ISSN 2305-7254

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

An Energy and Migration-Aware VM Placement
Model and Heuristics for Green Cloud Data Centers

Okan Candir, Ali Haydar Ozer
Marmara University, Istanbul, Turkey
okan.candir@marun.edu.tr, haydar.ozer @marmara.edu.tr

Abstract—Cloud platforms consume a substantial share of
global electricity, making schedulers that jointly consider perfor-
mance and energy increasingly important. We present EMM-Sched,
an energy-aware, multi-period, migration-aware framework that
unifies admission control and multidimensional VM placement
across discrete intervals. The model captures migration costs
between periods, heterogeneous server efficiencies, and request
flexibility via compact AND/OR structures. We instantiate the
framework as (i) a mixed-integer program (MIP) that provides
an optimal reference and (ii) two scalable heuristics: Energy-
Minimizing First-Fit Decreasing (EMM-FFD) and Best-Fit De-
creasing (EMM-BFD). On data-center-scale synthetic workloads,
the exact solver yields the highest objective but incurs steep
runtimes at scale, whereas the heuristics return solutions within
10-20% of optimal in minutes. EMM-FFD consistently lowers
energy and migration costs; EMM-BFD achieves higher utilization
at slightly higher energy. Overall, EMM-Sched exposes a tunable
optimality—-runtime trade-off suitable for both online operation
and capacity planning.

I. INTRODUCTION

The widespread adoption of cloud computing has led to the
rapid expansion of large-scale data centers, which now account
for a significant portion of global electricity usage. As energy
costs rise and environmental concerns increase, improving the
energy efficiency of cloud infrastructures has become a priority.
Virtual machine (VM) placement, that is deciding where to
run user workloads within a pool of physical machines (PMs),
is a key determinant of both operational efficiency and energy
usage.

Clouds host heterogeneous workloads whose demand and
placement feasibility change over time. Meeting these demands
efficiently requires coupling admission, placement, and migra-
tion across successive planning intervals, while accounting for
server energy efficiency and the operational cost of migrating
running VMs.

We propose EMM-Sched, an Energy-aware, Multi-period,
Migration-aware scheduling framework that formulates this
joint problem over a finite horizon. Each evaluation interval
executes a solver that

(i) admits a subset of incoming VM requests,

(ii) places admitted VMs subject to multi-resource con-

straints, and
(iii) optionally migrates already running VMs when the
expected benefit outweighs migration cost.

Request flexibility is expressed via compact AND/OR
structures, enabling the scheduler to choose among alternative
VM bundles or configurations.

28

Our contributions are:

o We give a mixed-integer programming (MIP) model that
unifies admission, placement, and migration with energy
cost terms and capacity/efficiency heterogeneity.

o We design two fast heuristics, EMM-FFD and EMM-BFD,
that approximate the MIP while scaling to data-center sizes
and delivering predictable runtimes suitable for periodic
operation.

o We provide an empirical study across capacity and demand
density using 2,532 test instances. The exact MIP yields
the highest objective, but its runtime grows sharply with
problem size; the heuristics remain stable and fast while
providing solutions within ~10-20% of the exact objective.
EMM-FFD minimizes energy and migration cost; EMM-
BFD offers higher utilization with higher migration cost; and
the exact solver reaches the highest utilization at significant
compute time.

II. RELATED WORK

The problem of virtual machine (VM) placement in cloud
data centers has been a topic of extensive research. Due to the
computational complexity of the virtual machine (VM) place-
ment problem, metaheuristics and nature-inspired algorithms
have emerged as prominent solutions, offering scalability and
adaptability in large-scale cloud environments.

Pourghebleh et al. [1] provided a comprehensive survey on
the application of metaheuristic algorithms in VM consolidation,
highlighting trends in swarm intelligence, evolutionary computa-
tion, and hybrid methods. Dashti et al. [2] introduced a particle
swarm optimization (PSO)-based technique that dynamically
adapts VM allocation to reduce energy consumption while
maintaining system stability.

Tang et al. [3] proposed a hybrid genetic algorithm that
integrates local and global search capabilities to optimize energy
efficiency during VM allocation. Zheng et al. [4] explored
biogeography-based optimization (BBO) for multi-objective
VM consolidation, balancing energy, resource utilization, and
performance degradation.

