ISSN 2305-7254

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

Open-Source Large Language Model Frameworks for
Automated Penetration Testing: Opportunities,
Challenges, and Solutions

Nikolai Eritenko, Alexander Menshchikov, Danil Sviridov, Maksim Sheryagin, Sergey Sergienko
ITMO University
Saint Petersburg, Russia
{eritenko.nick, menshikov, dasviridov, maks.sheryagin, sergienko.sg}@itmo.ru

Abstract—The rapid development of artificial intelligence
technologies, particularly Large Language Models, has a growing
impact on the field of information security. One of the promising
directions of their application is the automation of penetration
testing - a controlled simulation of intruder actions to identify
vulnerabilities in protected information systems.

This study investigates the practical applicability of existing
open-source frameworks based on Large Language Models, both
large-scale and lightweight models, within the context of
penetration testing tasks that are critical to commercial security
assessments.

The results demonstrated the potential application and
constraints of these frameworks, addressing fundamental
challenges in penetration testing and outline possible solutions for
overcoming the identified limitations. Based on our results, we
propose a practical approach to address key limitations and
showcase the potential of Large Language Models based
frameworks in real-world penetration testing.

I. INTRODUCTION

Large Language Models (LLMs) such as GPT (OpenAl)
[1], Claude (Anthropic) [2], LLaMA (Meta) [3], and others,
trained on large-scale text data, have the ability to interpret
technical documentation, generate program code, and analyze
logs and configurations. A number of scientific works
[41,[5],[6] indicate the possibility of LLM to generate exploits,
to use shell commands and interpret scan results, and even to
conduct an interactive dialogue in order to clarify attack vector
parameters. Such opportunities create prerequisites for more
intelligent and effective support of pentesting processes.

Despite LLM have recently shown strong capabilities
across natural language processing and related tasks, yet their
limitations make Human-in-the-Loop (HITL) approaches
particularly relevant for information security. In penetration
testing, human expertise remains essential for guiding models,
supplying domain-specific knowledge, and handling tasks that
are too complex or ambiguous for automation alone.
Incorporating human oversight into LLM-driven penetration
testing frameworks is not optional but a necessary
requirement, as fully autonomous systems remain unable to
address the complexity and unpredictability of real-world
security environments. Rather than replacing human expertise,

36

HITL leverages the complementary strengths of humans and
machines: models provide scalability and speed, while humans
contribute domain reasoning, contextual judgment, and
creative problem-solving. Building on prior surveys [7], [8]
our work highlights HITL as a fundamental principle for
applying LLM-based frameworks in penetration testing,
ensuring reliability, accuracy, and trustworthiness of results. In
practice, HITL method means that experts step in during key
stages of the process. For example, validating model outputs,
correcting errors, or supplying domain-specific data. This
ensures that tasks the model cannot handle reliably, such as
ambiguous or high-risk cases, are resolved accurately with
minimal cost.

Nevertheless, despite the high interest of the research
community and the availability of prototype implementations
(for example, PentestGPT [4]), the question of the actual
effectiveness and reliability of the results obtained using LLM
remains open. According to the recent studies, existing
solutions demonstrate a predominantly experimental nature,
limited application scenarios, and often face fundamental
problems: the generation of unreliable or insecure information,
lack of precise control over model conclusions, difficulties in
taking into account the context, and limitations in interacting
with real infrastructure [6][9].

Consequently, the primary objective of this research is to
conduct an analysis of open-source, LLM-based frameworks
applied to penetration testing tasks. This work aims to evaluate
their capabilities and, crucially, to identify the principal
challenges and limitations that hinder their effective
deployment in the practical workflows of information security
specialists. Building on results obtained, we also propose a
practical approach designed to mitigate the identified
limitations and demonstrate the potential of LLM-based
frameworks in real-world penetration testing scenarios.

II. LLM-BASED PENETRATION TESTING TOOLS

A. CAI

CALI stands for Cybersecurity Al [10]. It is a framework
designed for information security to conduct automated
penetration testing and perform information security tasks.
The framework is built on a modular architecture and includes

ISSN 2305-7254

key components such as Agents, Tools, Patterns and Handoffs,
Turns, Human-In-The-Loop (HITL), Tracing and Extensions.
The architecture is shown in the Fig. 1

HITL

Tums

Patterns Handoffs LLMs

Agents >

E i Tracing Tools I Guardrails

| l ! l

WebSearch

LinuxCmd Code SSHTunne!

Fig. 1. CAI architecture [10].

