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Abstract—The rapid development of artificial intelligence 
technologies, particularly Large Language Models, has a growing 
impact on the field of information security. One of the promising 
directions of their application is the automation of penetration 
testing - a controlled simulation of intruder actions to identify 
vulnerabilities in protected information systems.  

This study investigates the practical applicability of existing 
open-source frameworks based on Large Language Models, both 
large-scale and lightweight models, within the context of 
penetration testing tasks that are critical to commercial security 
assessments. 

The results demonstrated the potential application and 
constraints of these frameworks, addressing fundamental 
challenges in penetration testing and outline possible solutions for 
overcoming the identified limitations. Based on our results, we 
propose a practical approach to address key limitations and 
showcase the potential of Large Language Models based 
frameworks in real-world penetration testing. 

I. INTRODUCTION 

 
Large Language Models (LLMs) such as GPT (OpenAI) 

[1], Claude (Anthropic) [2], LLaMA (Meta) [3], and others, 
trained on large-scale text data, have the ability to interpret 
technical documentation, generate program code, and analyze 
logs and configurations. A number of scientific works 
[4],[5],[6] indicate the possibility of LLM to generate exploits, 
to use shell commands and interpret scan results, and even to 
conduct an interactive dialogue in order to clarify attack vector 
parameters. Such opportunities create prerequisites for more 
intelligent and effective support of pentesting processes. 

Despite LLM have recently shown strong capabilities 
across natural language processing and related tasks, yet their 
limitations make Human-in-the-Loop (HITL) approaches 
particularly relevant for information security. In penetration 
testing, human expertise remains essential for guiding models, 
supplying domain-specific knowledge, and handling tasks that 
are too complex or ambiguous for automation alone. 
Incorporating human oversight into LLM-driven penetration 
testing frameworks is not optional but a necessary 
requirement, as fully autonomous systems remain unable to 
address the complexity and unpredictability of real-world 
security environments. Rather than replacing human expertise, 

HITL leverages the complementary strengths of humans and 
machines: models provide scalability and speed, while humans 
contribute domain reasoning, contextual judgment, and 
creative problem-solving. Building on prior surveys [7], [8] 
our work highlights HITL as a fundamental principle for 
applying LLM-based frameworks in penetration testing, 
ensuring reliability, accuracy, and trustworthiness of results. In 
practice, HITL method means that experts step in during key 
stages of the process. For example, validating model outputs, 
correcting errors, or supplying domain-specific data. This 
ensures that tasks the model cannot handle reliably, such as 
ambiguous or high-risk cases, are resolved accurately with 
minimal cost. 

Nevertheless, despite the high interest of the research 
community and the availability of prototype implementations 
(for example, PentestGPT [4]), the question of the actual 
effectiveness and reliability of the results obtained using LLM 
remains open. According to the recent studies, existing 
solutions demonstrate a predominantly experimental nature, 
limited application scenarios, and often face fundamental 
problems: the generation of unreliable or insecure information, 
lack of precise control over model conclusions, difficulties in 
taking into account the context, and limitations in interacting 
with real infrastructure [6][9]. 

Consequently, the primary objective of this research is to 
conduct an analysis of open-source, LLM-based frameworks 
applied to penetration testing tasks. This work aims to evaluate 
their capabilities and, crucially, to identify the principal 
challenges and limitations that hinder their effective 
deployment in the practical workflows of information security 
specialists. Building on results obtained, we also propose a 
practical approach designed to mitigate the identified 
limitations and demonstrate the potential of LLM-based 
frameworks in real-world penetration testing scenarios. 

II. LLM-BASED PENETRATION TESTING TOOLS 
 
A. CAI 

CAI stands for Cybersecurity AI. [10]. It is a framework 
designed for information security to conduct automated 
penetration testing and perform information security tasks. 
The framework is built on a modular architecture and includes 
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key components such as Agents, Tools, Patterns and Handoffs, 
Turns, Human-In-The-Loop (HITL), Tracing and Extensions. 
The architecture is shown in the Fig. 1 

 

Fig. 1. CAI architecture [10]. 