Abdel-Basset et al. [5] designed a Lévy-flight-enhanced
Whale Optimization Algorithm (WOA) for bandwidth-aware
VM placement, achieving improved convergence speed and
reduced power consumption.

Importantly, Ozer and Ozturan [6] proposed a model and
corresponding heuristic algorithms for solving multi-unit non-
discriminatory combinatorial auction problems. Their study

ISSN 2305-7254

also proves the NP-hard nature of the winner determination
problem, which our VM placement model generalizes.

Collectively, these approaches demonstrate the effectiveness
of bio-inspired algorithms in achieving energy-aware, SLA-
conscious, and performance-efficient VM scheduling.

While minimizing energy consumption is critical in cloud
data centers, it must not come at the cost of violating service-
level agreements (SLAs) or degrading the quality of service
(QoS). Consequently, many studies have aimed to design VM
placement mechanisms that maintain high reliability and user
satisfaction.

Li et al. [7] proposed a dynamic consolidation strategy that
balances SLA violations with energy consumption, offering
adaptive migration control based on workload fluctuations.
Fu et al. [8] introduced a dual-criteria migration technique
that selects VMs for migration based on both energy savings
and SLA constraints, improving responsiveness to changing
demand.

Zhou et al. [9] designed a high-reliability VM placement
method that improves system fault tolerance and reduces
downtime, thereby minimizing the risk of SLA breaches.
Alharbi et al. [10] introduced an intelligent scheduling method
for SLA-aware workload classification and allocation, which
considers resource demand predictability in the placement
decision.

These contributions show that integrating SLLA-awareness
into VM consolidation enhances cloud infrastructure reliability
while maintaining energy efficiency and workload stability.

Cloud virtual machine placement involves multiple conflict-
ing objectives, such as minimizing energy consumption, reduc-
ing SLA violations, and achieving high resource utilization.
Multi-objective optimization (MOO) frameworks are widely
adopted to balance these trade-offs effectively.

Ahmad et al. [11] introduced an adaptive multi-objective task
scheduling approach using a chaos-based whale optimization
algorithm to reduce energy consumption and improve load
balance. Singh et al. [12] developed a hybrid model based on
Particle Swarm Optimization (PSO) and Grey Wolf Optimiza-
tion (GWO) for VM consolidation, targeting SLA awareness
and energy reduction.

Alshathri et al. [13] focused on improving load balancing
in multi-clouds using a hybrid multi-objective algorithm that
incorporates latency, load variation, and energy trade-offs.
Talwani et al. [14] presented a fuzzy-based adaptive VM
placement strategy that dynamically adapts to workload changes
while optimizing power usage and SLA adherence.

Tran et al. [15] proposed a reinforcement learning-based
framework to handle energy and performance objectives
simultaneously, demonstrating its effectiveness in dynamic
and heterogeneous cloud environments.

These approaches demonstrate how MOO strategies enable
dynamic and scalable solutions for VM placement by handling
energy, SLA, and performance objectives in a unified decision
framework.

Most earlier work either looks at placement only at a single
point in time, or considers migration only indirectly, which

29

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

hides how decisions are linked across time and the actual cost
of moving VMs. We instead formulate a multi-period, energy
and migration-aware MIP and derive fast heuristics tailored
to that formulation. Meroni and Guitart propose energy-aware
allocation using mathematical programming with micro/macro
modeling and warm starts [16]; our framework complements
that direction by making migration cost explicit over time and
by characterizing the accuracy—runtime trade-off under varied
capacity and load.

I1II. EMM-SCHED MODEL OVERVIEW

This section gives an intuitive tour of EMM-Sched before
its formal definition in Section IV. We outline the system
context and request language, then the period-by-period loop,
and finally key features.

We target an Infrastructure-as-a-Service provider operating
a set of physical machines P. Each machine p € P is
described by a resource capacity vector (¢, cpu,CpRAM,
Cp,SSDs Cp HDD; - - -) and a linear power model (i,,, M,,), where
1, and M,, denote idle and peak power, respectively. An
energy price e, ($/kWh) is attached to every machine, allowing
location-aware optimization.