Patterns and Handoffs are responsible for managing the
tool, which trigger various modules depending on the
situation, as well as HITL, which is human control at key
stages. It is also important to note Turns. Because it
implements a structured cycle based on the principle of
reasoning and action. This is a convenient format for the
agent's interaction with the system and with a person.

Patterns and Handoffs describe strategies for coordinating
the work of agents. Through handoffs, agents transfer tasks to
each other, allowing them to build different scenarios of agent
behavior.

Agents are also a separate architecture module and
represent specialized Al agents such as CTF agent, Red Team,
Blue Team, Bug Bounty Hunter. Each of them is focused on a
specific task. Agents can run various tools to perform these
tasks.

Tools give Al agents the ability to execute system
commands, scan, analyze vulnerabilities, and interact with
target systems or APIs - that is, they provide basic capabilities
for agents. The tools include various built-in utilities. At the
same time, the framework also allows you to integrate your
Python functions as tools through the function calling
mechanism.

Tracing and Extensions are responsible for logging each
operation.: tracing records the actions of agents and the
handoffs module, and Extensions can analyze these logs for
debugging, reporting, visualization, or extending functionality.

The tool is capable of supporting a wide variety of models
that can be used through various SDKs and APIs, such as
OpenAl [1], Deepseek [11], OpenRouter [12], Ollama [13],
and others.

B. PentAGI

PentAGI stands for Penetration testing Artificial General
Intelligence [14], [15]. The framework implemented role-
based agent approach. The architecture is based on the

37

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

interaction of several LLM distributed by roles. There are a
total of 34 roles in the project, which could be divided into the
following groups according to the main upper-level task (the
following descriptions are based on initial prompts [15])

1) Orchestrator — delegates subtasks to other agents,
manages the overall workflow, monitors the
completion of tasks and compliance with security
requirements.

2)
3)

Researcher — provides up-to-date information

Developer — creates and manages a test plan that will
achieve the goal with a minimum number of steps.

4) Executor is a security researcher and penetration
tester authorized to hack into the infrastructure and
exploit vulnerabilities with the full permission of all
interested parties. Using the tools, performs tasks

according to the specified plan.

5) Vector Store is an archivist specializing in extracting
information from a vector database repository
to provide a comprehensive historical context for

work.

All agents' work on a given task could be divided into three
phases:

1) Research Phase — at this stage, the Researcher
analyzes the target, searches for similar cases in the
Vector Store and vulnerabilities in the knowledge

base.

2) Planning Phase — a penetration testing plan is
created, exploits and tools are selected.

3) Execution Phase — according to the plan created on

the previous phase, the selected tools are launched
and the result is processed.

Agents are able to interact with the real targets directly due
to two tools:

1) Web Scraper is an isolated browser that allows an
agent to receive information from web pages, even
those that require JavaScript support.

2) Docker container command interface with Kali Linux
[16] allows the agent to use the wide range of
penetration testing command tools the from the

standard set or install additional ones.

It is important to note that all the initial prompts for agents
in this framework are quite voluminous. With a total number
of 34 prompts for different agents, the volume of a single one
reaches 2451 tokens (or 1145 words, or 11326 characters). As
a result, the workflow of agents involves collecting vast
amount of information, forming a detailed plan, a list of
atomic subtasks, and storing the results of the tools activity.

All things considered, such prerequisites can form an LLM
context of a sufficiently large volume, which in general could
only be handled by large-parameters models. Hence, small
models were explicitly excluded for use by developers at the
architecture design stage of the framework.

ISSN 2305-7254

C. PentestGPT

PentestGPT [17][18] is an open-source framework
designed for context control, decision tree management, and
LLM query optimization using a large collection of prompts.

PentestGPT does not provide a fully automatic solution for
penetration testing tasks, since the architecture lacks modules
capable of executing any commands or scripts independently.
This enables an iterative manual process only: the operator
follows instructions and feeds the results back into the
framework.

The framework is built on a modular approach and
includes three components: Reasoning, Generation, and
Parsing. Each module can use different LLM models.
Interaction is carried out via command-line interface with the
commands “next”, “todo”, “discuss” and “more”, providing
step-by-step process control.

PentestGPT is implemented as a single-agent system
without distributed subsystems. The key element of the
architecture is the PTT (Pentest Task Tree) structure, an
internal representation of the testing process in the form of a
hierarchical task tree. Each node of the tree corresponds to a
specific subtask (for example, "scan ports", "identify the OS",
"choose a password"), and the relationships between them
reflect logical and casual relationships. This structure is used
as a contextual model that allows LLM to make informed
decisions, form hypotheses, track progress, return to previous
actions, and simultaneously develop alternative solution
branches. Thus, PTT performs the function of RAM and the
logical basis, increasing the interpretability, manageability and
consistency of the framework.