Patterns and Handoffs are responsible for managing the 
tool, which trigger various modules depending on the 
situation, as well as HITL, which is human control at key 
stages. It is also important to note Turns. Because it 
implements a structured cycle based on the principle of 
reasoning and action. This is a convenient format for the 
agent's interaction with the system and with a person. 

Patterns and Handoffs describe strategies for coordinating 
the work of agents. Through handoffs, agents transfer tasks to 
each other, allowing them to build different scenarios of agent 
behavior. 

Agents are also a separate architecture module and 
represent specialized AI agents such as CTF agent, Red Team, 
Blue Team, Bug Bounty Hunter. Each of them is focused on a 
specific task. Agents can run various tools to perform these 
tasks. 

Tools give AI agents the ability to execute system 
commands, scan, analyze vulnerabilities, and interact with 
target systems or APIs - that is, they provide basic capabilities 
for agents. The tools include various built-in utilities. At the 
same time, the framework also allows you to integrate your 
Python functions as tools through the function calling 
mechanism. 

Tracing and Extensions are responsible for logging each 
operation.: tracing records the actions of agents and the 
handoffs module, and Extensions can analyze these logs for 
debugging, reporting, visualization, or extending functionality. 

The tool is capable of supporting a wide variety of models 
that can be used through various SDKs and APIs, such as 
OpenAI [1], Deepseek [11], OpenRouter [12], Ollama [13], 
and others. 

B. PentAGI 

PentAGI stands for Penetration testing Artificial General 
Intelligence [14], [15]. The framework implemented role-
based agent approach. The architecture is based on the 

interaction of several LLM distributed by roles. There are a 
total of 34 roles in the project, which could be divided into the 
following groups according to the main upper-level task (the 
following descriptions are based on initial prompts [15]) 

1) Orchestrator – delegates subtasks to other agents, 
manages the overall workflow, monitors the 
completion of tasks and compliance with security 
requirements.  

2) Researcher – provides up-to-date information 

3) Developer – creates and manages a test plan that will 
achieve the goal with a minimum number of steps.  

4) Executor is a security researcher and penetration 
tester authorized to hack into the infrastructure and 
exploit vulnerabilities with the full permission of all 
interested parties. Using the tools, performs tasks 
according to the specified plan.  

5) Vector Store is an archivist specializing in extracting 
information from a vector database repository  
to provide a comprehensive historical context for 
work. 

All agents' work on a given task could be divided into three 
phases:	

1) Research Phase – at this stage, the Researcher 
analyzes the target, searches for similar cases in the 
Vector Store and vulnerabilities in the knowledge 
base. 

2) Planning Phase – a penetration testing plan is 
created, exploits and tools are selected. 

3) Execution Phase – according to the plan created on 
the previous phase, the selected tools are launched 
and the result is processed. 

Agents are able to interact with the real targets directly due 
to two tools: 

1) Web Scraper is an isolated browser that allows an 
agent to receive information from web pages, even 
those that require JavaScript support. 

2) Docker container command interface with Kali Linux 
[16] allows the agent to use the wide range of 
penetration testing command tools the from the 
standard set or install additional ones. 

It is important to note that all the initial prompts for agents 
in this framework are quite voluminous. With a total number 
of 34 prompts for different agents, the volume of a single one 
reaches 2451 tokens (or 1145 words, or 11326 characters). As 
a result, the workflow of agents involves collecting vast 
amount of information, forming a detailed plan, a list of 
atomic subtasks, and storing the results of the tools activity. 

All things considered, such prerequisites can form an LLM 
context of a sufficiently large volume, which in general could 
only be handled by large-parameters models. Hence, small 
models were explicitly excluded for use by developers at the 
architecture design stage of the framework. 
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C. PentestGPT 

PentestGPT [17][18] is an open-source framework 
designed for context control, decision tree management, and 
LLM query optimization using a large collection of prompts. 

PentestGPT does not provide a fully automatic solution for 
penetration testing tasks, since the architecture lacks modules 
capable of executing any commands or scripts independently. 
This enables an iterative manual process only: the operator 
follows instructions and feeds the results back into the 
framework. 

