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Abstract—This study presents a comprehensive and consid-
erably automated framework for development, evaluation, and
validation of prediction models using machine learning (ML)
algorithms and real-world clinical data. Specifically, the frame-
work was designed to predict preventable hospitalizations in
patients with arterial hypertension (AH) and its complications, a
critical clinical task given the significant economic and social costs
associated with inpatient treatment of these patients. The field of
cardiology is currently faced with the challenge of developing
widely accepted prognostic scales for patients with arterial
hypertension, and ML methods offer promising solutions to this
issue. The framework was tested on a large dataset of 1,165,770
depersonalized electronic health records of 151,492 patients with
AH, with 43 potential predictors considered. The framework
includes essential steps such as preprocessing (including miss-
ing value imputation, scaling, and class imbalance correction),
optimal model selection and testing, and external validation with
a clear and an unified approach to selection of the best model.
The XGBoost algorithm with Random Undersampling showed
the best results and stability to external data with an area
under the receiver operating characteristic curve (AUROC) of
0.815 (95% CI 0.797-0.835), demonstrating its potential for close
monitoring of high-risk patients, early preventive interventions,
and optimized medical care.

I. INTRODUCTION

A wide usage of predictive machine learning (ML) models
in clinical practice is hindered by their acceptance and trust of
the domain experts and end users that are not ML specialists. A
typical process of modelling is complicated for non-technical
specialists and consists of several stages [1]. These stages in
turn have multiple choices and pathways (methods for data
imputation, curation, algorithms, training approaches etc.). As
a result, utilizing state-of-the-art ML and related techniques
at each stage of the process and adhering to strict criteria
for model selection requires expertise to understand fully ML
methodology. Next to it, in the field of predictive modeling in
medicine there are own requirements to the model develop-
ment and evaluation based on biostatistics that are often not
addressed by the ML community (e.g. definition of outliers,
guidelines for external validation, confidence intervals). It
is important to note that the interaction of domain-specific
knowledge and simplified transparent tools for ML model
development can be an important step towards harnessing of
all the benefits of ML technology for the predictive modelling
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in medicine. Therefore, in this work we focused on the devel-
opment of a framework to build ML models for clinical tasks
based on real world data that allows for a rapid prototyping
and testing novel state-of-the arts ML-related methods and at
the same time includes familiar for domain experts’ steps of
the predictive model evaluation.

The framework was developed and tested for a clinical task
to predict outcomes of complex disease like arterial hyperten-
sion (AH). Elevated blood pressure is a leading modifiable
risk factor for cardiovascular-related deaths and disability
worldwide [2]. However, according to epidemiological studies,
less than half (46.5%) of adults with hypertension are aware of
their condition, 36.9% are treated with anti-hypertensive med-
ication, and only 13.8% have their blood pressure controlled
[3], [4]. Treatment absence or nonadherence may increase rates
of hospitalization due to unrealized medication benefits and a
corresponding decline in health status. Thus, prevalence of
AH and its complications, medical care expenses, particularly
hospitalization costs, and the loss of patients’ productivity
result in significant economic losses and social damage.

The field of cardiology is currently faced with the chal-
lenge of developing a widely accepted prognostic scale for
patients with arterial hypertension. The SCORE scale, which
is commonly used, relies on systolic blood pressure as a
prognostic risk factor to determine the overall 10-year risk
for fatal cardiovascular events [5]. However, this tool may
not be optimal for short-term decision-making. In light of the
importance of this task and the rapid advancements in artificial
intelligence, ML methods can be effectively applied to address
this issue.