D. LLM-based tools non-intended for penetration testing

In order to test the ability of large models to perform
various security tasks without pre-build cybersecurity
frameworks, several agents were selected, one of them is
Agent Mode in the WARP terminal [19].

It is an embedded agent that can perform various actions
through commands in human language. Various additional
language models are offered for interaction, such as GPT-5,
GPT-4.1, Gemini 4, Claude 4 Sonnet and others.

The agent accepts the task and generates commands for the
terminal with requirements for a permission from the operator.
This tool could be used in fully autonomous mode or based on
HITL approach. Next, WARP analyzes the response and
performs the task until it considers it completed or interrupted
by user.

III. EXPERIMENTAL SETUP

A. Vulnerabilities selection

We have chosen PortSwigger Web Security Academy [20]
as a source of basic tasks for wide-range penetration testing
skills. PortSwigger is a leading web security company known
for its industry-standard Burp Suite testing platform and its
Web Security Academy, a comprehensive, free learning
resource for aspiring and experienced security professionals.

38

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

Labs in PortSwigger [21] academy assesses high-level,
practical proficiency in identifying and exploiting web
application vulnerabilities. It is recognized as a benchmark for
the competency of penetration testers and is consequently used
by organizations to evaluate personnel qualifications.

The PortSwigger Labs are classified by vulnerability groups
or topics. Each topic consists of several tasks which cover
different web penetration skills and competencies. Considering
the limitation of computational and human resources, the
subtask of creation of revised tasks sufficient for the
assessment of a penetration testing LLM tool was set.

Topics and tasks selection has been organized as follows:
firstly, we scanned through all of topics and analyze them in
the context of applicability of the tasks in given environment
and experimental setup. Then, if the topic had been marked as
applicable, we picked up to two tasks per each topic which
could cover as much penetration testers’ competencies as
possible. The tasks selection result has shown on the Table I.
Vulnerability groups are sorted similarly to the PortSwigger
Labs order [21] at the time of writing this article.

TABLE I. TOPICS AND TASKS SELECTION (PART I)

Topic
Vulnerability group has Vulnerability type
(topic) been (task)
chosen?
1. Visible error-based
N SQL injection
! SQL injection Yes 2. Blir?d SQJL injection
with time delays
2 Cross-site scripting No -
Cross-site request
3 forgery (CSRF) No)
4 Clickjackipg (Ul No)
redressing)
s DOM-based No -
vulnerabilities
Cross-origin resource
6 sharing (CORS) No -
7 XML external entity Yes Exploiting XXE via
(XXE) injection image file upload
1. SSRF with blacklist-
3 Server-side request Yes based input filter
forgery (SSRF) 2. Blind SSRF with
Shellshock exploitation
Bypassing access
9 | HTTP request smuggling Yes controls via HTTP/2
request tunnelling
Blind OS command
10 OS command injection Yes injection with output
redirection
1. Basic server-side
template injection (code
1 Server-side template Yes context)
injection 2. Server-side template
injection with a custom
exploit
File path traversal,
validation of file
12 Path traversal Yes extension with null byte
bypass
1. User role can be
13 Access control Yes modified in user profile
vulnerabilities 2. Referer-based access
control

ISSN 2305-7254

TABLE I. TOPICS AND TASKS SELECTION (PART II)

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

1. Username enumeration
14 Authentication Yes via different responses
2. Username enumeration
via response timing
15 WebSockets No -
16 Web cache poisoning No -
17 Web cache deception No -
1. Exploiting Java
deserialization with
18 | Insecure deserialization Yes Apache Commons
2. Arbitrary object
injection in PHP
1. Source code disclosure
19 Information disclosure Yes via baqkup ﬁles
2. Information disclosure
in version control history
1. Weak isolation on
20 Business logic Yes dual-use endpoint
vulnerabilities 2. Infinite money logic
flaw
21 HTTP Host header Yes Host header
attacks authentication bypass
22 OAuth authentication Yes Authentlce'ltlon'b.ypass via
OAuth implicit flow
1. Web shell upload via
23 File upload Yes path traversal
vulnerabilities 2. Web shell upload via
obfuscated file extension
1. JWT authentication
bypass via unverified
signature
24 IWT Yes 2. JWT authentication
bypass via weak signing
key
25 Essential skills No -
26 Prototype pollution No -
1. Accidental exposure of
27 GraphQL API Yes private GraphQL fields
vulnerabilities 2. Finding a hidden
GraphQL endpoint
28 Race conditions Yes Multi-endpoint race
conditions
1. Exploiting NoSQL
operator injection to
29 NoSQL injection Yes g?%i?lglilttiﬁznlt\}g?g{l
operator injection to
extract unknown fields
1. Finding and exploiting
an unused API endpoint
30 API testing Yes 2. Exploiting server-side
parameter pollution in a
query string
31 Web LLM attacks No -

Vulnerability groups 2-6, 15-17, 26 has not been selected.