The framework is built on a modular approach and 
includes three components: Reasoning, Generation, and 
Parsing. Each module can use different LLM models. 
Interaction is carried out via command-line interface with the 
commands “next”, “todo”, “discuss” and “more”, providing 
step-by-step process control. 

PentestGPT is implemented as a single-agent system 
without distributed subsystems. The key element of the 
architecture is the PTT (Pentest Task Tree) structure, an 
internal representation of the testing process in the form of a 
hierarchical task tree. Each node of the tree corresponds to a 
specific subtask (for example, "scan ports", "identify the OS", 
"choose a password"), and the relationships between them 
reflect logical and casual relationships. This structure is used 
as a contextual model that allows LLM to make informed 
decisions, form hypotheses, track progress, return to previous 
actions, and simultaneously develop alternative solution 
branches. Thus, PTT performs the function of RAM and the 
logical basis, increasing the interpretability, manageability and 
consistency of the framework. 

D. LLM-based tools non-intended for penetration testing 

In order to test the ability of large models to perform 
various security tasks without pre-build cybersecurity 
frameworks, several agents were selected, one of them is 
Agent Mode in the WARP terminal [19].  

It is an embedded agent that can perform various actions 
through commands in human language. Various additional 
language models are offered for interaction, such as GPT-5, 
GPT-4.1, Gemini 4, Claude 4 Sonnet and others. 

The agent accepts the task and generates commands for the 
terminal with requirements for a permission from the operator. 
This tool could be used in fully autonomous mode or based on 
HITL approach. Next, WARP analyzes the response and 
performs the task until it considers it completed or interrupted 
by user. 

III. EXPERIMENTAL SETUP 

A. Vulnerabilities selection 

We have chosen PortSwigger Web Security Academy [20] 
as a source of basic tasks for wide-range penetration testing 
skills. PortSwigger is a leading web security company known 
for its industry-standard Burp Suite testing platform and its 
Web Security Academy, a comprehensive, free learning 
resource for aspiring and experienced security professionals. 

Labs in PortSwigger [21] academy assesses high-level, 
practical proficiency in identifying and exploiting web 
application vulnerabilities. It is recognized as a benchmark for 
the competency of penetration testers and is consequently used 
by organizations to evaluate personnel qualifications. 

The PortSwigger Labs are classified by vulnerability groups 
or topics. Each topic consists of several tasks which cover 
different web penetration skills and competencies. Considering 
the limitation of computational and human resources, the 
subtask of creation of revised tasks sufficient for the 
assessment of a penetration testing LLM tool was set. 

Topics and tasks selection has been organized as follows: 
firstly, we scanned through all of topics and analyze them in 
the context of applicability of the tasks in given environment 
and experimental setup. Then, if the topic had been marked as 
applicable, we picked up to two tasks per each topic which 
could cover as much penetration testers’ competencies as 
possible. The tasks selection result has shown on the Table I. 
Vulnerability groups are sorted similarly to the PortSwigger 
Labs order [21] at the time of writing this article. 

TABLE I.  TOPICS AND TASKS SELECTION (PART I) 

# 
Vulnerability group 

(topic) 

Topic 
has 

been 
chosen? 

Vulnerability type 
(task) 

1 SQL injection Yes 

1. Visible error-based 
SQL injection 

2. Blind SQL injection 
with time delays 

2 Cross-site scripting No - 

3 
Cross-site request 
forgery (CSRF) 

No - 

4 
Clickjacking (UI 

redressing) 
No - 

5 
DOM-based 

vulnerabilities 
No - 

6 
Cross-origin resource 

sharing (CORS) 
No - 

7 
XML external entity 

(XXE) injection 
Yes 

Exploiting XXE via 
image file upload 

8 
Server-side request 

forgery (SSRF) 
Yes 

1. SSRF with blacklist-
based input filter 

2. Blind SSRF with 
Shellshock exploitation 

9 HTTP request smuggling Yes 
Bypassing access 

controls via HTTP/2 
request tunnelling 

10 OS command injection Yes 
Blind OS command 
injection with output 

redirection 

11 
Server-side template 

injection 
Yes 

1. Basic server-side 
template injection (code 

context) 
2. Server-side template 
injection with a custom 

exploit 

12 Path traversal Yes 

File path traversal, 
validation of file 

extension with null byte 
bypass 

13 
Access control 
vulnerabilities 

Yes 

1. User role can be 
modified in user profile 
2. Referer-based access 

control 
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TABLE I.  TOPICS AND TASKS SELECTION (PART II) 