Workload arrives as VM requests. A request is an AND/OR
tree that decomposes into sub-requests s € .S,., each of which
offers a finite set V. of VM configurations in a disjunctive
OR alternatives. EMM-Sched may mix alternatives in V,.; for
the same sub-request (i.e., ¢,s VMs can be split across types).
For every alternative v € V,.; we record (i) a resource-demand
vector d,, (ii) a unit price 7, (commercial clouds), and (iii)
a migration penalty fi,.s,, Set to +oo for stateful or latency-
critical VMs. The sub-request specifies a quantity g5 of VMs;
the scheduler decides how to distribute ¢,.; across machines
and alternatives v € V..

Periods are separated by a configurable evaluation interval.
At the boundary between two periods we perform three steps
(Figure 1):

i. State collection: observe completions and newly arrived
requests.

Optimization: solve the MIP of Section IV to place legacy
and new VMs jointly.

Migration window: execute prescribed migrations if their
benefit outweighs fi,sy.

This closed loop adapts placement to workload change and
time-of-day energy prices.

The design features of the model are:

il.

iii.

o At each boundary we re-solve a single-period MIP using the
observed legacy state. Migration/reconfiguration penalties
lrsy prevent unnecessary changes; repeated single-period
solves implement a multi-period policy.

Migrations are decided alongside placement, and only if their

benefit outweighs fi,sy.

o The model maximizes utility net of migration and energy
costs (see (1)). To avoid price chasing of a single expensive
alternative, we value each sub-request at the average of its
offered prices; the mix chosen among OR alternatives does
not change revenue.

ISSN 2305-7254

Evaluation Interval

Evaluation Interval

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

Evaluation Interval

.
' i
. 1
R R, SR A
. .
New New : New i New New New New
Request Request H Request 1Request Request Request Request
. '
. |
__________________ ' y i i s
Previous Period Current Period Next Period
e e . S P LSS
Cancelled Cancelled Cancelle ====speese?
Request Request Request
') 1
' . H
h H
v v v

Solver execution completed
and new allocations are made.

request and remaining
requests are evaluated for
next period)

Solver Execution Miglatos
Interval
(2 New requests, 1 cancelled e

be migration in
this interval if
necessary)

Fig. 1. High-level scheduling loop executed by EMM-Sched at every period boundary

An exact MIP yields optimal solutions for moderate instances,
whereas the heuristics of Section V scale to thousands of
VMs within seconds.

IV. MATHEMATICAL MODEL

We schedule incoming VM requests, place legacy VMs, and

decide which machines to power on so as to maximize revenue
(or priority), while paying migration and energy costs.

Notation:

P set of physical machines p.

A set of resource attributes a (e.g., CPU, RAM).

R set of new VM requests r; each has sub-requests .S,.
R legacy requests already running at period start.

V.5 alternative VM types for sub-request (7, s) (indexed by
V).

Cp,a capacity of attribute a on machine p.

d¢,,, demand of attribute a by alternative v.

¢rs number of VMs in sub-request (, s).

Trsy Unit price of alternative v.

Lrsy Migration cost of alternative v (set to oo for non-
migratable VMs).

ip, idle power of machine p; M,, peak power.

ep energy price for machine p; ¢ period length (hours).
Yo, legacy VMs of type v from (r,s) residing on p at
period start.

30

max

Decision variables:

x, € {0,1} equals 1 if request r is accepted.

Yrsvp € Z>0 VMs of type v from (r, s) placed on p.
Mysvp € ZL>o (defined only for r ¢ RYY VMs of type v
reconfigured away from p.

Up,a € R>q total load of attribute a on p.

zp € {0,1} equals 1 if machine p is powered on.

P, € R electrical power drawn by p.

Mixed-Integer Linear Program (MIP):

q g
E (1'7“ \V::\ § 777"311) - § § MrsvMysyp
re RURM s vEVrs reRed s,v,p
revenue / priority migration
Y e,P,. (1
p
N—_——
energy

ISSN 2305-7254

s.t. =1 Vr e RO 2)
Z Yrsvp = QrsTr V’I", S (3)
v,p
Z d?’svyrsvp = Up,a Vp, a 4)
r,8,U
Up,a < CpaZp Vp, a (5)
Mrsup > Youpp — Yrsop VT ERM s,0,p
(6)
mTSUP S y:lsdvp VT € R01d7 S,0,p
@)
ip 2p + (Mp — ip) 1:211 =P, Vp (3)

Since sub-requests are OR alternatives, constraint (3) lets
the solver split ¢,s across multiple alternatives v and ma-
chines p. A decrease in ¥y, versus yglsdvp is charged by
Mysvp; this includes moving to another machine and chang-
ing type v (even on the same machine), hence the term
migration/reconfiguration. Constraint (2) retains all legacy
requests. Constraints (4)—(5) govern per-machine utilization and
capacities. Constraints (6)—(7) capture migration requirements.
Constraint (8) models power using CPU (attribute 1) as the
proxy.