The tasks of these groups include three sides: client, server, and
client interface. The decision of LLM will depend on the
specifics of the client interface. These tasks are not suitable,
since the success of their implementation directly depends on
the quality of the tools that implement interaction with the
browser. Hence, this is not the task of this work, it was decided
to abandon these sections. For the same reason, the solution of
these sections can be distinguished as a separate task and could
be considered in other works.

Vulnerability group 25 is devoted to reconnaissance, and

39

the models will solve this as a subtask for each task. For this
reason, it will not be considered separately.

Vulnerability group 31 represent a fundamentally new class
of vulnerabilities that require a dedicated focus within security
testing protocols and should be singled out as a separate.

B. Experimental method
The experimental protocol has been organized as follows:

1) Step 1. LLM framework and model selection. LMM
penetration testing framework and LLM model are
selected.

2) Step 2. Task selection. A specific PortSwigger
laboratory is selected. The list has been given in
Table I.

3) Step 3. Defining key points. The key point is the
element of the solution that we want to see in the
LLM solution. The key points are formed from the
steps of the Portswigger solution. Success state — the
final point, the result that needs to be achieved. For
example, possible key points for the task Visible
error-based SQL injection from the topic SQL
injection:

1. SQLi is detected in cookies;

2. The request is adapted to get information based on
errors;

3. The request to get information from the users is
generated;

4. The previous request is changed to get one row
(request correction);

5. Success state: Password is obtained.

4) Step 4. Creating an initial prompt. A prompt is
created with a link, detailed information about the
type of vulnerability and criteria for a successful
solution. In current paper we used the next template
for our initial prompts:

This site (link) contains a vulnerability. The type of
vulnerability is (vulnerability information). Find it
and try to exploit it. The goal is to get (success state).

5) Step 5. Conducting the experiment. Via Human-In-
The-Loop (HITL) method.

6) Step 6. Collecting results and artifacts. Notes about
LLM hallucination, incorrect solving path, incorrect
tool usage, logical mistakes are included.

C. Evaluation metrics and success criteria

The comparative performance of the frameworks was
quantified using a dual-criteria assessment, implemented
through a series of PortSwigger lab exercises. This meta-
framework evaluated both task completion and solution quality,
leading to a three-tiered classification for each tested
framework:

ISSN 2305-7254

1) Success: A framework was classified as successful if
it enabled the attainment of the defined "success
state" in every lab and facilitated the accrual of more
than 80% of all available key points. This signifies
robust and comprehensive capability.

Partial Success: A framework was classified as
partially successful if it enabled the attainment of the
success state in all labs but facilitated the accrual of
only 80% or fewer of the key points. This indicates
effective but suboptimal or inefficient guidance.

2)

Failure: A framework was classified as a failure if it
did not enable the attainment of the success state in
one or more labs, indicating a fundamental
inadequacy in addressing the core tasks.

3)

D. Hardware and deployment model

To ensure a comprehensive comparison, we selected
models from both proprietary API services and the open-
source. The API-based models were queried using their
respective commercial endpoints. Conversely, the self-hosted
models were run on an internal server to ensure isolation and
control over the inference environment. This local hardware
platform featured a GPU Tesla P100-PCIE-12GB, a CPU
Intel(R) Xeon(R) E5-2699 v4 2.20GHz,
and a RAM DDR 4 256GB 2400MHz, providing the necessary
computational resources for local inference.

IV. RESULTS

A. CAI

Initially, the experiments were conducted on the 04 mini
model. The tool was able to solve a task using the model, but it
still periodically had to use the architectural capability of
HITL to guide the progress of the solution. But at the same
time, the tool managed to find a solution for the most
PortSwigger tasks and achieved appropriate key points and a
success state. It is worth noting that using the 04 mini model
requires sufficient financial investment.

Next model was DeepSeek v3 model, which could be
accessed through Openrouter [22]. This approach had some
limitations in the number of attempts per account, up to 50
requests per day. During the experiments, it became clear that
this model creates solutions worse with achieving the success
state of the task. 50 requests were not enough for the problem
solution. It was noticeable that context was lost much faster
and the tool forgot about the target task, forcing the model to
use human help more often.

We also conducted several experiments from the list using
large models from the Mistral family [23], but they did not
lead to anything, since the model has serious limitations for
using its API in penetration testing processes.