14 Authentication Yes 

1. Username enumeration 
via different responses 

2. Username enumeration 
via response timing 

15 WebSockets No - 
16 Web cache poisoning No - 
17 Web cache deception No - 

18 Insecure deserialization Yes 

1. Exploiting Java 
deserialization with 
Apache Commons 
2. Arbitrary object 
injection in PHP 

19 Information disclosure Yes 

1. Source code disclosure 
via backup files 

2. Information disclosure 
in version control history 

20 
Business logic 
vulnerabilities 

Yes 

1. Weak isolation on 
dual-use endpoint 

2. Infinite money logic 
flaw 

21 
HTTP Host header 

attacks 
Yes 

Host header 
authentication bypass 

22 OAuth authentication Yes 
Authentication bypass via 

OAuth implicit flow 

23 
File upload 

vulnerabilities 
Yes 

1. Web shell upload via 
path traversal 

2. Web shell upload via 
obfuscated file extension 

24 JWT Yes 

1. JWT authentication 
bypass via unverified 

signature 
2. JWT authentication 

bypass via weak signing 
key 

25 Essential skills No - 
26 Prototype pollution No - 

27 
GraphQL API 
vulnerabilities 

Yes 

1. Accidental exposure of 
private GraphQL fields 

2. Finding a hidden 
GraphQL endpoint 

28 Race conditions Yes 
Multi-endpoint race 

conditions 

29 NoSQL injection Yes 

1. Exploiting NoSQL 
operator injection to 

bypass authentication 
2. Exploiting NoSQL 
operator injection to 

extract unknown fields 

30 API testing Yes 

1. Finding and exploiting 
an unused API endpoint 
2. Exploiting server-side 
parameter pollution in a 

query string 
31 Web LLM attacks No - 

 

Vulnerability groups 2-6, 15-17, 26 has not been selected. 
The tasks of these groups include three sides: client, server, and 
client interface. The decision of LLM will depend on the 
specifics of the client interface. These tasks are not suitable, 
since the success of their implementation directly depends on 
the quality of the tools that implement interaction with the 
browser. Hence, this is not the task of this work, it was decided 
to abandon these sections. For the same reason, the solution of 
these sections can be distinguished as a separate task and could 
be considered in other works. 

Vulnerability group 25 is devoted to reconnaissance, and  
 

the models will solve this as a subtask for each task. For this 
reason, it will not be considered separately. 

Vulnerability group 31 represent a fundamentally new class 
of vulnerabilities that require a dedicated focus within security 
testing protocols and should be singled out as a separate. 

B. Experimental method 

The experimental protocol has been organized as follows: 

1) Step 1. LLM framework and model selection. LMM 
penetration testing framework and LLM model are 
selected. 

2) Step 2. Task selection. A specific PortSwigger 
laboratory is selected. The list has been given in 
Table I. 

3) Step 3. Defining key points. The key point is the 
element of the solution that we want to see in the 
LLM solution. The key points are formed from the 
steps of the Portswigger solution. Success state – the 
final point, the result that needs to be achieved. For 
example, possible key points for the task Visible 
error-based SQL injection from the topic SQL 
injection: 

1. SQLi is detected in cookies;  
2. The request is adapted to get information based on 
errors;  
3. The request to get information from the users is 
generated;  
4. The previous request is changed to get one row 
(request correction);  
5. Success state: Password is obtained.  

4) Step 4. Creating an initial prompt. A prompt is 
created with a link, detailed information about the 
type of vulnerability and criteria for a successful 
solution. In current paper we used the next template 
for our initial prompts: 

This site (link) contains a vulnerability. The type of 
vulnerability is (vulnerability information). Find it 
and try to exploit it. The goal is to get (success state). 