Finally, this optimization problem is NP-hard since it
generalizes the winner determination problem of the multi-unit
nondiscriminatory combinatorial auction, which is NP-hard [6].

V. HEURISTIC ALGORITHMS

To scale EMM-Sched to thousands of VMs and multi-period
horizons, we implement two heuristic solvers: EMM-FFD and
EMM-BFD. Each period executes the same loop: (i) maintain
legacy instances (remove those with time-to-live TTL= 1,
decrement TTL, clear migration flags), (ii) optionally migrate
surviving instances according to the solver’s criterion, (iii)
admit and place new requests arriving at the current period
with full rollback on failure of any instance belonging to a
request, and (iv) persist per-machine assignments and the period
objective. TTL is the number of remaining scheduling periods
that the instance is supposed to stay alive.

Both heuristics use the same power/energy model as Sec-
tion IV: per-machine power is the sum of an idle term and a
linear utilization term,

Up,1

ip) ’

Py = ipzp + (Mp — o
P,

and the incremental energy used for placement/migration
decisions is derived from this linear form, multiplied by the
data center’s energy price (optionally adjusted by PUE).

The period objective matches the model’s profit,

profit = Z (realized prices of placed instances) —

(C))

migration cost — energy cost,

with prices taken from the selected OR alternatives (i.e., realized
income from the concrete VM types that are placed). Migration
cost is charged per instance when a move occurs.

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

Algorithm 1 EMM-FFD (Energy-Minimizing First-Fit Decreas-
ing)

1: Input: machine set P, requests R with AND/OR sub-

requests
2: for period 7 =0,1,... do
3: Maintain legacy: remove TTL= 1, decrement TTL, clear
migration flags
4: for all migratable legacy instance i do

5: pick p* € P minimizing EnergyCost(p,i) over
feasible p

6: if EnergyCost(p*,i) < EnergyCost(current(s),1)
and p* # current(i) then

7: migrate ¢ to p*; charge migration penalty

8: end if

9: end for
10: Order new requests by descending average vCPU
11: for request r arriving at 7 do

12: accepted < true

13: for each sub-request s € S, do

14: for h =1..q;-s do

15: {repeat for required instance count}

16: if s is AND-type then

17: choose p* minimizing EnergyCost(p, s)
over feasible p

18: else

19: {OR-type}

20: choose pair (v*, p*¥) minimizing

EnergyCost(p, s} v) over feasible (p,v)
21: end if

22: if no feasible target found then

23: accepted < false; break

24: end if

25: place instance on p*; record realized price of
chosen v* (if OR)

26: end for

27: end for

28: if not accepted then

29: rollback all placements of r

30: end if

31: end for
32: Return placements
33: end for

A. EMM-FFD: Energy-Minimizing First-Fit Decreasing

EMM-FFD (see Algorithm 1) targets low energy with
restrained migration. At every period, newly arrived requests
are processed in descending order of average vCPU demand
across their sub-requests.

Admission and placement:

o AND sub-requests: For each required instance, scan all PMs
and select the target that minimizes incremental energy for
the corresponding sub-request detail, subject to feasibility.
If any instance cannot be placed, reject the whole request
and roll back interim placements.

ISSN 2305-7254

Algorithm 2 EMM-BFD (Best-Fit Decreasing)

1: for period 7 =0,1,... do

2: Maintain legacy as in Alg. 1
for all migratable legacy instance i do

8¢ < CurrentFitScore(current(i))

pick p* minimizing s(p) = BestFitScore(p,) over

feasible p

if p* # current(i) and s(p*) < so then

migrate ¢ to p*; charge migration penalty

end if
end for
Admit & place new requests as in Alg. 1, but minimize
BestFitScore (and record energy for costing)
11: Return placements
12: end for

3
4:
5

R

OR sub-requests: For each required instance, jointly choose
the alternative type and PM that minimize incremental energy
among feasible pairs; apply the same rollback rule upon any
failure.