Several publications have been focused on predicting the
progression of the AH with ML, utilizing different complica-
tions as the main event of interest [6]—[13]. However, these
studies have important limitations that restrict their applica-
bility in routine clinical practice. The size of the datasets used
for ML modeling varied from 3,395 to 2,037,027 records,
and the number of features considered for modeling varied
from 8 to 555 depending on the dataset used. Although some
publications described internal validation with AUROC ranged
from 0.607 to 0.932 and an average value of 0.772 [6],
[8], [12], [13], only one study conducted external validation
demonstrating the following metrics: Accuracy of 0.744, Re-
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call of 0.779, Precision of 0.644, and F1-score of 0.705 [11];
however, the model used 555 features, limiting its usability
in real-world practice. Additionally, few studies addressed
the challenges of class imbalance, and socio-demographic or
treatment-related factors were often omitted, further reducing
the generalizability and clinical relevance of these models.

In this regard, research in the field of prediction of AH
and its complications is essential due to the numerous input
parameters involved, lack of established models for predicting
preventable hospitalizations, and the need for its external
validation using real-world data. By utilizing a unified and
simplified framework for model development, evaluation, and
validation, the process can be significantly streamlined, bridg-
ing the gap between healthcare providers and downplaying the
complexities of ML.

II. WEBIOMED DATA

A. Dataset formation

The dataset used for this real-world multicenter retrospec-
tive observational study encompasses anthropometric measure-
ments, physical examination results, laboratory, instrumental,
anamnestic, and socio-demographic data for patients of tertiary
hospitals and primary care ambulatories across 11 regions of
the Russian Federation, sourced from the Webiomed predictive
analytics platform database (https://webiomed.ru/). The data
base contains depersonalized patient records collected between
2000 and 2023. Patients were eligible for inclusion if their age
was older than 18 and medical history contained an ICD-10
code linked to AH (I10-I15, including all subcodes). Given
the retrospective and depersonalized nature of the dataset no
informed consent from the patients was needed. A total of
1,165,770 records associated with 151,492 patients with AH
were included in this study. The study design is presented in
Fig. 1.
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For each record, the target variable was set to 1 if the
patient was admitted to an inpatient treatment facility with a
primary diagnosis of AH or AH-related complications within
the 12 months following the given medical record. Planned
or elective hospitalizations, such as routine check-ups, sched-
uled procedures, or follow-up visits, were excluded from the
outcome definition. Therefore, the target variable reflects only
unplanned or acute hospitalizations, and hospitalizations for
uncomplicated, stable hypertension were not included. ICD-
10 diagnosis codes used to identify AH and its complications
are provided in Supplemental Table I.

Following TRIPOD guidelines [14], 44,527 records from a
separate region were selected for external validation. Then,
before any preprocessing steps, the remaining data for de-
velopment was randomly split into a training (80%), hy-
perparameters tuning (10%) and internal test (10%) sets.
The data splitting was performed so that class frequencies
were approximately preserved in each split and all records
pertaining to any given patient were in the same split, to avoid
data leakage [15].

B. Feature variable analysis

Statistical analysis and development of ML models were
performed using Python programming language, version 3.9.
The Kolmogorov-Smirnov test was used to evaluate the nor-
mality of the distribution of quantitative variables. Quantitative
variables are presented as median with interquartile range
(IQR), while categorical variables are presented as propor-
tions (N, %). The Mann-Whitney test was used to compare
quantitative variables between groups with and without the
target event, and the 2 test was used to compare categori-
cal variables. A p-value < 0.05 was considered statistically
significant.

As features for primary analysis, 61 variables were selected
by a medical expert (Chief Medical Officer, Cardiologist, 20
years of clinical practice) based on their clinical relevance
and frequency of occurrence. These variables were further
reviewed and validated by several clinicians to ensure appro-
priateness for predicting preventable hospitalizations, adding
an additional layer of clinical quality control.

