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Abstract—This study presents a comprehensive and consid-
erably automated framework for development, evaluation, and
validation of prediction models using machine learning (ML)
algorithms and real-world clinical data. Specifically, the frame-
work was designed to predict preventable hospitalizations in
patients with arterial hypertension (AH) and its complications, a
critical clinical task given the significant economic and social costs
associated with inpatient treatment of these patients. The field of
cardiology is currently faced with the challenge of developing
widely accepted prognostic scales for patients with arterial
hypertension, and ML methods offer promising solutions to this
issue. The framework was tested on a large dataset of 1,165,770
depersonalized electronic health records of 151,492 patients with
AH, with 43 potential predictors considered. The framework
includes essential steps such as preprocessing (including miss-
ing value imputation, scaling, and class imbalance correction),
optimal model selection and testing, and external validation with
a clear and an unified approach to selection of the best model.
The XGBoost algorithm with Random Undersampling showed
the best results and stability to external data with an area
under the receiver operating characteristic curve (AUROC) of
0.815 (95% CI 0.797-0.835), demonstrating its potential for close
monitoring of high-risk patients, early preventive interventions,
and optimized medical care.

I. INTRODUCTION

A wide usage of predictive machine learning (ML) models

in clinical practice is hindered by their acceptance and trust of

the domain experts and end users that are not ML specialists. A

typical process of modelling is complicated for non-technical

specialists and consists of several stages [1]. These stages in

turn have multiple choices and pathways (methods for data

imputation, curation, algorithms, training approaches etc.). As

a result, utilizing state-of-the-art ML and related techniques

at each stage of the process and adhering to strict criteria

for model selection requires expertise to understand fully ML

methodology. Next to it, in the field of predictive modeling in

medicine there are own requirements to the model develop-

ment and evaluation based on biostatistics that are often not

addressed by the ML community (e.g. definition of outliers,

guidelines for external validation, confidence intervals). It

is important to note that the interaction of domain-specific

knowledge and simplified transparent tools for ML model

development can be an important step towards harnessing of

all the benefits of ML technology for the predictive modelling

in medicine. Therefore, in this work we focused on the devel-

opment of a framework to build ML models for clinical tasks

based on real world data that allows for a rapid prototyping

and testing novel state-of-the arts ML-related methods and at

the same time includes familiar for domain experts’ steps of

the predictive model evaluation.

The framework was developed and tested for a clinical task

to predict outcomes of complex disease like arterial hyperten-

sion (AH). Elevated blood pressure is a leading modifiable

risk factor for cardiovascular-related deaths and disability

worldwide [2]. However, according to epidemiological studies,

less than half (46.5%) of adults with hypertension are aware of

their condition, 36.9% are treated with anti-hypertensive med-

ication, and only 13.8% have their blood pressure controlled

[3], [4]. Treatment absence or nonadherence may increase rates

of hospitalization due to unrealized medication benefits and a

corresponding decline in health status. Thus, prevalence of

AH and its complications, medical care expenses, particularly

hospitalization costs, and the loss of patients’ productivity

result in significant economic losses and social damage.

The field of cardiology is currently faced with the chal-

lenge of developing a widely accepted prognostic scale for

patients with arterial hypertension. The SCORE scale, which

is commonly used, relies on systolic blood pressure as a

prognostic risk factor to determine the overall 10-year risk

for fatal cardiovascular events [5]. However, this tool may

not be optimal for short-term decision-making. In light of the

importance of this task and the rapid advancements in artificial

intelligence, ML methods can be effectively applied to address

this issue.