Migration rule: For every migratable legacy instance, eval-
uate the best feasible target PM by incremental energy and
migrate the instance only if the target’s per-instance energy
cost is strictly lower than the instance’s current recorded energy
cost. Charge the per-instance migration penalty on a move.

B. EMM-BFD: Best-Fit Decreasing

EMM-BFD (see Algorithm 2) follows a best-fit policy guided
by a machine-level fit score. The score BestFitScore(p,) is
non-negative for feasible placements and aggregates residual-
capacity fragmentation and/or incremental power; lower is
better.

Admission and placement:

o AND sub-requests: For each required instance, choose the
feasible PM with minimal BestFitScore.

o OR sub-requests: For each required instance, choose the fea-
sible pair (alternative type, PM) with minimal BestFitScore;
full rollback on failure.

Migration rule: For every migratable legacy instance, let
CurrentFitScore be the score on its present machine. Migrate
the instance to the feasible PM with the lowest BestFitScore
only if that score is strictly lower than CurrentFitScore (no
explicit comparison against the migration penalty is performed),
and then accrue the migration cost.

VI. EXPERIMENTAL RESULTS

We compare three solvers: the MIP (Gurobi Optimizer v12.0),
Energy-Minimizing First-Fit Decreasing (EMM-FFD), and
Best-Fit Decreasing (EMM-BFD). We study four metrics under
varying workload densities and infrastructure sizes: Objective
Value, Energy Cost, Migration Cost, and Solution Time.

We use a test-case generator and produce two scenarios
per parameter set with a total of 2,532 test instances. We set
the number of slots to 10. Pricing for requestable instance
types is taken from Amazon EC2 On-Demand rates and kept

32

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

identical across all experiments. Capacity is tested at four
levels: {3328, 6656,9984, 13312} vCPU cores.

The remaining parameter values are:

« Request_Density d: demand level relative to available vCPU
capacity; tested at d € {0.25,0.50,0.75,1.00}.
Mean_SubRequest_Count: Poisson-distributed mean €
{1,2,3}; average number of sub-requests per request.
Mean_Alternative_Request_Count: Poisson-distributed
mean € {1,2}; average number of alternative bundles for
OR choices.

Mean_Instance_Count_In_SubRequest: Poisson-
distributed mean € {1, 2, 3}; average VMs per sub-request.
Mean_SubRequest_Duration: Poisson-distributed mean €
{1,2,3}; average VM lifetime in slots.
Mean_Migration_Enable_SubRequest: Poisson-distributed
level mean € {1,2,3}; share of sub-requests marked
migratable.

Figure 2 shows that the mean objective increases roughly
linearly for all methods as capacity and request density grow,
while solution time rises the most for the MIP due to search-
space growth. With more cores, more requests can be admitted,
giving the MIP a clear advantage in total revenue. In contrast,
EMM-BFD and EMM-FFD keep a low and nearly flat time
profile thanks to simpler logic and predictable placement,
revealing a direct trade-off between profit and solve time.

Figure 3 shows a consistent pattern across capacities and
densities. EMM-FFD provides the lowest energy and the lowest
migration, while EMM-BFD results in higher energy and the
highest migration. The MIP sits between the heuristics on
migration but has the highest energy overall because it admits
more work and activates more machines, which also explains
its best net objective despite higher absolute costs. In terms of
objective, the ordering is (MIP > EMM-BFD > EMM-FFD)
at every density.

Figure 4 separates the objective—capacity relation across four
density levels and shows that slopes become steeper and method
gaps widen as d increases. At low density (d = 0.25) curves are
milder and closer; at medium to high density (d = 0.50-0.75)
the marginal gain from extra capacity grows, and the MIP rises
faster than the others. Near peak load (d ~ 1.00), we observe
diminishing returns at very high vCPU.

Table I indicates a consistent ordering for mean vCPU usage:
MIP > EMM-BFD > EMM-FFD. At peak load (d = 1.00)
the gap is largest (MIP: 94.80, EMM-BFD: 85.94, EMM-FFD:
79.49), showing that higher demand lets the MIP fill capacity
more effectively. At light load (d = 0.25) the separation
narrows (MIP: 87.65, EMM-BFD: 86.08, EMM-FFD: 76.15).
The MIP also shows the lowest variability at each density (e.g.,
std. = 10.52 at d = 1.00), while EMM-BFD and EMM-FFD
remain in the ~21-23 band.