Supplemental Table II reports the descriptive statistics for
patients in the development set. Of the 1,107,672 records,
781,790 (70.6%) were associated with female patients. The
median age of the cohort was 63 years old (IQR 54-70),
and the observation time span ranged from 1 month to 21
years. The dataset was highly imbalanced, with only 4% of
records associated with admission to an inpatient treatment
facility for AH or its complications within the next 12 months.
Weakness, cough, headache, dizziness, chest pain, and dyspnea
were the most commonly reported complaints among the
patients. The prevalent comorbidities and complications of
AH included cerebrovascular disease (CVD), various types
of arrhythmias, coronary artery disease (CAD), and heart
failure (HF). Significant differences were observed between
the two target categories in terms of clinical and demographic
features, including weight, age, number of hospitalizations




ISSN 2305-7254

and outpatient visits in the previous 12 months, glucose and
cholesterol levels, blood pressure, as well as symptoms such as
chest pain and shortness of breath. Notably, patients in class 1
exhibited a higher prevalence of risk factors, including family
history of heart disease, obesity, and diabetes.

It should be noted that certain socio-demographic factors
(e.g., income, education) and detailed medication regimen
data were not consistently available across all records and
were therefore not included. Despite these limitations, the
dataset encompasses multicenter real-world records from 11
regions across the Russian Federation over a period of 23
years, ensuring diverse patient representation and enhancing
the generalizability of the model findings.

The external validation set comprised 44,527 records from a
separate region, of which 4,335 (9.7%) belonged to class 1 and
40,192 (90.3%) belonged to class 0. Notable differences were
observed between the development and external validation
sets in the occurrence rates of diabetes, dyslipidemia, iron
deficiency anemia, CAD, renal insufficiency, atrial fibrillation,
CVD, and HF. The comparison of feature distributions in both
sets is provided in Supplemental Table II.

III. OVERVIEW OF OUR FRAMEWORK

The overall structure of our framework, along with the main
steps, is illustrated in Fig. 2.
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Fig. 2. Framework structure

A. Data preprocessing

For imputation, we used a constant value of ”-10000” [16]
for quantitative features, while binary features with missing
values were set to False. This strategy was primarily chosen
to optimize tree-based algorithms, which are robust to such
values. Any quantitative feature exceeding acceptable clinical
limits was removed and treated as a missing value. Alternative
imputation methods (left unfilled, mean, median, KNN) were
tested; however, they did not improve performance or stability
of the final models. This choice is explicitly reported to clarify
potential biases in non-tree models.

For feature scaling, various techniques such as robust
scaling [17], standardization [18], and retaining original di-
mensionality were utilized. Multiple algorithms were em-
ployed and compared for class imbalance correction, includ-
ing Random Undersampling (RUS), Random Oversampling
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(ROS), a combination of RUS and ROS (Combined Sampling),
Synthetic Minority Oversampling Technique (SMOTE), and
Adaptive Synthetic Sampling Approach (ADASYN) [19]. The
preprocessing pipeline was iteratively performed to determine
the most effective combination of missing value imputation,
data scaling, and class imbalance correction before developing
the ML model.

B. Modeling

Several different families of ML algorithms were considered
for primary analysis: logistic regression (LR), discriminant
analysis (LinearDiscriminant, QuadraticDiscriminant), naive
Bayes classifier (GaussianNB), Multi-layer Perceptron and
decision tree-based ensemble methods, including gradient
boosting (AdaBoost, LightGBM, XGBoost, CatBoost), and
bagging (RandomForest and ExtraTrees). Hyper-parameter op-
timization was performed for all these algorithms for each
preprocessing pipeline using the RandomGridSearch [20] op-
timizing for AUROC on hyperparameters tuning set. After
this procedure, the models were re-trained using the selected
hyperparameters and calibrated (using isotonic regression) on
the training set and then evaluated on the separate test set
with using a maximum of the Youden index as threshold in
terms of discrimination metrics: AUROC, AUPRC, sensitiv-
ity, specificity, accuracy, balanced accuracy, geometric mean
(GMC), Matthew’s correlation coefficient, positive predictive
value (PPV), negative predictive value (NPV), F1 score and
likelihood-ratio test [21]-[24]. The bootstrap method with
1000 re-samplings was utilized to estimate 95% confidence
intervals for these metrics [25].