5) Step 5. Conducting the experiment. Via Human-In-
The-Loop (HITL) method. 

6) Step 6. Collecting results and artifacts. Notes about 
LLM hallucination, incorrect solving path, incorrect 
tool usage, logical mistakes are included. 

C. Evaluation metrics and success criteria 

The comparative performance of the frameworks was 
quantified using a dual-criteria assessment, implemented 
through a series of PortSwigger lab exercises. This meta-
framework evaluated both task completion and solution quality, 
leading to a three-tiered classification for each tested 
framework: 
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1) Success: A framework was classified as successful if 
it enabled the attainment of the defined "success 
state" in every lab and facilitated the accrual of more 
than 80% of all available key points. This signifies 
robust and comprehensive capability. 

2) Partial Success: A framework was classified as 
partially successful if it enabled the attainment of the 
success state in all labs but facilitated the accrual of 
only 80% or fewer of the key points. This indicates 
effective but suboptimal or inefficient guidance. 

3) Failure: A framework was classified as a failure if it 
did not enable the attainment of the success state in 
one or more labs, indicating a fundamental 
inadequacy in addressing the core tasks. 

D. Hardware and deployment model 

To ensure a comprehensive comparison, we selected 
models from both proprietary API services and the open-
source. The API-based models were queried using their 
respective commercial endpoints. Conversely, the self-hosted 
models were run on an internal server to ensure isolation and 
control over the inference environment. This local hardware 
platform featured a GPU Tesla P100-PCIE-12GB, a CPU 
Intel(R) Xeon(R) E5-2699 v4 2.20GHz, 
and a RAM DDR 4 256GB 2400MHz, providing the necessary 
computational resources for local inference. 

IV. RESULTS 

A. CAI 

Initially, the experiments were conducted on the o4 mini 
model. The tool was able to solve a task using the model, but it 
still periodically had to use the architectural capability of 
HITL to guide the progress of the solution. But at the same 
time, the tool managed to find a solution for the most 
PortSwigger tasks and achieved appropriate key points and a 
success state. It is worth noting that using the o4 mini model 
requires sufficient financial investment. 

Next model was DeepSeek v3 model, which could be 
accessed through Openrouter [22]. This approach had some 
limitations in the number of attempts per account, up to 50 
requests per day. During the experiments, it became clear that 
this model creates solutions worse with achieving the success 
state of the task. 50 requests were not enough for the problem 
solution. It was noticeable that context was lost much faster 
and the tool forgot about the target task, forcing the model to 
use human help more often. 

We also conducted several experiments from the list using 
large models from the Mistral family [23], but they did not 
lead to anything, since the model has serious limitations for 
using its API in penetration testing processes. 

Additionally, we decided to perform tests on self-hosted 
models. We used gpt-oss-20b [24] and qwen3:14b [25] 
models. During the experiments, CAI practically stopped 
using tools to run commands on his own and gave more 
practical recommendations and advice for user. After the 

implementation of the recommendation actions, the CAI 
reported the results, on the basis of which new 
recommendations were received. 

Using small self-hosed models, we found out that CAI 
tends to hallucinate and make recommendations unrelated to 
the topic or purpose of the experiment. Commands generated 
by CAI were incorrect mostly and caused the framework 
giving out false solutions. Example of such wrong approach 
has shown in the Fig. 2.  We have come to a conclusion that 
framework and small models do not have knowledge about 
exploiting the vulnerability, which results in the inability to 
solve the problem and proposing a completely wrong solution. 
The CAI experiment results have been summarized and shown 
in the Table II. 

 

Fig. 2. CAI with model qwen3:14b is proposing a wrong approach of 
exploitation visible error-based SQL injection 

TABLE II. SUMMARY OF CAI EXPERIMENTS RESULTS 

API Self-Hosted 

GPT-o4-
mini 

Openrouter 
DeepSeek 
V3 0324 

mistral-
large-2411 

gpt-oss-
20b 

qwen3:14b 

Success Partially Fail Fail Fail 

Token 
limitation 

Token 
limitation, 

loss context 

API 
pentest 
usage 

restrictions 

Hallucination, tool usage 
errors 

 

B. PentAGI 

At first, as well as CAI testing, the experiments with 
PentAGI framework was conducted using models with a large 
number of parameters (GPT-o4-mini and DeepSeek v3). 