Active PM percentage (ratio of powered-on PMs to all PMs)
increases with demand for all methods, rising from roughly
45-46% at d = 0.25 to 93-98% at d = 1.00. EMM-FFD is
typically slightly above EMM-BFD (e.g., at d = 0.75, 86.22%
vs. 85.27%), which suggests slightly more fragmentation and
the need to keep a few extra machines on to achieve similar

ISSN 2305-7254

(a) Objective Value (mean) vs vCPU

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

(b) Solution Time (mean) vs vCPU

70001 BFD 5000, — ——— BFD
£ coo0 —— FFD < cie::: FFD
g —— MIP & 40000 —e—— MIP
o 5000 £
3 2 3000
S 4000 g
3 £ 2000
2 3000]
@ 3
2 2000 § 1000
°
1000 T
4000 6000 8000 10000 12000 4000 6000 8000 10000 12000
vCPU vCPU
(c) Objective Value (mean) vs Density (d) Solution Time (mean) vs Density
———— BFD 4000 ——— BFD
'g ——e— FFD < ~-e.-- FFD
g 50000 . wmip s ——— MIP
= E 3000
[}
[}
2 4000 E
> = 2000
2 5
S =1
5 3000 2 1009
o
o ("]
2000 0 = i
0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

Request Density

Request Density

Fig. 2. General trends of mean objective value and solution time across capacity and load. (a) Objective vs. vCPU, (b) Solution_Time vs. vCPU, (c) Objective vs.
Request_Density, (d) Solution_Time vs. Request_Density. Curves report method means (MIP, EMM-BFD, EMM-FFD) over densities {0.25,0.50,0.75,1.00}

using vCPU € {3328, 6656, 9984, 13312}.

(a) Energy Cost (mean) vs vCPU

——— BFD
FFD

—— MIP

1750

——
1500
1250

1000

~N
°d
(=]

\

Energy Cost (mean)

o
=]
(=]

N
v
(=]

4000 6000 8000

vCPU

10000 12000

(c) Energy Cost (mean) vs Density

1600f ——s—— BFD
FFD

—e M| P

——

1400
1200
1000

800

600

Energy Cost (mean)

h

400

(b) Migration Cost (mean) vs vCPU

50
——— BFD
z —— FFD
S 40 —— MmIP
E
@
2 30
o
c
-]
B 20
©
2
2
Z 10
4000 6000 8000 10000 12000
vCPU
(d) Migration Cost (mean) vs Density
——— BFD
=4 — FrD
E —— MIP
~ 30
ot
7]
-]
o
§ 20
S
o
E)
= 10
=

0.3 0.4 0.5 0.6 0.7

Request Density

0.8 0.9

0.3 0.4 0.5 0.6 0.7

Request Density

0.8 0.9 1.0

Fig. 3. Mean energy and migration costs across capacity and load. (a) Energy vs. vCPU, (b) Migration vs. vCPU, (c) Energy vs. Request_Density, (d)
Migration vs. Request_Density. Curves report method means (MIP, EMM-BFD, EMM-FFD) over densities {0.25,0.50,0.75,1.00}.

usage. The MIP activates the most PMs at high load (e.g.,
98.03% at d = 1.00), consistent with its stronger acceptance
and packing behavior.

Figure 5 tracks mean vCPU usage over time period for
d € {0.25,0.50,0.75,1.00}. As d increases, all methods move
to higher utilization with a stable ordering: the MIP at the top,
EMM-BFD close behind, and EMM-FFD in third place. The
time profiles are flat at low load; at medium and high load

33

there is a short ramp followed by a plateau, indicating that
admission and placement settle within the first few slots and
then remain steady.

From a deployment angle, if the target is high utilization (and
by extension revenue), the MIP sustains that level consistently.
If energy, operational simplicity, and speed matter, EMM-BFD
offers a close alternative, while EMM-FFD remains a fast
and predictable baseline. Near d ~ 1.00, diminishing returns

ISSN 2305-7254

(a) Objective Value (mean) vs vCPU @ density=0.25

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

(b) Objective Value (mean) vs vCPU @ density=0.50

3500 —=—— BFD ——e— BFD
E ——e— FFD E 6000 ——e— FFD
¢ 3000 —— MIP Q —— MIP
E E 5000
¢ 2500 3
3 5 4000
> 2000 o
2 2 3000
o °
§ 1500 H
= T 2000
© 1000 ©
1000
2000 6000 8000 10000 12000 2000 6000 8000 10000 12000
vCPU vCPU