After this, the optimal preprocessing pipeline was chosen
for each algorithm based on the highest AUROC, PPV and
AUPRC on internal test with a prerequisite that a confidence
interval around the difference between AUROC means on
training and test sets includes zero [26]. For seven algorithms
proven their stability on test data (LightGBM, XGBoost,
CatBoost, RandomForest, ExtraTrees, LR and Multi-layer Per-
ceptron) final feature selection was made based on Shapley
method [27] by selecting the ones with the highest vector
lengths, which accounted for 95% of the total Shapley vector’s
length. During the second stage of development, only selected
features and previously defined preprocessing pipelines and
hyperparameters for each of the remaining algorithms were
utilized for re-training and calibration. Internal test and exter-
nal validation were performed for these resulting models, after
that its discrimination, utility [28] and calibration [29] were
also evaluated. The final model selection was based on several
criteria, including the highest AUROC value during external
validation and overlap of the 95% confidence intervals of this
metric for the internal test and external validation sets. Based
on the approach proposed in recent works with the formation
of three risk groups [30]-[32], for this model we additionally
calculated two activation thresholds and all metrics in the data
for the internal test, depending on the target NPV - 0.999 and
PPV - 0.5.
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IV. EXPERIMENTAL RESULTS
A. Impact of data preprocessing

After testing various methods for processing input data and
optimizing hyperparameters through multiple iterations, we
identified the most effective strategies for handling missing
values, scaling, and correcting class imbalance for all ten
algorithms (Table I). These strategies were chosen based on
their ability to achieve the highest values of AUROC, PPV,
and AUPRC.

TABLE I. THE MOST EFFECTIVE PREPROCESSING STRATEGIES FOR
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43 features (Supplemental Table II), outperforming other al-
gorithms with the highest AUROC values for internal test
(0.849, 95% CI 0.825-0.873) and external validation (0.815,
95% CI 0.797-0.835) with the minimal difference between the
calculated Youden indexes for both sets. The full range of
evaluated hyperparameter settings for final model is reported
in Table II.

TABLE II. RANGE OF EVALUATED HYPER-PARAMETERS FOR THE FINAL
MODEL

ALGORITHMS
Model Imputation Scaling Resampling
MLP Constant Standartization -
LR Constant Robust ADASYN
CatBoost - - ROS
XGB - - RUS
LGMB - - -
ET Constant - -
RF Constant - ROS

Hyper-parameter

Value range

learning_rate

[1e-06, 0.5] (0.15)

n_estimators

[10, 300] (100)

subsample [0.2, 1] (0.7)
max_depth [1, 11] (5)
colsample_bytree [0.5, 1] (1)
min_child_weight (1, 4] 3)

reg_alpha

[le-10, 10] (2)

reg_lambda

[le-10, 10] (0.7)

scale_pos_weight

[1, 50] (37.1)

We placed particular emphasis on evaluating the impact
of class imbalance correction on discrimination metrics that
prioritize the minority class, namely, GMC and PPV (Fig. 3).

metrics.GMC metrics. PPV

Value

value

T T T LE T T T T

Sampling strategy Sampling strategy

Fig. 3. Impact of class imbalance correction on metrics

However, no significant changes were observed in PPV or
GMC across most imbalance correction methods. Additionally,
no discernible pattern was observed for each method based on
the proportion of class 1 records after correction. Nevertheless,
internal testing of the XGBoost model revealed that RUS
with a “sampling strategy” of 0.1 provided a slight numerical
improvement in PPV (0.125 vs 0.123) and GMC (0.769 vs
0.768) compared to the uncorrected approach. More impor-
tantly, RUS consistently produced stable performance across
multiple bootstrap resamples and internal/external validation
sets, particularly for minority-class metrics. Based on both the
observed performance and its stability, RUS with a “sampling
strategy” of 0.1 was selected as the final pipeline.