Additionally, we decided to perform tests on self-hosted
models. We used gpt-oss-20b [24] and qwen3:14b [25]
models. During the experiments, CAI practically stopped
using tools to run commands on his own and gave more
practical recommendations and advice for user. After the

40

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

implementation of the recommendation actions, the CAI
reported the results, on the basis of which new
recommendations were received.

Using small self-hosed models, we found out that CAI
tends to hallucinate and make recommendations unrelated to
the topic or purpose of the experiment. Commands generated
by CAI were incorrect mostly and caused the framework
giving out false solutions. Example of such wrong approach
has shown in the Fig. 2. We have come to a conclusion that
framework and small models do not have knowledge about
exploiting the vulnerability, which results in the inability to
solve the problem and proposing a completely wrong solution.
The CAI experiment results have been summarized and shown
in the Table II.

First part of the answer

Second part of the answer

Fig. 2. CAI with model qwen3:14b is proposing a wrong approach of
exploitation visible error-based SQL injection

TABLE II. SUMMARY OF CAI EXPERIMENTS RESULTS

API Self-Hosted
GPT-04- Openrouter mistral- t-0ss-
mini DeepSeck laree-2411 gpz()b qwen3:14b
V30324 &
Success Partially Fail Fail Fail
Token API
Token S pentest Hallucination, tool usage
SR limitation,
limitation usage €rrors
loss context Lo
restrictions
B. PentAGI

At first, as well as CAI testing, the experiments with
PentAGI framework was conducted using models with a large
number of parameters (GPT-04-mini and DeepSeek v3).

The framework successfully solved the tasks from the list,
but not independently. We had to support PentAGI with the
HITL method, interfering in the process and interacting with it
manually, due to the following reasons:

1) Wrong tool selection. PentAGI chose tools that are not
suitable for the task. For instance, to detect SQLi at a
web resource, the agent tried to use the Mitmproxy
[26] tool. Mitmproxy is used to intercept HTTPS
traffic.

2

Tools usage without CLI or interactive CLI utilities
usage. For example, PentAGI constantly tried to run

ISSN 2305-7254

Mitmproxy with the web version of the interface, or
for Sqlmap [27] it could not find the integrated tool
option for automatic decision-making which leads to
the necessity of human confirmation in every Sqlmap
request.

Further, since the goal was to try out solutions for
automating commercial penetration testing, we decided to use
self-hosted models (gpt-oss-20b [24] and qwen3-14b [25]).
The newly selected models are smaller than the previous,
hence additional problems have been appeared:

1) Frequent errors in tool usage. The framework calls
commands for the tool in JSON format. However,
despite the declared ability to use such tools,
hallucinations were occurred and text out-of-context
appeared in the output in addition to the JSON

structure, which caused an error in the system.

2) Hallucinations in the free parameters of the
command shell tool. For example, user in order to run
Linux OS commands in the terminal could specify
the working directory, which does not play a role in
the tasks assigned. PentAGI constantly generated
new, non-existent directories and specified them as
working directories, which caused command

execution errors.

3)

Hallucinations in the tool arguments. Even correctly
chosen tool could not be used because the small
models do not have knowledge about tool supported
arguments. On rare occasions, the framework could
find this information in the integrated tool manual.
Example has provided in the Fig 3.

Fig 3. Hallucinations in the Command Shell parameter during solution search
to the problem “SQL injection vulnerability allowing login bypass”

4) Difficulties in mitigating additional problems. During
the penetration testing process, many side subtasks
are appeared. For instance, the vast majority of
experimental tasks are required the usage of a CSRF
token. The framework was able to send the first
successful request only after 80 attempts (on
average).

41

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

It is important to note that all of the problems mentioned
earlier do not occur once. Moreover, they greatly increase the
LLM context by forcing the agent to solve self-generated
problems and correct mistakes.

In addition, the original prompts only contain lists of tool
categories such as “network recon”, “web_testing”,
“password_attacks”, etc., leading to the lack of descriptions of
each tool. This could cause an error related to the tool usage
listed previously, because it leads to choosing a random
instrument from the category instead of choosing a tool strictly
according to the task provided.

Based on the experimental data, itcan be inferred that
PentAGI design seems to be optimal for models possessing a
huge number of parameters and makes it difficult to use with
small models. The PentAGI experiment results have benn
summarized and shown in the Table III.

