
An Energy and Migration-Aware VM Placement
Model and Heuristics for Green Cloud Data Centers

Okan Çandır, Ali Haydar Özer
Marmara University, Istanbul, Turkey

okan.candir@marun.edu.tr, haydar.ozer@marmara.edu.tr

Abstract—Cloud platforms consume a substantial share of
global electricity, making schedulers that jointly consider perfor-
mance and energy increasingly important. We present EMM-Sched,
an energy-aware, multi-period, migration-aware framework that
unifies admission control and multidimensional VM placement
across discrete intervals. The model captures migration costs
between periods, heterogeneous server efficiencies, and request
flexibility via compact AND/OR structures. We instantiate the
framework as (i) a mixed-integer program (MIP) that provides
an optimal reference and (ii) two scalable heuristics: Energy-
Minimizing First-Fit Decreasing (EMM-FFD) and Best-Fit De-
creasing (EMM-BFD). On data-center–scale synthetic workloads,
the exact solver yields the highest objective but incurs steep
runtimes at scale, whereas the heuristics return solutions within
10–20% of optimal in minutes. EMM-FFD consistently lowers
energy and migration costs; EMM-BFD achieves higher utilization
at slightly higher energy. Overall, EMM-Sched exposes a tunable
optimality–runtime trade-off suitable for both online operation
and capacity planning.

I. INTRODUCTION

The widespread adoption of cloud computing has led to the

rapid expansion of large-scale data centers, which now account

for a significant portion of global electricity usage. As energy

costs rise and environmental concerns increase, improving the

energy efficiency of cloud infrastructures has become a priority.

Virtual machine (VM) placement, that is deciding where to

run user workloads within a pool of physical machines (PMs),

is a key determinant of both operational efficiency and energy

usage.

Clouds host heterogeneous workloads whose demand and

placement feasibility change over time. Meeting these demands

efficiently requires coupling admission, placement, and migra-

tion across successive planning intervals, while accounting for

server energy efficiency and the operational cost of migrating

running VMs.

We propose EMM-Sched, an Energy-aware, Multi-period,

Migration-aware scheduling framework that formulates this

joint problem over a finite horizon. Each evaluation interval

executes a solver that

(i) admits a subset of incoming VM requests,

(ii) places admitted VMs subject to multi-resource con-

straints, and

(iii) optionally migrates already running VMs when the

expected benefit outweighs migration cost.

Request flexibility is expressed via compact AND/OR

structures, enabling the scheduler to choose among alternative

VM bundles or configurations.

Our contributions are:

• We give a mixed-integer programming (MIP) model that

unifies admission, placement, and migration with energy

cost terms and capacity/efficiency heterogeneity.

• We design two fast heuristics, EMM-FFD and EMM-BFD,

that approximate the MIP while scaling to data-center sizes

and delivering predictable runtimes suitable for periodic

operation.

• We provide an empirical study across capacity and demand

density using 2,532 test instances. The exact MIP yields

the highest objective, but its runtime grows sharply with

problem size; the heuristics remain stable and fast while

providing solutions within ≈10–20% of the exact objective.

EMM-FFD minimizes energy and migration cost; EMM-

BFD offers higher utilization with higher migration cost; and

the exact solver reaches the highest utilization at significant

compute time.

II. RELATED WORK

The problem of virtual machine (VM) placement in cloud

data centers has been a topic of extensive research. Due to the

computational complexity of the virtual machine (VM) place-

ment problem, metaheuristics and nature-inspired algorithms

have emerged as prominent solutions, offering scalability and

adaptability in large-scale cloud environments.

Pourghebleh et al. [1] provided a comprehensive survey on

the application of metaheuristic algorithms in VM consolidation,

highlighting trends in swarm intelligence, evolutionary computa-

tion, and hybrid methods. Dashti et al. [2] introduced a particle

swarm optimization (PSO)-based technique that dynamically

adapts VM allocation to reduce energy consumption while

maintaining system stability.

Tang et al. [3] proposed a hybrid genetic algorithm that

integrates local and global search capabilities to optimize energy

efficiency during VM allocation. Zheng et al. [4] explored

biogeography-based optimization (BBO) for multi-objective

VM consolidation, balancing energy, resource utilization, and

performance degradation.

Abdel-Basset et al. [5] designed a Lévy-flight-enhanced

Whale Optimization Algorithm (WOA) for bandwidth-aware

VM placement, achieving improved convergence speed and

reduced power consumption.

