays by analyzing historical

data, reflecting Lean’s emphasis on data-driven decisions [12],

[13]. Beyond delays, ML-powered predictive analytics can

forecast trends in costs and labor productivity [14], and other

work demonstrates how ML enhances the adaptability and

performance of Lean strategies [8]. These approaches often

feed into larger Lean learning frameworks that integrate data

streams throughout the project lifecycle to support continu-

ous improvement and proactive decision-making [15]. This

focus on performance extends to contractor analysis, where

ML also plays a growing role. Recent work in this area in-

cludes performance-driven contractor recommendation systems

[9], AI-based methods using Particle Swarm Optimization to

find optimal contractor combinations [10], and the use of

unsupervised learning to uncover hidden performance patterns

for improved risk management [16]. In related studies, ML

algorithms have been used to forecast labor needs for better

resource allocation [17], and SVM models have been applied

to classify contractors, enhancing transparency in the pre-

qualification process [11].

Table I summarizes the prior studies, presented in this sec-

tion, that have made significant progress in improving Lean

frameworks with the use of ML techniques. To the best of our

knowledge, predicting grades for the contractors based on Lean

Construction practices driven by the available historical data has

not been fully explored. The innovation of this research lies in

the integration of ML-based methods to enhance the contractor

selection process in order to improve the overall quality of the

project. This study contributes to the development of intelligent

tools that enable the practical application of Lean Construction

methodologies.

III. IMPROVING LEAN CONSTRUCTION WITH DATA

COLLECTION TOOLS IN REAL PROJECT

A. Dos Bocas Oil Refinery Construction

The Dos Bocas Oil Refinery is a large-scale construction project

located in the southern Mexican state of Tabasco. The project

spans approximately 586 hectares and represents one of the

most ambitious infrastructure initiatives in the country. Con-

struction was organized into six packages. These packages were

further subdivided into forty-seven construction fronts, referred

to in the project as Work Breakdown Structures (WBS) This
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hierarchical structure is common in large-scale construction

projects For the purposes of this research, we investigated the

data collected in the construction stages of Integration Services,

Buildings, and Internal Urbanization.

B. Lean Methodology for Work Quality Evaluation

The project’s Lean methodology, adapted from Gonzalez and

Solis [18], evaluates quality, productivity, and safety through

randomized audits. These audits use technical rubrics with

specific criteria to assess compliance with standards, generating

Key Performance Indicators (KPIs) across five classes: Equip-
ment, Materials, Processes, Project Documents, and Safety.

Performance its assessed grading several criteria for each KPI.

For each criteria a three-point grading scale is used: (“40 –
Does not meet the criteria”, “70 – Meets the criteria”, and

“100 – Exceeds the criteria”). As an example, the rubric for

the Processes class activity KPI Concrete Casting evaluates

multiple criteria such as: the “Speed of the concrete truck
barrel”, “Concrete casting height, ” and “Concrete vibration
time”, among others; which directly influences the overall

quality of the work.

C. Web Application for Construction Data Collection and
Processing

One of the major challenges in implementing Lean Construction

practices is the reliance on data collection and the lack of stan-

dardized processes. To address these issues, a web application

was developed to support real-time data acquisition from the

construction site. The primary objective of the application is

to enable auditors to perform assessments on-site and submit

data directly, thereby streamlining both the evaluation and

data analysis workflows. The application digitizes Lean rubrics

into standardized electronic forms. Each form clearly outlines

the audit criteria and allows users to assign grades from a

predefined drop-down menu. All collected data is automatically

processed to generate audit scores, contractor grades, class-level

grades, and overall project performance indicators. The web

application was deployed at the Dos Bocas Oil Refinery site

for nearly three years, from 2021 to 2023. During this period

83 contractors were evaluated, generating 5,818 audit reports.