Several publications have been focused on predicting the

progression of the AH with ML, utilizing different complica-

tions as the main event of interest [6]–[13]. However, these

studies have important limitations that restrict their applica-

bility in routine clinical practice. The size of the datasets used

for ML modeling varied from 3,395 to 2,037,027 records,

and the number of features considered for modeling varied

from 8 to 555 depending on the dataset used. Although some

publications described internal validation with AUROC ranged

from 0.607 to 0.932 and an average value of 0.772 [6],

[8], [12], [13], only one study conducted external validation

demonstrating the following metrics: Accuracy of 0.744, Re-
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call of 0.779, Precision of 0.644, and F1-score of 0.705 [11];

however, the model used 555 features, limiting its usability

in real-world practice. Additionally, few studies addressed

the challenges of class imbalance, and socio-demographic or

treatment-related factors were often omitted, further reducing

the generalizability and clinical relevance of these models.

In this regard, research in the field of prediction of AH

and its complications is essential due to the numerous input

parameters involved, lack of established models for predicting

preventable hospitalizations, and the need for its external

validation using real-world data. By utilizing a unified and

simplified framework for model development, evaluation, and

validation, the process can be significantly streamlined, bridg-

ing the gap between healthcare providers and downplaying the

complexities of ML.

II. WEBIOMED DATA

A. Dataset formation

The dataset used for this real-world multicenter retrospec-

tive observational study encompasses anthropometric measure-

ments, physical examination results, laboratory, instrumental,

anamnestic, and socio-demographic data for patients of tertiary

hospitals and primary care ambulatories across 11 regions of

the Russian Federation, sourced from the Webiomed predictive

analytics platform database (https://webiomed.ru/). The data

base contains depersonalized patient records collected between

2000 and 2023. Patients were eligible for inclusion if their age

was older than 18 and medical history contained an ICD-10

code linked to AH (I10-I15, including all subcodes). Given

the retrospective and depersonalized nature of the dataset no

informed consent from the patients was needed. A total of

1,165,770 records associated with 151,492 patients with AH

were included in this study. The study design is presented in

Fig. 1.

Fig. 1. Study design

For each record, the target variable was set to 1 if the

patient was admitted to an inpatient treatment facility with a

primary diagnosis of AH or AH-related complications within

the 12 months following the given medical record. Planned

or elective hospitalizations, such as routine check-ups, sched-

uled procedures, or follow-up visits, were excluded from the

outcome definition. Therefore, the target variable reflects only

unplanned or acute hospitalizations, and hospitalizations for

uncomplicated, stable hypertension were not included. ICD-

10 diagnosis codes used to identify AH and its complications

are provided in Supplemental Table I.

Following TRIPOD guidelines [14], 44,527 records from a

separate region were selected for external validation. Then,

before any preprocessing steps, the remaining data for de-

velopment was randomly split into a training (80%), hy-

perparameters tuning (10%) and internal test (10%) sets.

The data splitting was performed so that class frequencies

were approximately preserved in each split and all records

pertaining to any given patient were in the same split, to avoid

data leakage [15].

B. Feature variable analysis

Statistical analysis and development of ML models were

performed using Python programming language, version 3.9.

The Kolmogorov-Smirnov test was used to evaluate the nor-

mality of the distribution of quantitative variables. Quantitative

variables are presented as median with interquartile range

(IQR), while categorical variables are presented as propor-

tions (N, %). The Mann-Whitney test was used to compare

quantitative variables between groups with and without the

target event, and the χ2 test was used to compare categori-

cal variables. A p-value ≤ 0.05 was considered statistically

significant.

As features for primary analysis, 61 variables were selected

by a medical expert (Chief Medical Officer, Cardiologist, 20

years of clinical practice) based on their clinical relevance

and frequency of occurrence. These variables were further

reviewed and validated by several clinicians to ensure appro-

priateness for predicting preventable hospitalizations, adding

an additional layer of clinical quality control.

Supplemental Table II reports the descriptive statistics for

patients in the development set. Of the 1,107,672 records,

781,790 (70.6%) were associated with female patients. The

median age of the cohort was 63 years old (IQR 54-70),

and the observation time span ranged from 1 month to 21

years. The dataset was highly imbalanced, with only 4% of

records associated with admission to an inpatient treatment

facility for AH or its complications within the next 12 months.