Importantly, Özer and Özturan [6] proposed a model and

corresponding heuristic algorithms for solving multi-unit non-

discriminatory combinatorial auction problems. Their study

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 28 --

also proves the NP-hard nature of the winner determination

problem, which our VM placement model generalizes.

Collectively, these approaches demonstrate the effectiveness

of bio-inspired algorithms in achieving energy-aware, SLA-

conscious, and performance-efficient VM scheduling.

While minimizing energy consumption is critical in cloud

data centers, it must not come at the cost of violating service-

level agreements (SLAs) or degrading the quality of service

(QoS). Consequently, many studies have aimed to design VM

placement mechanisms that maintain high reliability and user

satisfaction.

Li et al. [7] proposed a dynamic consolidation strategy that

balances SLA violations with energy consumption, offering

adaptive migration control based on workload fluctuations.

Fu et al. [8] introduced a dual-criteria migration technique

that selects VMs for migration based on both energy savings

and SLA constraints, improving responsiveness to changing

demand.

Zhou et al. [9] designed a high-reliability VM placement

method that improves system fault tolerance and reduces

downtime, thereby minimizing the risk of SLA breaches.

Alharbi et al. [10] introduced an intelligent scheduling method

for SLA-aware workload classification and allocation, which

considers resource demand predictability in the placement

decision.

These contributions show that integrating SLA-awareness

into VM consolidation enhances cloud infrastructure reliability

while maintaining energy efficiency and workload stability.

Cloud virtual machine placement involves multiple conflict-

ing objectives, such as minimizing energy consumption, reduc-

ing SLA violations, and achieving high resource utilization.

Multi-objective optimization (MOO) frameworks are widely

adopted to balance these trade-offs effectively.

Ahmad et al. [11] introduced an adaptive multi-objective task

scheduling approach using a chaos-based whale optimization

algorithm to reduce energy consumption and improve load

balance. Singh et al. [12] developed a hybrid model based on

Particle Swarm Optimization (PSO) and Grey Wolf Optimiza-

tion (GWO) for VM consolidation, targeting SLA awareness

and energy reduction.

Alshathri et al. [13] focused on improving load balancing

in multi-clouds using a hybrid multi-objective algorithm that

incorporates latency, load variation, and energy trade-offs.

Talwani et al. [14] presented a fuzzy-based adaptive VM

placement strategy that dynamically adapts to workload changes

while optimizing power usage and SLA adherence.

Tran et al. [15] proposed a reinforcement learning-based

framework to handle energy and performance objectives

simultaneously, demonstrating its effectiveness in dynamic

and heterogeneous cloud environments.

These approaches demonstrate how MOO strategies enable

dynamic and scalable solutions for VM placement by handling

energy, SLA, and performance objectives in a unified decision

framework.

Most earlier work either looks at placement only at a single

point in time, or considers migration only indirectly, which

hides how decisions are linked across time and the actual cost

of moving VMs. We instead formulate a multi-period, energy

and migration-aware MIP and derive fast heuristics tailored

to that formulation. Meroni and Guitart propose energy-aware

allocation using mathematical programming with micro/macro

modeling and warm starts [16]; our framework complements

that direction by making migration cost explicit over time and

by characterizing the accuracy–runtime trade-off under varied

capacity and load.

III. EMM-SCHED MODEL OVERVIEW

This section gives an intuitive tour of EMM-Sched before

its formal definition in Section IV. We outline the system

context and request language, then the period-by-period loop,

and finally key features.

We target an Infrastructure-as-a-Service provider operating

a set of physical machines P . Each machine p ∈ P is

described by a resource capacity vector 〈cp,CPU, cp,RAM,
cp,SSD, cp,HDD, . . . 〉 and a linear power model 〈ip,Mp〉, where

ip and Mp denote idle and peak power, respectively. An

energy price ep ($/kWh) is attached to every machine, allowing

location-aware optimization.

Workload arrives as VM requests. A request r is an AND/OR

tree that decomposes into sub-requests s ∈ Sr, each of which

offers a finite set Vrs of VM configurations in a disjunctive

OR alternatives. EMM-Sched may mix alternatives in Vrs for

the same sub-request (i.e., qrs VMs can be split across types).