IV. IMPROVING LEAN CONSTRUCTION WITH ML

PREDICTION BASED ON HISTORICAL DATA

One of the key advantages of digitizing the Lean methodology

through a web application is the capacity to collect and analyze

large volumes of structured, high-quality data. In this study,

the data gathered from the Dos Bocas project was leveraged to

train ML models aimed at predicting contractor performance in

future construction activities. Specifically, the objective was to

forecast which contractors are most likely to achieve high per-

formance scores across defined KPIs. These predictive insights

can inform smarter contractor selection and more strategic task

assignment in upcoming projects, thereby contributing to an

intelligent, data-driven contractor selection.

A. Description of Collected Construction Data

The data used for our case study consists of individual audit

records, each capturing the evaluation outcome of a contrac-

tor’s performance on a specific task. Each record includes a

Construction
Project

Data
Collection

Web
Application

Web App Database

Feature Engineering
(Text Embeddings
+ PCA + Scaling)

Feature Engineering
(StandardScaler)Text Embeddings

(WBS Description) 
→ Sentence Transformer

→ PCA

Categorical Data (KPI, Contractor)
→ OneHotEncoder / LabelEncoder

g

ML PredictionNumerical Data → Grade

ML Training

XGBoost
Random Forest

LightGBM
SVR

Hyperparameter
TuningContractor 

Performance
Prediction

 Output

Fig. 1. Illustration of how the developed web application digitizes the Lean 
Construction methodology. On-site construction data is collected, processed, 
and fed into ML-based methods to generate contractor performance 
predictions

numeric grade assigned based on predefined audit rubrics, the

corresponding KPI, the contractor, and the WBS description.

For instance, a KPI field could be “Welding on steel pipe”,

while a WBS description might be “Fire extinguisher network:
A set of components designed to provide water for firefighting.
This network includes water sources, pumping equipment, ...”.

For the overall project,a total of 5849 audits were collected,

each one comprehend an observation in the data set.

A data sanity check was performed to ensure reliability and

consistency of the data. The following statistics values were

calculated for all numerical variables to identify potential

anomalies or outliers. For contractor performance scores ex-

hibited a mean of 67.06, with a standard deviation of 4.88, and

ranges between 45 and 84. The quartile values (25% = 65, 50%

= 67, 75% = 70) shows that the data is well distributed with

no extreme deviations. These results confirm that the dataset is

well balanced and suitable for ML applications. A sample of

the dataset is shown in Table II.

B. Integration of ML-Based Methods

To develop predictive models capable of estimating contractor

performance, we implement an ML pipeline that includes

data preprocessing, model training, and evaluation of results.

The primary objective is to predict the grade obtained by a

contractor for a specific KPI, based on features derived from

the audit records. A flowchart of the process can be seen in

Fig.1.

1) Data Preparation: to prepare the raw data for model

training, several preprocessing steps are necessary to han-

dle the mix of categorical and textual data. The dataset

consists of four main fields: the audit grade (target vari-

able), the KPI (rubric), the contractor name, and the WBS

description. First, for Text Embedding, the free-text WBS
Description field is converted into numerical representa-

tions using the SentenceTransformer library with the

all-MiniLM-L6-v2 pre-trained model to generate dense

vector embeddings that capture semantic meaning. Next,

for categorical encoding, the Contractor and Rubric (KPI)
fields are transformed into a binary vector format using

OneHotEncoder, allowing the models to distinguish between

different categories. The resulting dataset, which combines the

encoded categorical features and WBS embeddings, undergoes
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TABLE II. EXAMPLE OF AUDIT DATA USED FOR ML EXPERIMENTATION

Grade Rubric (KPI) Contractor WBS Description
63 Welding machine Contractor 1 Name Fire extinguisher network: A set of components designed to pro-

vide water for firefighting. This network includes water sources,
pumping equipment, and the piping network that distributes water
to hydrants and other extinguishing devices.

65 Safety excavation Contractor 2 Name Water supply and return system. Water is extracted from a source
and used in the building. The water is then treated, and the system
returns the water to the source. It includes pipes, pumps, and a
water treatment plant.

70 Scissor lift Contractor 3 Name Construction of structural elements to support the rails and keep
the railway track in place. These include cleats, which will be
used to secure the rails to the sleepers.