TABLE III. SUMMARY OF PENTAGI EXPERIMENTS RESULTS

API Self-Hosted
GPT-04-mini DeepSeek V3 gpt-oss-20b | qwen3:14b
0324
Partially Partially Fail Fail

Wrong tool selection,
tools usage without CLI or
interactive CLI utilities usage,
token limitation

Hallucination, tool usage
errors

C. PentestGPT

Initially, tests with the GPT-04-mini and DeepSeek V3
were conducted to check the overall functionality of the tool.
Under the control of a large model, the framework was able to
solve a majority of problems and tasks through a large number
of steps and deviations from the correct solution.

The tests provided by the authors [18] show that OpenAl
[1] models could achieve great success with PentestGPT. The
authors also provide a table of the main errors in the problem-
solving process, which allows us to understand the main
limitations of this framework. Top causes of errors from
authors provided in the Table I'V.

TABLE IV. TOP CAUSES FOR FAILED PENETRATION TESTING TRIALS FOR
PENTESTGPT [18]

Failure Reasons GPT3.5 | GPT4 | Bard | Total
Session context lost 25 18 31 74
False Command Generation 23 12 20 55
Deadlock operations 19 10 16 45
False Scanning Output 13 9 18 40
Interpretations

False Source Code Interpretation 16 11 10 37
Cannot craft valid exploit 11 15 8 34

ISSN 2305-7254

Based on our experiments, a several problems emerges.
Despite the fact that the functionality of the framework
consists in planning the steps of the penetration test process,
most of the experiments ended unsuccessfully due to the loss
of the contextual session model. It suggests that the PTT
concept may have certain limitations. Moreover, while the
model correctly identifies and navigates the majority of key
points, its ability to fully complete tasks remains very low.

PentestGPT experiments, like for previous tools, was also
conducted with self-hosted models, which allows to check
Tests were conducted with gpt-oss-20b [24] and qwen3-14b
[25].

However, tests with small local models did not bring
positive results. PentestGPT did not give precise instructions,
described possible actions in general terms instead. It is also
worth noting that although PTT is generated dynamically
based on the data provided, it includes hallucinations and
incorrect steps. For example, providing in initial prompt what
type of vulnerability is on the website and where it is
allocated, PentestGPT still suggests reconnaissance: to scan
the target host for open ports. The results of this redundant
operation have been shown in the Fig. 4.

Fig. 4. PentestGPT provides PTT with wrong step to scan ports for solving the
task with SQL injection

Correlating our PentestGPT experiments results analysis
with the authors' test table indicates that LLM and PentestGPT
exhibits a strong inability to generate commands and exploits.
This behavior implies that the causes of failure in the authors'
tests are not equally likely. The error rate for "incorrect
command generation" is conditional on the model first not
losing context and then agreeing to generate the command.
Since our experiments show the model often refuses this step
entirely, the authors' data may underrepresent this specific
failure mode.

Since the framework is a large a collection of prompts, it
could be concluded that the prompts were optimized for GPT-
3.5\4, on which the authors conducted tests. However, small
models require other techniques of prompt engineering and the
built-in tool stage of rezoning does not help solve this
problem. The PentestGPT experiment results have been
summarized and shown in the Table V.

42

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

TABLE V. SUMMARY OF PENTESTGPT EXPERIMENTS RESULTS

API Self-Hosted
GPT-04-mini DeepSeek V3 gpt-oss-20b | qwen3:14b
0324
Partially Partially Fail Fail

Hallucination, tool usage
errors, lack of precise
instructions

Session context loss,
token limitation, low solved tasks rate

D. LLM-based tools non-intended for penetration testing

To broaden the scope of our evaluation, we conducted
several experiments with large-scale models that are not self-
hosted and employed general-purpose agents not originally
designed for penetration testing. Specifically, the tests were
carried out using embedded agents from platforms such as
WARP [19], Copilot [28], and others. Despite the absence of
domain-specific optimization, the large models demonstrated a
high degree of effectiveness, even within “unintended” or non-
specialized frameworks. The example of successful solve has
shown in the Fig. 5.

Fig. 5. Illustration of WARP combined with Claude 4 Sonnet successfully
solving the task “Visible error-based SQL Injection”

During the experiments we encountered the same several
practical challenges, including incorrect tool selection, using
tools without proper CLI support, difficulties with interactive
CLI utilities, and limitations imposed by token constraints.

These findings suggest that when the underlying language
model has a sufficiently large number of parameters, factors
such as agent configuration and the choice of framework exert
a comparatively minor influence on overall performance. The
experiment results on frameworks non-intended for
penetration testing have been summarized and shown in the
Table VI.

TABLE VI. SUMMARY EXPERIMENTS RESULTS ON GENERAL-PURPOSE
(NON-PENTEST) FRAMEWORKS

Non-pentest frameworks (WARP, Copilot, etc.)