For every alternative v ∈ Vrs we record (i) a resource-demand

vector darsv , (ii) a unit price πrsv (commercial clouds), and (iii)

a migration penalty μrsv, set to +∞ for stateful or latency-

critical VMs. The sub-request specifies a quantity qrs of VMs;

the scheduler decides how to distribute qrs across machines

and alternatives v ∈ Vrs.

Periods are separated by a configurable evaluation interval.

At the boundary between two periods we perform three steps

(Figure 1):

i. State collection: observe completions and newly arrived

requests.

ii. Optimization: solve the MIP of Section IV to place legacy

and new VMs jointly.

iii. Migration window: execute prescribed migrations if their

benefit outweighs μrsv .

This closed loop adapts placement to workload change and

time-of-day energy prices.

The design features of the model are:

• At each boundary we re-solve a single-period MIP using the

observed legacy state. Migration/reconfiguration penalties

μrsv prevent unnecessary changes; repeated single-period

solves implement a multi-period policy.

• Migrations are decided alongside placement, and only if their

benefit outweighs μrsv .

• The model maximizes utility net of migration and energy

costs (see (1)). To avoid price chasing of a single expensive

alternative, we value each sub-request at the average of its

offered prices; the mix chosen among OR alternatives does

not change revenue.

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 29 --

Fig. 1. High-level scheduling loop executed by EMM-Sched at every period boundary

• An exact MIP yields optimal solutions for moderate instances,

whereas the heuristics of Section V scale to thousands of

VMs within seconds.

IV. MATHEMATICAL MODEL

We schedule incoming VM requests, place legacy VMs, and

decide which machines to power on so as to maximize revenue

(or priority), while paying migration and energy costs.

Notation:

• P set of physical machines p.

• A set of resource attributes a (e.g., CPU, RAM).

• R set of new VM requests r; each has sub-requests Sr.

• Rold legacy requests already running at period start.

• Vrs alternative VM types for sub-request (r, s) (indexed by

v).

• cp,a capacity of attribute a on machine p.

• darsv demand of attribute a by alternative v.

• qrs number of VMs in sub-request (r, s).
• πrsv unit price of alternative v.

• μrsv migration cost of alternative v (set to +∞ for non-

migratable VMs).

• ip idle power of machine p; Mp peak power.

• ep energy price for machine p; t period length (hours).

• yold
rsvp legacy VMs of type v from (r, s) residing on p at

period start.

Decision variables:

• xr ∈ {0, 1} equals 1 if request r is accepted.

• yrsvp ∈ Z≥0 VMs of type v from (r, s) placed on p.

• mrsvp ∈ Z≥0 (defined only for r ∈ Rold) VMs of type v
reconfigured away from p.

• up,a ∈ R≥0 total load of attribute a on p.

• zp ∈ {0, 1} equals 1 if machine p is powered on.

• Pp ∈ R≥0 electrical power drawn by p.

Mixed-Integer Linear Program (MIP):

max
∑

r∈R∪Rold

(
xr

∑
s

qrs
|Vrs|

∑
v∈Vrs

πrsv

)
︸ ︷︷ ︸

revenue / priority

−
∑

r∈Rold

∑
s,v,p

μrsvmrsvp

︸ ︷︷ ︸
migration

− t
∑
p

epPp

︸ ︷︷ ︸
energy

. (1)

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 30 --

s.t. xr = 1 ∀r ∈ Rold (2)∑
v,p

yrsvp = qrsxr ∀r, s (3)

∑
r,s,v

darsvyrsvp = up,a ∀p, a (4)

up,a ≤ cp,azp ∀p, a (5)

mrsvp ≥ yold
rsvp − yrsvp ∀r∈Rold, s, v, p

(6)

mrsvp ≤ yold
rsvp ∀r∈Rold, s, v, p

(7)

ip zp + (Mp − ip)
up,1

cp,1
= Pp ∀p (8)

Since sub-requests are OR alternatives, constraint (3) lets

the solver split qrs across multiple alternatives v and ma-

chines p. A decrease in yrsvp versus yold
rsvp is charged by

mrsvp; this includes moving to another machine and chang-

ing type v (even on the same machine), hence the term

migration/reconfiguration. Constraint (2) retains all legacy

requests. Constraints (4)–(5) govern per-machine utilization and

capacities. Constraints (6)–(7) capture migration requirements.

Constraint (8) models power using CPU (attribute 1) as the

proxy.