(c) Objective Value (mean) vs vCPU @ density=0.75

(d) Objective Value (mean) vs vCPU @ density=1.00

——— BFD ——— BFD

£8000 . D T ——o— FFD

© © 8000

g —— MIP g —e— MIP

o 6000 b

H S 6000

S P

(] [

¢ 4000 >

2 2 4000

v v

2 2

) Q2

© 2000 © 2000

4000 6000 8000 10000 12000 4000 6000 8000 10000 12000
vCPU vCPU

Fig. 4. Mean objective value vs. capacity across four request densities d € {0.25,0.50,0.75,1.00}. Curves report method means (MIP, EMM-BFD,

EMM-FFD) over vCPU € {3328, 6656, 9984, 13312}.

(a) Mean vCPU Utilization (%) vs Time Period
@ density=0.25

8\’_“
6.__—.\.__*._."‘\._—-0—0—0

&

=t BFD
et FFD
——e— MIP

® O

Mean vCPU Utilization (%)
P

—

(b) Mean vCPU Utilization (%) vs Time Period
@ density=0.50

;\?92 _ PR

=90

'288

]

'5784 ——— BFD
g FFD

582 —— MIP

>

6
[1] 1 2 3 4 5 6 7 8 9 0 1 2 7 8 9
Time Period Time Period
(c) Mean vCPU Utilization (%) vs Time Period (d) Mean vCPU Utilization (%) vs Time Period
@ density=0.75 @ density=1.00
96
- -
Qo T " Zoa °
$90 §92 ——— BFD
]] ——t— FFD
© ©90
N88 N —— MIP
T86 STt m—t g 88
o84 ——— BFD 2860 —— e
3 %84
Us2 ——o— FFD 9
£ 30| \ ——t— MIP c 82
o © \
§78 - 9 80 o
3 4

[1] 1 2 3 4 5 [3 7 8
Time Period

O

Fig. 5. Mean vCPU usage over time period at four request densities.

appear: beyond a point, extra capacity adds little to utilization,
so planning should weigh usage alongside energy and migration
costs.

VII. CONCLUSION

We introduced a unified, energy-aware, multi-period,
migration-aware scheduler that optimizes admission, multi-
dimensional placement, server activation, and migration under
a profit-centered objective. The model integrates a linear power
model with variable energy prices and exposes an expressive

34

[
5
N
N
o
©

5
Time Period

AND/OR request interface that lets users describe alternatives
precisely. We paired an exact MIP with two scalable heuristics
and evaluated them across capacities and load densities. The
MIP consistently attained the highest objective, while the
heuristics recovered a large share of that objective with much
lower runtime and, in the case of EMM-FFD, lower energy
and migration. These results clarify when exact optimization
is preferable (offline planning, longer horizons) and when a
heuristic is the practical choice (tight latency budgets, frequent
re-optimization).

ISSN 2305-7254

TABLE I. MEANS GROUPED BY REQUEST DENSITY AND METHOD. BOTTOM

ROWS REPORT METHOD-WISE MEANS ACROSS ALL DENSITIES.

Density Method vCPU util. vCPU util. Active PM

Mean Std. Dev. Ratio (%)
0.25 EMM-BFD 86.08 20.93 45.63
0.25 EMM-FFD 76.15 21.99 46.01
0.25 MIP 87.65 15.10 4478
0.50 EMM-BFD 86.93 20.72 70.82
0.50 EMM-FFD 77.88 22.11 71.24
0.50 MIP 90.55 13.49 74.21
0.75 EMM-BFD 86.20 21.88 85.27
0.75 EMM-FFD 78.63 22.66 86.22
0.75 MIP 92.02 13.36 92.55
1.00 EMM-BFD 85.94 22.35 93.00
1.00 EMM-FFD 79.49 22.85 93.71
1.00 MIP 94.80 10.52 98.03
Overall EMM-BFD 86.29 21.47 73.68
Overall EMM-FFD 78.04 22.40 74.29
Overall MIP 91.25 13.12 77.39

Future work includes (i) a piecewise-linear energy model to
better capture server power curves, (ii) a multi-data-center for-
mulation spanning different regions, and (iii) explicit inter—data-
center migration costs in both objective and constraints. On the
algorithmic side, we aim to strengthen heuristic functions to
retain near-MIP solution quality while further reducing runtime
at scale.