Weakness, cough, headache, dizziness, chest pain, and dyspnea

were the most commonly reported complaints among the

patients. The prevalent comorbidities and complications of

AH included cerebrovascular disease (CVD), various types

of arrhythmias, coronary artery disease (CAD), and heart

failure (HF). Significant differences were observed between

the two target categories in terms of clinical and demographic

features, including weight, age, number of hospitalizations
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and outpatient visits in the previous 12 months, glucose and

cholesterol levels, blood pressure, as well as symptoms such as

chest pain and shortness of breath. Notably, patients in class 1

exhibited a higher prevalence of risk factors, including family

history of heart disease, obesity, and diabetes.

It should be noted that certain socio-demographic factors

(e.g., income, education) and detailed medication regimen

data were not consistently available across all records and

were therefore not included. Despite these limitations, the

dataset encompasses multicenter real-world records from 11

regions across the Russian Federation over a period of 23

years, ensuring diverse patient representation and enhancing

the generalizability of the model findings.

The external validation set comprised 44,527 records from a

separate region, of which 4,335 (9.7%) belonged to class 1 and

40,192 (90.3%) belonged to class 0. Notable differences were

observed between the development and external validation

sets in the occurrence rates of diabetes, dyslipidemia, iron

deficiency anemia, CAD, renal insufficiency, atrial fibrillation,

CVD, and HF. The comparison of feature distributions in both

sets is provided in Supplemental Table II.

III. OVERVIEW OF OUR FRAMEWORK

The overall structure of our framework, along with the main

steps, is illustrated in Fig. 2.

Fig. 2. Framework structure

A. Data preprocessing

For imputation, we used a constant value of ”-10000” [16]

for quantitative features, while binary features with missing

values were set to False. This strategy was primarily chosen

to optimize tree-based algorithms, which are robust to such

values. Any quantitative feature exceeding acceptable clinical

limits was removed and treated as a missing value. Alternative

imputation methods (left unfilled, mean, median, KNN) were

tested; however, they did not improve performance or stability

of the final models. This choice is explicitly reported to clarify

potential biases in non-tree models.

For feature scaling, various techniques such as robust

scaling [17], standardization [18], and retaining original di-

mensionality were utilized. Multiple algorithms were em-

ployed and compared for class imbalance correction, includ-

ing Random Undersampling (RUS), Random Oversampling

(ROS), a combination of RUS and ROS (Combined Sampling),

Synthetic Minority Oversampling Technique (SMOTE), and

Adaptive Synthetic Sampling Approach (ADASYN) [19]. The

preprocessing pipeline was iteratively performed to determine

the most effective combination of missing value imputation,

data scaling, and class imbalance correction before developing

the ML model.

B. Modeling

Several different families of ML algorithms were considered

for primary analysis: logistic regression (LR), discriminant

analysis (LinearDiscriminant, QuadraticDiscriminant), naive

Bayes classifier (GaussianNB), Multi-layer Perceptron and

decision tree-based ensemble methods, including gradient

boosting (AdaBoost, LightGBM, XGBoost, CatBoost), and

bagging (RandomForest and ExtraTrees). Hyper-parameter op-

timization was performed for all these algorithms for each

preprocessing pipeline using the RandomGridSearch [20] op-

timizing for AUROC on hyperparameters tuning set. After

this procedure, the models were re-trained using the selected

hyperparameters and calibrated (using isotonic regression) on

the training set and then evaluated on the separate test set

with using a maximum of the Youden index as threshold in

terms of discrimination metrics: AUROC, AUPRC, sensitiv-

ity, specificity, accuracy, balanced accuracy, geometric mean

(GMC), Matthew’s correlation coefficient, positive predictive

value (PPV), negative predictive value (NPV), F1 score and

likelihood-ratio test [21]–[24]. The bootstrap method with

1000 re-samplings was utilized to estimate 95% confidence

intervals for these metrics [25].