Finally, this optimization problem is NP-hard since it

generalizes the winner determination problem of the multi-unit

nondiscriminatory combinatorial auction, which is NP-hard [6].

V. HEURISTIC ALGORITHMS

To scale EMM-Sched to thousands of VMs and multi-period

horizons, we implement two heuristic solvers: EMM-FFD and

EMM-BFD. Each period executes the same loop: (i) maintain

legacy instances (remove those with time-to-live TTL= 1,

decrement TTL, clear migration flags), (ii) optionally migrate

surviving instances according to the solver’s criterion, (iii)

admit and place new requests arriving at the current period

with full rollback on failure of any instance belonging to a

request, and (iv) persist per-machine assignments and the period

objective. TTL is the number of remaining scheduling periods

that the instance is supposed to stay alive.

Both heuristics use the same power/energy model as Sec-

tion IV: per-machine power is the sum of an idle term and a

linear utilization term,

Pp = ipzp + (Mp − ip)
up,1

cp,1
,

and the incremental energy used for placement/migration

decisions is derived from this linear form, multiplied by the

data center’s energy price (optionally adjusted by PUE).

The period objective matches the model’s profit,

profit =
∑

(realized prices of placed instances) −
migration cost − energy cost,

(9)

with prices taken from the selected OR alternatives (i.e., realized

income from the concrete VM types that are placed). Migration

cost is charged per instance when a move occurs.

Algorithm 1 EMM-FFD (Energy-Minimizing First-Fit Decreas-

ing)

1: Input: machine set P , requests R with AND/OR sub-

requests

2: for period τ = 0, 1, . . . do
3: Maintain legacy: remove TTL= 1, decrement TTL, clear

migration flags

4: for all migratable legacy instance i do
5: pick p� ∈ P minimizing EnergyCost(p, i) over

feasible p
6: if EnergyCost(p�, i) < EnergyCost(current(i), i)

and p�
= current(i) then
7: migrate i to p�; charge migration penalty

8: end if
9: end for

10: Order new requests by descending average vCPU

11: for request r arriving at τ do
12: accepted← true
13: for each sub-request s ∈ Sr do
14: for h = 1..qrs do
15: {repeat for required instance count}

16: if s is AND-type then
17: choose p� minimizing EnergyCost(p, s ↓)

over feasible p
18: else
19: {OR-type}

20: choose pair (v�, p�) minimizing

EnergyCost(p, s↓ v) over feasible (p, v)
21: end if
22: if no feasible target found then
23: accepted← false; break
24: end if
25: place instance on p�; record realized price of

chosen v� (if OR)

26: end for
27: end for
28: if not accepted then
29: rollback all placements of r
30: end if
31: end for
32: Return placements

33: end for

A. EMM-FFD: Energy-Minimizing First-Fit Decreasing

EMM-FFD (see Algorithm 1) targets low energy with

restrained migration. At every period, newly arrived requests

are processed in descending order of average vCPU demand

across their sub-requests.

Admission and placement:

• AND sub-requests: For each required instance, scan all PMs

and select the target that minimizes incremental energy for

the corresponding sub-request detail, subject to feasibility.

If any instance cannot be placed, reject the whole request

and roll back interim placements.

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 31 --

Algorithm 2 EMM-BFD (Best-Fit Decreasing)

1: for period τ = 0, 1, . . . do
2: Maintain legacy as in Alg. 1

3: for all migratable legacy instance i do
4: s0 ← CurrentFitScore(current(i))
5: pick p� minimizing s(p) = BestFitScore(p, i) over

feasible p
6: if p�
= current(i) and s(p�) < s0 then
7: migrate i to p�; charge migration penalty

8: end if
9: end for

10: Admit & place new requests as in Alg. 1, but minimize

BestFitScore (and record energy for costing)

11: Return placements

12: end for

• OR sub-requests: For each required instance, jointly choose

the alternative type and PM that minimize incremental energy

among feasible pairs; apply the same rollback rule upon any

failure.

Migration rule: For every migratable legacy instance, eval-

uate the best feasible target PM by incremental energy and

migrate the instance only if the target’s per-instance energy

cost is strictly lower than the instance’s current recorded energy

cost. Charge the per-instance migration penalty on a move.

B. EMM-BFD: Best-Fit Decreasing

EMM-BFD (see Algorithm 2) follows a best-fit policy guided

by a machine-level fit score. The score BestFitScore(p, ·) is

non-negative for feasible placements and aggregates residual-

capacity fragmentation and/or incremental power; lower is

better.