68 On-site Security Contractor 4 Name Piping interconnection is the process of connecting different pipes
and services to create an integrated system. This process allows
the flow of liquids, gases, or solids between different sections of
the building.

TABLE III. GRID OF HYPERPARAMETERS TUNED FOR EACH 
MODEL

Model Tuned Hyperparameters

RF
n_estimators: {100, 200}
max_depth: {None, 10, 20}
min_samples_split: {2, 5}

XGBoost
n_estimators: {100, 200}
max_depth: {3, 6, 10}
learning_rate: {0.01, 0.1}

SVR
kernel: {’rbf’, ’linear’}
C: {1, 10}
epsilon: {0.1, 0.2}

LightGBM
num_leaves: {31, 50}
learning_rate: {0.01, 0.1}
n_estimators: {100, 200}

feature scaling using StandardScaler to normalize the

feature space and prevent bias from variables with larger ranges.

For the experiment, the data is split into 80% for training and

20% for testing.

2) Model Training: In our case study, we investigate four re-

gression models that demonstrated commendable performance

in previous construction-related studies [19], [5], [11]: Random

Forest Regressor (RF); Extreme Gradient Boosting Regressor

(XGBoost); Support Vector Regressor (SVR); and Light Gradi-

ent Boosting Machine Regressor (LightGBM). The models are

trained using ski-learn Python package. The hardware used is

a machine running on an Intel® Core™ i5-13450HX, with a

NVIDIA® GeForce RTX™ 3050 GPU card. Hyperparameter

tuning is conducted for each model using grid search and cross-

validation. Table III summarizes the hyperparameters employed

for each model in the experiments.

3) Performance Evaluation: after training, each model’s per-

formance was evaluated on a held-out test set using several

metrics. To quantify the average prediction error and the

variance captured, we used standard metrics including Mean

Absolute Error (MAE), Root Mean Squared Error (RMSE), and

R-squared (R2). Additionally, to reflect the practical precision

needed in contractor evaluation, we defined a custom metric

called Tolerance Accuracy. This measures the proportion of

predictions falling within a ±5 point range of the actual grade,

which is particularly useful in contexts where slight deviations

are acceptable. Tolerance Accuracy (TA) is defined as:

TAτ =
1

n

n∑
i=1

1 (|yi − ŷi| ≤ τ) ,

where yi is the true grade; ŷi is the predicted grade; τ is the

tolerance threshold (5 points in this case); 1(·) is the indicator

function that returns 1 if the condition is true, and 0 otherwise;

and n is the total number of samples.

C. Case Study Results

The performance of the considered ML models is summarized

across the visualizations in Fig.2. A direct comparison of key

performance metrics for each model is presented in Fig.2a. The

SVR demonstrated the strongest overall performance, achieving

the lowest MAE of 2.10 and RMSE of 3.16, along with the

highest R2 score of 0.51. The XGBoost model followed closely

with an MAE of 2.18 and an R2 of 0.49. While the LightGBM

model had the highest error rates (MAE of 2.65), it achieved the

highest Tolerance Accuracy (0.883), indicating its effectiveness

when a ±5 point error margin is acceptable. These results

highlight the relative strengths of each algorithm in capturing

contractor grading patterns and demonstrate the suitability of

SVR for this regression task.

The quality of the predictions was further assessed by plotting

each model’s predicted grades against the actual grades (Fig.

2b). A reference line indicating perfect prediction (y = x)
allows for a visual assessment of accuracy, where closer

alignment of points to this line indicates stronger predictive

performance. To analyze error distribution, scatter plots of the

residuals (the difference between predicted and actual grades)

were represented (Fig.2c). The plots show that for all models,

the residuals are randomly scattered around the zero line,

indicating no systematic bias in the predictions and a relatively

constant variance across the predicted grades.

To examine the spread and consistency of model errors, box-

plots of the absolute prediction errors were created (Fig. 2d).