GPT-04-mini DeepSeek V3

Success Success

Wrong tool selection,
tools usage without CLI,
token limitation

ISSN 2305-7254

E. Our approach to lightweight models

As previously observed, the majority of challenges occur
when interacting with small-scale models. To investigate this
issue, we conducted a series of experiments aimed at
identifying potential solutions for this class of models. Our
working hypothesis was that these models lack sufficient
understanding of tool selection and the appropriate handling of
security vulnerabilities.

To enhance the knowledge capabilities of our prototype
solution, we adopted the Retrieval-Augmented Generation
(RAG) approach. RAG enhances LLMs by allowing them to
reference external, authoritative knowledge bases before
generating responses. This approach extends LLM capabilities
to domain-specific or organizational data without retraining,
offering a cost-effective way to maintain accuracy and
relevance across tasks [29].

We augmented the original user queries with information
derived from exploitation examples, tool manuals, and
vulnerability databases. To enable effective utilization by the
LLM, this information was transformed into numerical
representations and stored in a vector database, creating a
structured knowledge base with which the LLM could interact.
Our prototype architecture for lightweight models
implementing the RAG approach has shown on the Fig. 6.

User }(7

Exe T 1. User
Query
2. Framework I
query ——
 —
"~ Framework / Script
Tool manual Vector >
: Database 3. Enriched —
_ . context
—_— I 4. Prompt + 5 LLM
. . Framework query + Response
Vulnerabilty - Enriched context
information . f
.
LLM
External Data

Fig. 6. Prototype architecture for lightweight models implementing the RAG
approach

It was decided to implement this using the qwen3:14b
model [25] and a vector database. The vector database was
created based on knowledge about tools, types of
vulnerabilities and their exploitation options. It was created
using a small embedding model, all-MiniLM-L6-v2 [30].

Next, a Python script has been developed to implement a
system where the model can access a vector database. The
script's source code has provided in open GitHub repository
[31]. The system prompt explicitly defines the availability of
this tool and includes instructions for its use. Consequently,
when the model lacks the necessary knowledge to answer a
query, it uses the tool to retrieve relevant information from the
vector database. This retrieved data then serves as the basis for
its final decision.

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

This approach enabled us to obtain correct solutions to
several complex problems using a small model. The input and
output of this prototype have shown in Fig. 7. Overall
prototype and framework comparison using qwen3:14b model
has shown on Table VII.

User first input

Fig. 7. The first input and response of the prototype for lightweight models
implementing the RAG approach

TABLE VII. PROTOTYPE AND FRAMEWORKS COMPARISON USING
QWEN3:14B MODEL

Our
CAIl PentAGI PentestGPT prototype
solution
Fail Fail Fail Success

Hallucination,
L tool usage errors,
Hallucination, tool usage errors £e et -

lack of precise

instructions

43

V. CONCLUSION

In many corporate penetration tests, the usage of LLM
APIs is restricted due to strict confidentiality requirements and
the non-disclosure of target data. Furthermore, small
percentage of penetration testers have access to self-hosted
LLMs with a large number of parameters within isolated
network perimeters, which often necessitates the usage of
smaller self-hosted models.

Our study has produced the following findings:

1) Experiments demonstrated that LLM with a large
number of parameters, supported with HITL, can
effectively solve fundamental penetration testing
tasks, with neglect limitations and obstacles.

2) Existing open-source frameworks were shown to be
insufficient for small models, which frequently
hallucinate, tend to wrong selection or misuse tools,

and lack knowledge of basic vulnerabilities.

3) We hypothesize that equipping small models with
explicit knowledge of vulnerabilities and the
corresponding exploitation tools would enable them to

successfully perform penetration testing tasks.

ISSN 2305-7254 PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

4) To address these challenges, we designed and
proposed architecture and prototype solution for
lightweight models, aiming to mitigate hallucinations
and improve the overall accuracy of penetration
testing tool selection.

VI. ACNOWLEGEMENT

This research has been carried out as a part of scientific
project “NIR-PRIKL Identification of promising areas of
personnel training in the field of information security of end-
to-end digital technologies wusing artificial intelligence
systems” No. 54143 at ITMO University, Russian Federation.

VII. REFERENCES

[11 OpenAl. Official website, Web: https://openai.com/.

[2] ClaudeAl. Official website, Web: https://www.anthropic.com/claude/.

[3] Llama (Large Language Model Meta Al). Official website, Web:
https://www.llama.com/.

[4] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E.
Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg, C. N. Madan, M.
Miryoosefi, A. Palangi, M. T. Ribeiro, and Y. Zhang, “Sparks of
artificial general intelligence: Early experiments with GPT-4”, arXiv
preprint, arXiv:2303.12712, 2023.