Admission and placement:
• AND sub-requests: For each required instance, choose the

feasible PM with minimal BestFitScore.

• OR sub-requests: For each required instance, choose the fea-

sible pair (alternative type, PM) with minimal BestFitScore;

full rollback on failure.

Migration rule: For every migratable legacy instance, let

CurrentFitScore be the score on its present machine. Migrate

the instance to the feasible PM with the lowest BestFitScore
only if that score is strictly lower than CurrentFitScore (no

explicit comparison against the migration penalty is performed),

and then accrue the migration cost.

VI. EXPERIMENTAL RESULTS

We compare three solvers: the MIP (Gurobi Optimizer v12.0),

Energy-Minimizing First-Fit Decreasing (EMM-FFD), and

Best-Fit Decreasing (EMM-BFD). We study four metrics under

varying workload densities and infrastructure sizes: Objective

Value, Energy Cost, Migration Cost, and Solution Time.

We use a test-case generator and produce two scenarios

per parameter set with a total of 2,532 test instances. We set

the number of slots to 10. Pricing for requestable instance

types is taken from Amazon EC2 On-Demand rates and kept

identical across all experiments. Capacity is tested at four

levels: {3328, 6656, 9984, 13312} vCPU cores.
The remaining parameter values are:

• Request_Density d: demand level relative to available vCPU

capacity; tested at d ∈ {0.25, 0.50, 0.75, 1.00}.
• Mean_SubRequest_Count: Poisson-distributed mean ∈
{1, 2, 3}; average number of sub-requests per request.

• Mean_Alternative_Request_Count: Poisson-distributed

mean ∈ {1, 2}; average number of alternative bundles for

OR choices.

• Mean_Instance_Count_In_SubRequest: Poisson-

distributed mean ∈ {1, 2, 3}; average VMs per sub-request.

• Mean_SubRequest_Duration: Poisson-distributed mean ∈
{1, 2, 3}; average VM lifetime in slots.

• Mean_Migration_Enable_SubRequest: Poisson-distributed

level mean ∈ {1, 2, 3}; share of sub-requests marked

migratable.

Figure 2 shows that the mean objective increases roughly

linearly for all methods as capacity and request density grow,

while solution time rises the most for the MIP due to search-

space growth. With more cores, more requests can be admitted,

giving the MIP a clear advantage in total revenue. In contrast,

EMM-BFD and EMM-FFD keep a low and nearly flat time

profile thanks to simpler logic and predictable placement,

revealing a direct trade-off between profit and solve time.
Figure 3 shows a consistent pattern across capacities and

densities. EMM-FFD provides the lowest energy and the lowest

migration, while EMM-BFD results in higher energy and the

highest migration. The MIP sits between the heuristics on

migration but has the highest energy overall because it admits

more work and activates more machines, which also explains

its best net objective despite higher absolute costs. In terms of

objective, the ordering is (MIP > EMM-BFD > EMM-FFD)

at every density.
Figure 4 separates the objective–capacity relation across four

density levels and shows that slopes become steeper and method

gaps widen as d increases. At low density (d = 0.25) curves are

milder and closer; at medium to high density (d = 0.50–0.75)

the marginal gain from extra capacity grows, and the MIP rises

faster than the others. Near peak load (d ≈ 1.00), we observe

diminishing returns at very high vCPU.
Table I indicates a consistent ordering for mean vCPU usage:

MIP > EMM-BFD > EMM-FFD. At peak load (d = 1.00)

the gap is largest (MIP: 94.80, EMM-BFD: 85.94, EMM-FFD:

79.49), showing that higher demand lets the MIP fill capacity

more effectively. At light load (d = 0.25) the separation

narrows (MIP: 87.65, EMM-BFD: 86.08, EMM-FFD: 76.15).