[1]

[2]

[3]

REFERENCES

B. Pourghebleh, A. A. Anvigh, A. R. Ramtin, and B. Mohammadi,
“The importance of nature-inspired meta-heuristic algorithms for solving
virtual machine consolidation problem in cloud environments,” Cluster
Computing, vol. 24, pp. 2673-2696, 9 2021.

S. E. Dashti and A. M. Rahmani, “Dynamic vms placement for energy
efficiency by pso in cloud computing,” Journal of Experimental and
Theoretical Artificial Intelligence, vol. 28, pp. 97-112, 3 2016.

M. Tang and S. Pan, “A hybrid genetic algorithm for the energy-efficient
virtual machine placement problem in data centers,” Neural Processing
Letters, vol. 41, pp. 211-221, 4 2015.

35

[4]

[5]

[6]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

Q. Zheng, R. Li, X. Li, N. Shah, J. Zhang, F. Tian, K. M. Chao, and
J. Li, “Virtual machine consolidated placement based on multi-objective
biogeography-based optimization,” Future Generation Computer Systems,
vol. 54, pp. 95-122, 1 2016.

M. Abdel-Basset, L. Abdle-Fatah, and A. K. Sangaiah, “An improved
1évy based whale optimization algorithm for bandwidth-efficient virtual
machine placement in cloud computing environment,” Cluster Computing,
vol. 22, pp. 8319-8334, 7 2019.

A. H. Ozer and C. Ozturan, “A model and heuristic algorithms for
multi-unit nondiscriminatory combinatorial auction,” Computers &
Operations Research, vol. 36, no. 1, pp. 196-208, 2009. [Online].
Available: https://doi.org/10.1016/j.cor.2007.08.012

Z. Li, X. Yu, L. Yu, S. Guo, and V. Chang, “Energy-efficient and quality-
aware vm consolidation method,” Future Generation Computer Systems,
vol. 102, pp. 789-809, 1 2020.

X. Fu and C. Zhou, “Virtual machine selection and placement for dynamic
consolidation in cloud computing environment,” Frontiers of Computer
Science, vol. 9, pp. 322-330, 4 2015.

A. Zhou, S. Wang, B. Cheng, Z. Zheng, F. Yang, R. N. Chang, M. R. Lyu,
and R. Buyya, “Cloud service reliability enhancement via virtual machine
placement optimization,” IEEE Transactions on Services Computing,
vol. 10, pp. 902-913, 11 2017.

F. Alharbi, Y. C. Tian, M. Tang, W. Z. Zhang, C. Peng, and M. Fei, “An
ant colony system for energy-efficient dynamic virtual machine placement
in data centers,” Expert Systems with Applications, vol. 120, pp. 228-238,
4 2019.

F. Ahmad, M. Shahid, M. Alam, Z. Ashraf, M. Sajid, K. Kotecha,
and G. Dhiman, “Levelized multiple workflow allocation strategy under
precedence constraints with task merging in iaas cloud environment,”
1IEEE Access, vol. 10, pp. 92 809-92 827, 2022.

A. K. Singh, S. R. Swain, and C. N. Lee, “A metaheuristic virtual
machine placement framework toward power efficiency of sustainable
cloud environment,” Soft Computing, vol. 27, pp. 3817-3828, 4 2023.
S. Alshathri, F. M. Talaat, and A. A. Nasr, “A new reliable system for
managing virtual cloud network,” Computers, Materials and Continua,
vol. 73, pp. 5863-5885, 2022.

S. Talwani, K. Alhazmi, J. Singla, H. J. Alyamani, and A. K. Bashir,
“Allocation and migration of virtual machines using machine learning,”
Computers, Materials and Continua, vol. 70, pp. 3349-3364, 2022.

C. H. Tran, T. K. Bui, and T. V. Pham, “Virtual machine migration
policy for multi-tier application in cloud computing based on g-learning
algorithm,” Computing, vol. 104, pp. 1285-1306, 6 2022.

R. Meroni and J. Guitart, “Scalable energy-aware VM allocation on
cloud data centers through mathematical programming models,” Future
Generation Computer Systems, vol. 174, p. 108011, 2026, online: July
16, 2025.