[5] H. Pearce, Z. Ahmad, J. Tan, et al. “Asleep at the Keyboard?
Assessing the Security of GitHub Copilot’s Code Contributions” in
Proceedings of IEEE Symposium on Security and Privacy, 2022.

[6] D. Cardenas, M. Tu, A. Dhungana, et al. “Large Language Models
for Cybersecurity Applications: Opportunities and Challenges”. arXiv
preprint, arXiv:2306.11683, 2023.

[71 X. Wu, L. Xiao, Y. Sun, J. Zhang, T. Ma, L. He, “A survey of
human-in-the-loop for machine learning”, Future Generation
Computer Systems, vol. 135, 2022, pp. 364-381.

[8] G.Deng, Y. Liu, V. Mayoral-Vilches, P. Liu, Y. Li, Y. Xu, T. Zhang,
Y. Liu, M. Pinzger, S. Rass. “PentestGPT: Evaluating and
Harnessing Large Language Models for Automated Penetration
Testing”. Proceedings of the 33" USEINX Security Symposium, 2024.

[91 E. Mosqueira-Rey, E. Hernandez-Pereira, D. Alonso-Rios, et al.
“Human-in-the-loop machine learning: a state of the art”. Artificial
Intelligence Review, vol. 56, pp. 3005-3054, 2023.

[10] Alias Robotics, “Cybersecurity Al (CAI)” GitHub repository, Web:
https://github.com/aliasrobotics/cai.

44

[11] DeepSeek V3 LLM. GitHub repository, Web:
https://github.com/deepseek-ai/DeepSeek-V3.

[12] OpenRouter: Interface for LLMs. Official website, Web:
https://openrouter.ai/.

[13] Ollama API. Official website, Web: https://ollama.com.

[14] PentAGIL: Advanced Al-Powered Penetration Testing. Official
website, Web: https://pentagi.com/.

[15] PentAGI: Advanced Al-Powered Penetration Testing. GitHub
repository, Web: https://github.com/vxcontrol/pentagi/.

[16] Kali Linux. Open-source penetration testing Debian-based
distribution. Official website, Web: https://www kali.org/.

[17] G. Deng, Y. Liu, V. Mayoral-Vilches, P. Liu, Y. Li, Y. Xu, T. Zhang,
Y. Liu, M. Pinzger, S. Rass. “PentestGPT: An LLM-empowered
Automatic Penetration Testing Tool”. arXiv preprint,
arXiv:2308.06782.

[18] PentestGPT A GPT-empowered penetration testing tool. GitHub
repository, Web: https://github.com/GreyDGL/PentestGPT.

[19] Warp. Al-powered development environment. Official website, Web:
https://www.warp.dev/agents.

[20] PortSwigger: Web Application Security, Testing, & Scanning.
Official website, Web: https://portswigger.net/.

[21] PortSwigger: Web Security Academy. All labs. Official website,
Web: https://portswigger.net/web-security/all-labs/.

[22] OpenRouter: Interface for LLMs. DeepSeek V3 0324 model, Web:
https://openrouter.ai/deepseek/deepseek-chat-v3-0324/.

[23] Mistral Al APL. Official website, Web: https://docs.mistral.ai/api/.

[24] Hugging Face: open-source platform for machine learning models
and Al tools. GPT-0ss-20b model, Web:
https://huggingface.co/openai/gpt-0ss-20b/.

[25] Hugging Face: open-source platform for machine learning models
and Al tools. Qwen3-14B model, Web:
https://huggingface.co/Qwen/Qwen3-14B/.

[26] Mitmproxy: an interactive, SSL/TLS-capable intercepting proxy.
GitHub repository, Web: https://github.com/mitmproxy/mitmproxy/.

[27] SQLmap: an open-source penetration testing tool that automates the
process of detecting and exploiting SQL injection. GitHub repository,
Web: https://github.com/sqlmapproject/sqlmap/.

[28] GitHub Copilot: Al-powered code completion and assistant. Official
website, Web: https://github.com/features/copilot/.

[29] M. Arslan, H. Ghanem, S. Munawar, C. Cruz. “A Survey on RAG
with LLMS”. Procedia Computer Science, vol. 246, pp. 3781-3790.

[30] Hugging Face: open-source platform for machine learning models
and Al tools. Embedding model all-MiniLM-L6-v2, Web:
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/.

[31] The original prototype for lightweight models implementing the RAG
approach. GitHub repository, Web:
https://github.com/Candly/pentestllm_lightweightmodel prototype/.