After this, the optimal preprocessing pipeline was chosen

for each algorithm based on the highest AUROC, PPV and

AUPRC on internal test with a prerequisite that a confidence

interval around the difference between AUROC means on

training and test sets includes zero [26]. For seven algorithms

proven their stability on test data (LightGBM, XGBoost,

CatBoost, RandomForest, ExtraTrees, LR and Multi-layer Per-

ceptron) final feature selection was made based on Shapley

method [27] by selecting the ones with the highest vector

lengths, which accounted for 95% of the total Shapley vector’s

length. During the second stage of development, only selected

features and previously defined preprocessing pipelines and

hyperparameters for each of the remaining algorithms were

utilized for re-training and calibration. Internal test and exter-

nal validation were performed for these resulting models, after

that its discrimination, utility [28] and calibration [29] were

also evaluated. The final model selection was based on several

criteria, including the highest AUROC value during external

validation and overlap of the 95% confidence intervals of this

metric for the internal test and external validation sets. Based

on the approach proposed in recent works with the formation

of three risk groups [30]–[32], for this model we additionally

calculated two activation thresholds and all metrics in the data

for the internal test, depending on the target NPV - 0.999 and

PPV - 0.5.
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IV. EXPERIMENTAL RESULTS

A. Impact of data preprocessing

After testing various methods for processing input data and

optimizing hyperparameters through multiple iterations, we

identified the most effective strategies for handling missing

values, scaling, and correcting class imbalance for all ten

algorithms (Table I). These strategies were chosen based on

their ability to achieve the highest values of AUROC, PPV,

and AUPRC.

TABLE I. THE MOST EFFECTIVE PREPROCESSING STRATEGIES FOR 
ALGORITHMS

Model Imputation Scaling Resampling
MLP Constant Standartization -
LR Constant Robust ADASYN
CatBoost - - ROS
XGB - - RUS
LGMB - - -
ET Constant - -
RF Constant - ROS

We placed particular emphasis on evaluating the impact

of class imbalance correction on discrimination metrics that

prioritize the minority class, namely, GMC and PPV (Fig. 3).

Fig. 3. Impact of class imbalance correction on metrics

However, no significant changes were observed in PPV or

GMC across most imbalance correction methods. Additionally,

no discernible pattern was observed for each method based on

the proportion of class 1 records after correction. Nevertheless,

internal testing of the XGBoost model revealed that RUS

with a ”sampling strategy” of 0.1 provided a slight numerical

improvement in PPV (0.125 vs 0.123) and GMC (0.769 vs

0.768) compared to the uncorrected approach. More impor-

tantly, RUS consistently produced stable performance across

multiple bootstrap resamples and internal/external validation

sets, particularly for minority-class metrics. Based on both the

observed performance and its stability, RUS with a ”sampling

strategy” of 0.1 was selected as the final pipeline.

B. Model performance

The study found that the XGBoost model is effective in

predicting hospitalizations for AH patients using final selected

43 features (Supplemental Table II), outperforming other al-

gorithms with the highest AUROC values for internal test

(0.849, 95% CI 0.825-0.873) and external validation (0.815,

95% CI 0.797-0.835) with the minimal difference between the

calculated Youden indexes for both sets. The full range of

evaluated hyperparameter settings for final model is reported

in Table II.

TABLE II. RANGE OF EVALUATED HYPER-PARAMETERS FOR THE FINAL 
MODEL

Hyper-parameter Value range
learning rate [1e-06, 0.5] (0.15)
n estimators [10, 300] (100)
subsample [0.2, 1] (0.7)
max depth [1, 11] (5)
colsample bytree [0.5, 1] (1)
min child weight [1, 4] (3)
reg alpha [1e-10, 10] (2)
reg lambda [1e-10, 10] (0.7)
scale pos weight [1, 50] (37.1)