The framework successfully solved the tasks from the list, 
but not independently. We had to support PentAGI with the 
HITL method, interfering in the process and interacting with it 
manually, due to the following reasons: 

1) Wrong tool selection. PentAGI chose tools that are not 
suitable for the task. For instance, to detect SQLi at a 
web resource, the agent tried to use the Mitmproxy 
[26] tool. Mitmproxy is used to intercept HTTPS 
traffic. 

2) Tools usage without CLI or interactive CLI utilities 
usage. For example, PentAGI constantly tried to run 

ISSN 2305-7254________________________________________PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 40 ----------------------------------------------------------------------------



Mitmproxy with the web version of the interface, or 
for Sqlmap [27] it could not find the integrated tool 
option for automatic decision-making which leads to 
the necessity of human confirmation in every Sqlmap 
request. 

Further, since the goal was to try out solutions for 
automating commercial penetration testing, we decided to use 
self-hosted models (gpt-oss-20b [24] and qwen3-14b [25]). 
The newly selected models are smaller than the previous, 
hence additional problems have been appeared: 

1) Frequent errors in tool usage. The framework calls 
commands for the tool in JSON format. However, 
despite the declared ability to use such tools, 
hallucinations were occurred and text out-of-context 
appeared in the output in addition to the JSON 
structure, which caused an error in the system. 

2) Hallucinations in the free parameters of the 
command shell tool. For example, user in order to run 
Linux OS commands in the terminal could specify 
the working directory, which does not play a role in 
the tasks assigned. PentAGI constantly generated 
new, non-existent directories and specified them as 
working directories, which caused command 
execution errors. 

3) Hallucinations in the tool arguments. Even correctly 
chosen tool could not be used because the small 
models do not have knowledge about tool supported 
arguments. On rare occasions, the framework could 
find this information in the integrated tool manual. 
Example has provided in the Fig 3. 

 

Fig 3. Hallucinations in the Command Shell parameter during solution search 
to the problem “SQL injection vulnerability allowing login bypass” 

4) Difficulties in mitigating additional problems. During 
the penetration testing process, many side subtasks 
are appeared. For instance, the vast majority of 
experimental tasks are required the usage of a CSRF 
token. The framework was able to send the first 
successful request only after 80 attempts (on 
average). 

It is important to note that all of the problems mentioned 
earlier do not occur once. Moreover, they greatly increase the 
LLM context by forcing the agent to solve self-generated 
problems and correct mistakes. 

In addition, the original prompts only contain lists of tool 
categories such as “network_recon”, “web_testing”, 
“password_attacks”, etc., leading to the lack of descriptions of 
each tool. This could cause an error related to the tool usage 
listed previously, because it leads to choosing a random 
instrument from the category instead of choosing a tool strictly 
according to the task provided. 

Based on the experimental data, it can be inferred that 
PentAGI design seems to be optimal for models possessing a 
huge number of parameters and makes it difficult to use with 
small models. The PentAGI experiment results have benn 
summarized and shown in the Table III. 

TABLE III. SUMMARY OF PENTAGI EXPERIMENTS RESULTS 

API Self-Hosted 

GPT-o4-mini 
DeepSeek V3 

0324 
gpt-oss-20b qwen3:14b 

Partially Partially Fail Fail 

Wrong tool selection, 
tools usage without CLI or  

interactive CLI utilities usage, 
token limitation 

Hallucination, tool usage 
errors 

 

C. PentestGPT 

Initially, tests with the GPT-o4-mini and DeepSeek V3 
were conducted to check the overall functionality of the tool. 
Under the control of a large model, the framework was able to 
solve a majority of problems and tasks through a large number 
of steps and deviations from the correct solution. 