The boxplot reveals that while all models have comparable

MAE, LightGBM exhibits slightly more variability and a

greater number of high-error outliers. Conversely, XGBoost and

SVR demonstrate tighter interquartile ranges, indicating more

consistent predictions.
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Fig. 2. Visualization of model performance metrics, error analysis, and prediction accuracy

Fig.2e illustrates the relationship between tolerance thresholds

and prediction accuracy. This graph demonstrates how model

performance improves as prediction flexibility increases. A

tolerance of 5 was selected as a suitable threshold because it

provides a high accuracy of over 85% for most models while

maintaining a practical error margin. As seen in the plot, the

accuracy gains begin to diminish after this point, making it a

suitable balance for construction management contexts where

exact precision is less critical than acceptable performance.

D. Contractor Performance Prediction Illustrative Use Case

In the context of the considered large-scale Dos Bocas Oil
Refinery construction project, an analysis of the data gathered

during performance audits revealed that the contractor named

HIDROTIC consistently exhibited a pattern of underperfor-

mance. A specific and illustrative example of this trend can

be observed in audit #6390 from the project database. In this

instance, the contractor received a low score of 63 for the KPI

Welding on steel pipe, a grade that falls below acceptable quality

thresholds. For this specific case, the predictions generated by

a suite of employed ML models were remarkably close to

the actual outcome: RF predicted a score of 66.86, XGBoost

predicted 66.00, SVR predicted 64.01, and LightGBM predicted

64.93. This demonstrates that if the management team had been

equipped with an ML-driven decision support tool, it would

have been possible to leverage historical data to proactively

flag this contractor as a potential performance risk. This ca-

pability would have enabled the project team to make a more

informed, data-driven selection, thereby mitigating risks before

they materialized on-site.

The conclusive results from this case study compellingly

demonstrate that integrating ML-based methods with detailed

data sourced from Lean Construction practices enables the

generation of highly accurate predictions of contractor perfor-

mances. This synergy represents a significant advancement for

the practical application of the Lean methodology, enhancing

it with powerful predictive capabilities. By empowering a

fundamental shift from a reactive to a predictive management

stance, construction managers can effectively anticipate which

contractors are likely to underperform on specific tasks before

work commences. This foresight supports a more strategic and
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objective, data-driven contractor selection process, which can

directly lead to substantial benefits such as reduced operational

costs by minimizing rework and a tangible improvement in the

overall quality of the final project. Our findings underscore

the transformative value of data-driven decision-making and

strongly support the integration of predictive analytics into tra-

ditional construction workflows. Such an integration is crucial

for modernizing the construction industry that has often been

traditionally slow to fully utilize the benefits of digitization

and the integration with AI. To foster reproducibility and

facilitate practical deployment of our approach, the complete

database, source code, and all experiments for this study are

made publicly available in the following GitHub repository:

Click to Repository.

V. LIMITATIONS

While this research makes a valuable contribution to the practi-

cal integration of ML within Lean Construction methodologies,

limitations must be acknowledged. The primary limitation is the

single-project scope of the case study. All data used in this study

were collected from a single construction project. Although the

project was significantly larger than the industry average, ex-

panding the dataset to include multiple projects would enhance

the generalizability of the findings and increase their practical

relevance. Another limitation is the limited diversity of input

features used for model training. At present, the models rely

solely on task type and activity description. However, addi-

tional variables, such as resource availability, cost, scheduling

restrictions, and regulatory compliance, can significantly impact

contractor performance and should be incorporated into future

work.

VI. CONCLUSION

In this paper, we presented a novel approach that successfully

integrates ML with Lean Construction principles to address

challenges critical for the construction industry, such as project

quality control and cost management. Our work yields three

primary results with significant implications for construction

practitioners: (1) we demonstrated that by leveraging historical

audit data, it is possible to predict contractor performance

grades with high accuracy; (2) we developed a novel web

application to facilitate data collection and digitize construction

processes, overcoming the common barrier of inconsistent data

collection. This makes the application of advanced analytics

like ML more accessible and scalable for construction projects;

and (3) employing the data collected in a real construction

project, we assessed the performance of multiple ML models

and showed how historically poor-performing contractors could

be flagged. The results of our research directly benefit project

stakeholders by reducing human bias in contractor selection,

which in turn can lead to significant cost savings and enhanced

project quality.
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