The MIP also shows the lowest variability at each density (e.g.,

std. = 10.52 at d = 1.00), while EMM-BFD and EMM-FFD

remain in the ∼21–23 band.
Active PM percentage (ratio of powered-on PMs to all PMs)

increases with demand for all methods, rising from roughly

45–46% at d = 0.25 to 93–98% at d = 1.00. EMM-FFD is

typically slightly above EMM-BFD (e.g., at d = 0.75, 86.22%

vs. 85.27%), which suggests slightly more fragmentation and

the need to keep a few extra machines on to achieve similar

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 32 --

4000 6000 8000 10000 12000
vCPU

1000

2000

3000

4000

5000

6000

7000

O
bj

ec
ti

ve
 V

al
ue

 (
m

ea
n)

(a) Objective Value (mean) vs vCPU

BFD
FFD
MIP

4000 6000 8000 10000 12000
vCPU

0

1000

2000

3000

4000

5000

S
ol

ut
io

n
Ti

m
e

(m
ea

n)

(b) Solution Time (mean) vs vCPU

BFD
FFD
MIP

0.25 0.50 0.75 1.00
Request Density

2000

3000

4000

5000

O
bj

ec
ti

ve
 V

al
ue

 (
m

ea
n)

(c) Objective Value (mean) vs Density

BFD
FFD
MIP

0.25 0.50 0.75 1.00
Request Density

0

1000

2000

3000

4000

S
ol

ut
io

n
Ti

m
e

(m
ea

n)

(d) Solution Time (mean) vs Density

BFD
FFD
MIP

Fig. 2. General trends of mean objective value and solution time across capacity and load. (a) Objective vs. vCPU, (b) Solution_Time vs. vCPU, (c) Objective vs.
Request_Density, (d) Solution_Time vs. Request_Density. Curves report method means (MIP, EMM-BFD, EMM-FFD) over densities {0.25, 0.50, 0.75, 1.00}
using vCPU ∈ {3328, 6656, 9984, 13312}.

4000 6000 8000 10000 12000
vCPU

250

500

750

1000

1250

1500

1750

En
er

gy
 C

os
t

(m
ea

n)

(a) Energy Cost (mean) vs vCPU

BFD
FFD
MIP

4000 6000 8000 10000 12000
vCPU

10

20

30

40

50

M
ig

ra
ti

on
 C

os
t

(m
ea

n)

(b) Migration Cost (mean) vs vCPU

BFD
FFD
MIP

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Request Density

400

600

800

1000

1200

1400

1600

En
er

gy
 C

os
t

(m
ea

n)

(c) Energy Cost (mean) vs Density

BFD
FFD
MIP

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Request Density

10

20

30

40

M
ig

ra
ti

on
 C

os
t

(m
ea

n)

(d) Migration Cost (mean) vs Density

BFD
FFD
MIP

Fig. 3. Mean energy and migration costs across capacity and load. (a) Energy vs. vCPU, (b) Migration vs. vCPU, (c) Energy vs. Request_Density, (d)
Migration vs. Request_Density. Curves report method means (MIP, EMM-BFD, EMM-FFD) over densities {0.25, 0.50, 0.75, 1.00}.

usage. The MIP activates the most PMs at high load (e.g.,

98.03% at d = 1.00), consistent with its stronger acceptance

and packing behavior.

Figure 5 tracks mean vCPU usage over time period for

d ∈ {0.25, 0.50, 0.75, 1.00}. As d increases, all methods move

to higher utilization with a stable ordering: the MIP at the top,

EMM-BFD close behind, and EMM-FFD in third place. The

time profiles are flat at low load; at medium and high load

there is a short ramp followed by a plateau, indicating that

admission and placement settle within the first few slots and

then remain steady.

From a deployment angle, if the target is high utilization (and

by extension revenue), the MIP sustains that level consistently.

If energy, operational simplicity, and speed matter, EMM-BFD

offers a close alternative, while EMM-FFD remains a fast

and predictable baseline. Near d ≈ 1.00, diminishing returns

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 33 --

4000 6000 8000 10000 12000
vCPU

1000

1500

2000

2500

3000

3500

O
bj

ec
ti

ve
 V

al
ue

 (
m

ea
n)

(a) Objective Value (mean) vs vCPU @ density=0.25

BFD
FFD
MIP

4000 6000 8000 10000 12000
vCPU

1000

2000

3000

4000

5000

6000

O
bj

ec
ti

ve
 V

al
ue

 (
m

ea
n)

(b) Objective Value (mean) vs vCPU @ density=0.50

BFD
FFD
MIP

4000 6000 8000 10000 12000
vCPU

2000

4000

6000

8000

O
bj

ec
ti

ve
 V

al
ue

 (
m

ea
n)

(c) Objective Value (mean) vs vCPU @ density=0.75

BFD
FFD
MIP

4000 6000 8000 10000 12000
vCPU

2000

4000

6000

8000

O
bj

ec
ti

ve
 V

al
ue

 (
m

ea
n)

(d) Objective Value (mean) vs vCPU @ density=1.00

BFD
FFD
MIP

Fig. 4. Mean objective value vs. capacity across four request densities d ∈ {0.25, 0.50, 0.75, 1.00}. Curves report method means (MIP, EMM-BFD,
EMM-FFD) over vCPU ∈ {3328, 6656, 9984, 13312}.