The tests provided by the authors [18] show that OpenAI 
[1] models could achieve great success with PentestGPT. The 
authors also provide a table of the main errors in the problem-
solving process, which allows us to understand the main 
limitations of this framework. Top causes of errors from 
authors provided in the Table IV. 

TABLE IV. TOP CAUSES FOR FAILED PENETRATION TESTING TRIALS FOR 
PENTESTGPT [18] 

Failure Reasons GPT3.5 GPT4 Bard Total 
Session context lost 25 18 31 74 
False Command Generation 23 12 20 55 
Deadlock operations 19 10 16 45 
False Scanning Output 
Interpretations 

13 9 18 40 

False Source Code Interpretation 16 11 10 37 
Cannot craft valid exploit 11 15 8 34 
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Based on our experiments, a several problems emerges. 
Despite the fact that the functionality of the framework 
consists in planning the steps of the penetration test process, 
most of the experiments ended unsuccessfully due to the loss 
of the contextual session model. It suggests that the PTT 
concept may have certain limitations. Moreover, while the 
model correctly identifies and navigates the majority of key 
points, its ability to fully complete tasks remains very low. 

PentestGPT experiments, like for previous tools, was also 
conducted with self-hosted models, which allows to check 
Tests were conducted with gpt-oss-20b [24] and qwen3-14b 
[25]. 

However, tests with small local models did not bring 
positive results. PentestGPT did not give precise instructions, 
described possible actions in general terms instead. It is also 
worth noting that although PTT is generated dynamically 
based on the data provided, it includes hallucinations and 
incorrect steps. For example, providing in initial prompt what 
type of vulnerability is on the website and where it is 
allocated, PentestGPT still suggests reconnaissance: to scan 
the target host for open ports. The results of this redundant 
operation have been shown in the Fig. 4. 

 

Fig. 4. PentestGPT provides PTT with wrong step to scan ports for solving the 
task with SQL injection 

Correlating our PentestGPT experiments results analysis 
with the authors' test table indicates that LLM and PentestGPT 
exhibits a strong inability to generate commands and exploits. 
This behavior implies that the causes of failure in the authors' 
tests are not equally likely. The error rate for "incorrect 
command generation" is conditional on the model first not 
losing context and then agreeing to generate the command. 
Since our experiments show the model often refuses this step 
entirely, the authors' data may underrepresent this specific 
failure mode. 

Since the framework is a large a collection of prompts, it 
could be concluded that the prompts were optimized for GPT-
3.5\4, on which the authors conducted tests. However, small 
models require other techniques of prompt engineering and the 
built-in tool stage of rezoning does not help solve this 
problem. The PentestGPT experiment results have been 
summarized and shown in the Table V. 

TABLE V. SUMMARY OF PENTESTGPT EXPERIMENTS RESULTS 

API Self-Hosted 

GPT-o4-mini 
DeepSeek V3 

0324 
gpt-oss-20b qwen3:14b 

Partially Partially Fail Fail 

Session context loss, 
token limitation, low solved tasks rate 

Hallucination, tool usage 
errors, lack of precise 

instructions 

 
D. LLM-based tools non-intended for penetration testing 

To broaden the scope of our evaluation, we conducted 
several experiments with large-scale models that are not self-
hosted and employed general-purpose agents not originally 
designed for penetration testing. Specifically, the tests were 
carried out using embedded agents from platforms such as 
WARP [19], Copilot [28], and others. Despite the absence of 
domain-specific optimization, the large models demonstrated a 
high degree of effectiveness, even within “unintended” or non-
specialized frameworks. The example of successful solve has 
shown in the Fig. 5. 

 

Fig. 5. Illustration of WARP combined with Claude 4 Sonnet successfully 
solving the task “Visible error-based SQL Injection” 

During the experiments we encountered the same several 
practical challenges, including incorrect tool selection, using 
tools without proper CLI support, difficulties with interactive 
CLI utilities, and limitations imposed by token constraints. 

These findings suggest that when the underlying language 
model has a sufficiently large number of parameters, factors 
such as agent configuration and the choice of framework exert 
a comparatively minor influence on overall performance. The 
experiment results on frameworks non-intended for 
penetration testing have been summarized and shown in the 
Table VI. 