During external validation, the XGBoost model was also

evaluated using two additional thresholds to identify a pop-

ulation at increased risk (rule-in), or at decreased risk (rule-

out), and to change care regimen accordingly [30]–[32]. The

specificity of the model with a classification threshold of

0.001, which achieved the target NPV (0.999) on internal test,

was 0.163 (95% CI 0.152-0.173), with a sensitivity of 0.996

(95% CI 0.986-1). Using the second threshold (0.265) with an

expected PPV of 0.5, the quality metrics were: sensitivity –

0.083 (95% CI 0.047-0.012), and specificity – 0.996 (95% CI

0.994-0.998). The results of the final model on the separate

internal test and external validation sets after applying the

aforementioned thresholds and the maximum Youden index

calculated on the test set are reported in Supplemental Table

III. Furthermore, the decision, calibration and ROC curves for

this model are reported in Figs. 4, 5, and 6, respectively.

Fig. 4. The decision curve of the final model

The Shapley vectors in Fig. 7 have identified the top 10

most important features for the model, which include dyspnea,

irregular heart sounds, fever and cyanosis of the skin during

physical examination, left ventricular ejection fraction and

ISSN 2305-7254________________________________________PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 48 ----------------------------------------------------------------------------



Fig. 5. The calibration curve of the final model

SBP at the time of prognosis, age, gender, hospitalizations

and outpatient visits in the last 12 months. Fig. 8 displays

the AUROC values obtained on both sets for all models after

second stage of development. As the last stage of our study, we

carried out a meta-validation of final model using a graphical

representation [33] (Supplemental Fig. 1). Both data sets for

internal test and external validation had sufficient sample sizes

and were significantly dissimilar from the training set, as

illustrated in Supplemental Fig. 1. Despite these observable

differences in feature distributions, the validated model main-

tained strong performance across three complementary dimen-

sions—discrimination, utility, and calibration—demonstrating

robust generalizability to heterogeneous patient populations.

Fig. 6. The ROC curve of the final model with 95% CI during internal test

V. DISCUSSION

AH is a chronic medical condition characterized by elevated

blood pressure levels, and it has become a major public health

concern worldwide due to its increasing prevalence. In Russia,

over 40% of women and nearly 50% of men aged 30-79

are affected by the disease [3]. Hypertensive patients are

at a higher risk of developing various complications, which

can lead to hospitalization and place a significant burden on

healthcare systems. To reduce this burden, it is crucial to iden-

tify high-risk hypertensive patients and intervene with timely

management strategies. Predicting the risk of hospitalization

for hypertensive patients is a crucial step towards effective

disease management and reducing its impact on public health.

A. Key Advantages of the Framework

Our framework offers several notable strengths. First, the

use of an external validation set, held out prior to any

preprocessing, provides a rigorous assessment of model gen-

eralizability. Second, multiple strategies for class imbalance

correction were systematically compared, ensuring stable

performance on the minority class. Third, patient stratifi-

cation into three risk groups—rule-out, intermediate, and

rule-in—supports clinically relevant decision-making. Fourth,

model interpretability is ensured through Shapley values

(SHAP), highlighting the most influential predictors. Fi-

nally, the framework represents a complete, reproducible ML

pipeline from preprocessing to calibration and external vali-

dation, adhering to TRIPOD guidelines.

B. Limitations and comparison with other publications

After a thorough review of the available literature, it is

evident that hospitalization resulting from complications of

arterial hypertension has not been a primary focus of previous

studies. Instead, researchers have concentrated on developing

models for cardio-cerebrovascular events or kidney diseases

prediction [6]–[13]. Some of these studies, just like ours, have

suggested an algorithm for identifying the target event by

using specific ICD-10 codes in the patient’s electronic medical

record and registration dates [7], [8]. However, this approach

is not without limitations - it may result in the exclusion

of patients who received treatment at medical facilities not

included in the set and is susceptible to errors in diagnosis

coding in medical practice.