B. Model performance

The study found that the XGBoost model is effective in
predicting hospitalizations for AH patients using final selected
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During external validation, the XGBoost model was also
evaluated using two additional thresholds to identify a pop-
ulation at increased risk (rule-in), or at decreased risk (rule-
out), and to change care regimen accordingly [30]-[32]. The
specificity of the model with a classification threshold of
0.001, which achieved the target NPV (0.999) on internal test,
was 0.163 (95% CI 0.152-0.173), with a sensitivity of 0.996
(95% CI 0.986-1). Using the second threshold (0.265) with an
expected PPV of 0.5, the quality metrics were: sensitivity —
0.083 (95% CI 0.047-0.012), and specificity — 0.996 (95% CI
0.994-0.998). The results of the final model on the separate
internal test and external validation sets after applying the
aforementioned thresholds and the maximum Youden index
calculated on the test set are reported in Supplemental Table
III. Furthermore, the decision, calibration and ROC curves for
this model are reported in Figs. 4, 5, and 6, respectively.
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Fig. 4. The decision curve of the final model

The Shapley vectors in Fig. 7 have identified the top 10
most important features for the model, which include dyspnea,
irregular heart sounds, fever and cyanosis of the skin during
physical examination, left ventricular ejection fraction and
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Fig. 5. The calibration curve of the final model

SBP at the time of prognosis, age, gender, hospitalizations
and outpatient visits in the last 12 months. Fig. 8 displays
the AUROC values obtained on both sets for all models after
second stage of development. As the last stage of our study, we
carried out a meta-validation of final model using a graphical
representation [33] (Supplemental Fig. 1). Both data sets for
internal test and external validation had sufficient sample sizes
and were significantly dissimilar from the training set, as
illustrated in Supplemental Fig. 1. Despite these observable
differences in feature distributions, the validated model main-
tained strong performance across three complementary dimen-
sions—discrimination, utility, and calibration—demonstrating
robust generalizability to heterogeneous patient populations.
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Fig. 6. The ROC curve of the final model with 95% CI during internal test

V. DISCUSSION

AH is a chronic medical condition characterized by elevated
blood pressure levels, and it has become a major public health
concern worldwide due to its increasing prevalence. In Russia,
over 40% of women and nearly 50% of men aged 30-79
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are affected by the disease [3]. Hypertensive patients are
at a higher risk of developing various complications, which
can lead to hospitalization and place a significant burden on
healthcare systems. To reduce this burden, it is crucial to iden-
tify high-risk hypertensive patients and intervene with timely
management strategies. Predicting the risk of hospitalization
for hypertensive patients is a crucial step towards effective
disease management and reducing its impact on public health.

A. Key Advantages of the Framework

Our framework offers several notable strengths. First, the
use of an external validation set, held out prior to any
preprocessing, provides a rigorous assessment of model gen-
eralizability. Second, multiple strategies for class imbalance
correction were systematically compared, ensuring stable
performance on the minority class. Third, patient stratifi-
cation into three risk groups—rule-out, intermediate, and
rule-in—supports clinically relevant decision-making. Fourth,
model interpretability is ensured through Shapley values
(SHAP), highlighting the most influential predictors. Fi-
nally, the framework represents a complete, reproducible ML
pipeline from preprocessing to calibration and external vali-
dation, adhering to TRIPOD guidelines.

B. Limitations and comparison with other publications

After a thorough review of the available literature, it is
evident that hospitalization resulting from complications of
arterial hypertension has not been a primary focus of previous
studies. Instead, researchers have concentrated on developing
models for cardio-cerebrovascular events or kidney diseases
prediction [6]-[13]. Some of these studies, just like ours, have
suggested an algorithm for identifying the target event by
using specific ICD-10 codes in the patient’s electronic medical
record and registration dates [7], [8]. However, this approach
is not without limitations - it may result in the exclusion
of patients who received treatment at medical facilities not
included in the set and is susceptible to errors in diagnosis
coding in medical practice.