TABLE VI. SUMMARY EXPERIMENTS RESULTS ON GENERAL-PURPOSE 
(NON-PENTEST) FRAMEWORKS 

Non-pentest frameworks (WARP, Copilot, etc.) 

GPT-o4-mini DeepSeek V3 

Success Success 

Wrong tool selection, 
tools usage without CLI, 

token limitation 
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E. Our approach to lightweight models 

As previously observed, the majority of challenges occur 
when interacting with small-scale models. To investigate this 
issue, we conducted a series of experiments aimed at 
identifying potential solutions for this class of models. Our 
working hypothesis was that these models lack sufficient 
understanding of tool selection and the appropriate handling of 
security vulnerabilities. 

To enhance the knowledge capabilities of our prototype 
solution, we adopted the Retrieval-Augmented Generation 
(RAG) approach. RAG enhances LLMs by allowing them to 
reference external, authoritative knowledge bases before 
generating responses. This approach extends LLM capabilities 
to domain-specific or organizational data without retraining, 
offering a cost-effective way to maintain accuracy and 
relevance across tasks [29]. 

We augmented the original user queries with information 
derived from exploitation examples, tool manuals, and 
vulnerability databases. To enable effective utilization by the 
LLM, this information was transformed into numerical 
representations and stored in a vector database, creating a 
structured knowledge base with which the LLM could interact. 
Our prototype architecture for lightweight models 
implementing the RAG approach has shown on the Fig. 6. 

 

 
Fig. 6. Prototype architecture for lightweight models implementing the RAG 
approach 

It was decided to implement this using the qwen3:14b 
model [25] and a vector database. The vector database was 
created based on knowledge about tools, types of 
vulnerabilities and their exploitation options. It was created 
using a small embedding model, all-MiniLM-L6-v2 [30]. 

Next, a Python script has been developed to implement a 
system where the model can access a vector database. The 
script's source code has provided in open GitHub repository 
[31]. The system prompt explicitly defines the availability of 
this tool and includes instructions for its use. Consequently, 
when the model lacks the necessary knowledge to answer a 
query, it uses the tool to retrieve relevant information from the 
vector database. This retrieved data then serves as the basis for 
its final decision. 

This approach enabled us to obtain correct solutions to 
several complex problems using a small model. The input and 
output of this prototype have shown in Fig. 7. Overall 
prototype and framework comparison using qwen3:14b model 
has shown on Table VII. 

 

Fig. 7. The first input and response of the prototype for lightweight models 
implementing the RAG approach 

TABLE VII. PROTOTYPE AND FRAMEWORKS COMPARISON USING 
QWEN3:14B MODEL 

CAI PentAGI PentestGPT 
Our 

prototype 
solution 

Fail Fail Fail Success 

Hallucination, tool usage errors 

Hallucination, 
tool usage errors, 

lack of precise 
instructions 

- 

 

V. CONCLUSION 

In many corporate penetration tests, the usage of LLM 
APIs is restricted due to strict confidentiality requirements and 
the non-disclosure of target data. Furthermore, small 
percentage of penetration testers have access to self-hosted 
LLMs with a large number of parameters within isolated 
network perimeters, which often necessitates the usage of 
smaller self-hosted models. 

Our study has produced the following findings: 

1) Experiments demonstrated that LLM with a large 
number of parameters, supported with HITL, can 
effectively solve fundamental penetration testing 
tasks, with neglect limitations and obstacles. 

2) Existing open-source frameworks were shown to be 
insufficient for small models, which frequently 
hallucinate, tend to wrong selection or misuse tools, 
and lack knowledge of basic vulnerabilities.  

3) We hypothesize that equipping small models with 
explicit knowledge of vulnerabilities and the 
corresponding exploitation tools would enable them to 
successfully perform penetration testing tasks.  
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4) To address these challenges, we designed and 
proposed architecture and prototype solution for 
lightweight models, aiming to mitigate hallucinations 
and improve the overall accuracy of penetration 
testing tool selection. 
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