Numerous studies, including our own, have observed a

notable class imbalance in ML sets. To address this prob-

lem, some researchers have utilized data balancing techniques

during model creation [6], [8], [10]. Nevertheless, these in-

vestigations have not conducted parallel analyses to ours,

which aim to assess the impact of selecting a data balancing

algorithm and its parameters on the metric values. Previous

studies have identified disease duration and the use of anti-

hypertensive medication as important predictors for effective

hypertension management. Furthermore, socio-demographic

factors like place of residence and patient income have been

shown to impact treatment adherence and disease outcomes

[7], [8]. However, our study had limitations as we did not

include these socio-demographic indicators and drug therapy

in our input features due to difficulties in accurately extracting

dosages over a 21-year period. It is important to note, however,

that drug therapy can potentially influence on the developed

model.
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Fig. 7. The significance of the top 10 features according to the Shapley
values. Grey represent missed values.

C. Implications

Building on the outlined strengths, this study presents a

comprehensive and robust framework for developing, evaluat-

ing, and validating personalized predictive models using ML

algorithms and real-world clinical data to forecast preventable

hospitalizations in patients with AH and its complications.

Our final model has successfully completed all stages of the

standard ML project lifecycle, including data collection, pre-

processing (with missing value imputation, scaling, and class

imbalance correction), optimal model selection and testing,

feature interpretability analysis, and deployment within the

Webiomed platform.

Our approach involves leveraging state-of-the-art techniques

and methodologies at each stage of the modeling process. We

recognize the importance of domain-specific knowledge and

the need for external validation to ensure the discrimination

and robustness of our model. We propose to categorize patients

into three distinct risk groups for the purpose of managing AH,

using probability estimates generated by the XGBoost model

and calculated two thresholds [30]–[32]. The first threshold

(0.001) was selected to optimize the model’s sensitivity and

ensure high accuracy in identifying patients at low risk of

hospitalization who may not require active treatment. The

second threshold (0.265), on the other hand, was chosen to

maximize the model’s specificity and reliably predict hos-

pitalization for patients at high risk of adverse outcomes,

thus enabling healthcare providers to implement more careful

monitoring strategies.

The model exhibits strong potential as an additional moni-

toring tool for AH patients, with robust performance in both

internal and external validation. The approach represents a

significant contribution to AH management and has important

implications for improving patient outcomes and reducing

healthcare costs. Prospective studies can further validate the

Fig. 8. The AUROC values on the internal test and the external validation
sets. The black vertical lines indicate the 95% confidence intervals.

model for practical use.

D. Future research

The issue of data imbalance in clinical practice has been

widely discussed in the literature, with several proposed solu-

tions [34]–[36]. One such approach is the use of activation

thresholds with target levels for negative and positive pre-

dictive values, as employed in our study. Further research

is needed to improve classification in cases that fall between

these thresholds. Class imbalance correction algorithms, such

as ROS, SMOTE and ADASYN, have also been suggested

as a solution. However, these synthetic algorithms require

the filling in of missing values before use and may generate

records that do not align with clinical practice. On the other

hand, ROS only duplicates existing records, failing to offer

additional information about target events or improve model

performance. While undersampling is a promising alternative,

it comes at the cost of records loss. Therefore, further research

is needed to develop effective solutions for addressing data

imbalance in healthcare ML applications while minimizing the

loss of data.

VI. CONCLUSION

Our research highlights the potential of ML techniques

in developing accurate healthcare models, particularly for

predicting outcomes of complex diseases. The incorporation

of routine clinical and laboratory parameters as factors in

the model makes it easily applicable in clinical practice.

However, further research is necessary to address the issue

of data imbalance and minimize data loss while developing

effective solutions. By utilizing domain-specific knowledge

and simplified tools for ML model development, such as our
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framework, we can improve prediction outcomes, streamline

the process, and make it accessible for narrow specialists

without computational expertise. Overall, our study contributes

to the growing body of evidence supporting the integration of

ML in healthcare decision-making, which has the potential to

enhance patient outcomes and reduce healthcare costs.
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