Numerous studies, including our own, have observed a
notable class imbalance in ML sets. To address this prob-
lem, some researchers have utilized data balancing techniques
during model creation [6], [8], [10]. Nevertheless, these in-
vestigations have not conducted parallel analyses to ours,
which aim to assess the impact of selecting a data balancing
algorithm and its parameters on the metric values. Previous
studies have identified disease duration and the use of anti-
hypertensive medication as important predictors for effective
hypertension management. Furthermore, socio-demographic
factors like place of residence and patient income have been
shown to impact treatment adherence and disease outcomes
[7], [8]. However, our study had limitations as we did not
include these socio-demographic indicators and drug therapy
in our input features due to difficulties in accurately extracting
dosages over a 21-year period. It is important to note, however,
that drug therapy can potentially influence on the developed
model.
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Fig. 7. The significance of the top 10 features according to the Shapley
values. Grey represent missed values.

C. Implications

Building on the outlined strengths, this study presents a
comprehensive and robust framework for developing, evaluat-
ing, and validating personalized predictive models using ML
algorithms and real-world clinical data to forecast preventable
hospitalizations in patients with AH and its complications.
Our final model has successfully completed all stages of the
standard ML project lifecycle, including data collection, pre-
processing (with missing value imputation, scaling, and class
imbalance correction), optimal model selection and testing,
feature interpretability analysis, and deployment within the
Webiomed platform.

Our approach involves leveraging state-of-the-art techniques
and methodologies at each stage of the modeling process. We
recognize the importance of domain-specific knowledge and
the need for external validation to ensure the discrimination
and robustness of our model. We propose to categorize patients
into three distinct risk groups for the purpose of managing AH,
using probability estimates generated by the XGBoost model
and calculated two thresholds [30]-[32]. The first threshold
(0.001) was selected to optimize the model’s sensitivity and
ensure high accuracy in identifying patients at low risk of
hospitalization who may not require active treatment. The
second threshold (0.265), on the other hand, was chosen to
maximize the model’s specificity and reliably predict hos-
pitalization for patients at high risk of adverse outcomes,
thus enabling healthcare providers to implement more careful
monitoring strategies.

The model exhibits strong potential as an additional moni-
toring tool for AH patients, with robust performance in both
internal and external validation. The approach represents a
significant contribution to AH management and has important
implications for improving patient outcomes and reducing
healthcare costs. Prospective studies can further validate the
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model for practical use.

D. Future research

The issue of data imbalance in clinical practice has been
widely discussed in the literature, with several proposed solu-
tions [34]-[36]. One such approach is the use of activation
thresholds with target levels for negative and positive pre-
dictive values, as employed in our study. Further research
is needed to improve classification in cases that fall between
these thresholds. Class imbalance correction algorithms, such
as ROS, SMOTE and ADASYN, have also been suggested
as a solution. However, these synthetic algorithms require
the filling in of missing values before use and may generate
records that do not align with clinical practice. On the other
hand, ROS only duplicates existing records, failing to offer
additional information about target events or improve model
performance. While undersampling is a promising alternative,
it comes at the cost of records loss. Therefore, further research
is needed to develop effective solutions for addressing data
imbalance in healthcare ML applications while minimizing the
loss of data.

VI. CONCLUSION

Our research highlights the potential of ML techniques
in developing accurate healthcare models, particularly for
predicting outcomes of complex diseases. The incorporation
of routine clinical and laboratory parameters as factors in
the model makes it easily applicable in clinical practice.
However, further research is necessary to address the issue
of data imbalance and minimize data loss while developing
effective solutions. By utilizing domain-specific knowledge
and simplified tools for ML model development, such as our
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framework, we can improve prediction outcomes, streamline

the

process, and make it accessible for narrow specialists

without computational expertise. Overall, our study contributes
to the growing body of evidence supporting the integration of
ML in healthcare decision-making, which has the potential to
enhance patient outcomes and reduce healthcare costs.
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