0 1 2 3 4 5 6 7 8 9
Time Period

76

78

80

82

84

86

88

M
ea

n
vC

P
U

 U
ti

liz
at

io
n

(%
)

(a) Mean vCPU Utilization (%) vs Time Period
@ density=0.25

BFD
FFD
MIP

0 1 2 3 4 5 6 7 8 9
Time Period

78

80

82

84

86

88

90

92

M
ea

n
vC

P
U

 U
ti

liz
at

io
n

(%
)

(b) Mean vCPU Utilization (%) vs Time Period
@ density=0.50

BFD
FFD
MIP

0 1 2 3 4 5 6 7 8 9
Time Period

78

80

82

84

86

88

90

92

M
ea

n
vC

P
U

 U
ti

liz
at

io
n

(%
)

(c) Mean vCPU Utilization (%) vs Time Period
@ density=0.75

BFD
FFD
MIP

0 1 2 3 4 5 6 7 8 9
Time Period

80
82
84
86
88
90
92
94
96

M
ea

n
vC

P
U

 U
ti

liz
at

io
n

(%
)

(d) Mean vCPU Utilization (%) vs Time Period
@ density=1.00

BFD
FFD
MIP

Fig. 5. Mean vCPU usage over time period at four request densities.

appear: beyond a point, extra capacity adds little to utilization,

so planning should weigh usage alongside energy and migration

costs.

VII. CONCLUSION

We introduced a unified, energy-aware, multi-period,

migration-aware scheduler that optimizes admission, multi-

dimensional placement, server activation, and migration under

a profit-centered objective. The model integrates a linear power

model with variable energy prices and exposes an expressive

AND/OR request interface that lets users describe alternatives

precisely. We paired an exact MIP with two scalable heuristics

and evaluated them across capacities and load densities. The

MIP consistently attained the highest objective, while the

heuristics recovered a large share of that objective with much

lower runtime and, in the case of EMM-FFD, lower energy

and migration. These results clarify when exact optimization

is preferable (offline planning, longer horizons) and when a

heuristic is the practical choice (tight latency budgets, frequent

re-optimization).

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 34 --

TABLE I. MEANS GROUPED BY REQUEST DENSITY AND METHOD. BOTTOM
ROWS REPORT METHOD-WISE MEANS ACROSS ALL DENSITIES.

Density Method vCPU util. vCPU util. Active PM
Mean Std. Dev. Ratio (%)

0.25 EMM-BFD 86.08 20.93 45.63
0.25 EMM-FFD 76.15 21.99 46.01
0.25 MIP 87.65 15.10 44.78
0.50 EMM-BFD 86.93 20.72 70.82
0.50 EMM-FFD 77.88 22.11 71.24
0.50 MIP 90.55 13.49 74.21
0.75 EMM-BFD 86.20 21.88 85.27
0.75 EMM-FFD 78.63 22.66 86.22
0.75 MIP 92.02 13.36 92.55
1.00 EMM-BFD 85.94 22.35 93.00
1.00 EMM-FFD 79.49 22.85 93.71
1.00 MIP 94.80 10.52 98.03

Overall EMM-BFD 86.29 21.47 73.68
Overall EMM-FFD 78.04 22.40 74.29
Overall MIP 91.25 13.12 77.39

Future work includes (i) a piecewise-linear energy model to

better capture server power curves, (ii) a multi–data-center for-

mulation spanning different regions, and (iii) explicit inter–data-

center migration costs in both objective and constraints. On the

algorithmic side, we aim to strengthen heuristic functions to

retain near-MIP solution quality while further reducing runtime

at scale.

REFERENCES

[1] B. Pourghebleh, A. A. Anvigh, A. R. Ramtin, and B. Mohammadi,
“The importance of nature-inspired meta-heuristic algorithms for solving
virtual machine consolidation problem in cloud environments,” Cluster
Computing, vol. 24, pp. 2673–2696, 9 2021.

[2] S. E. Dashti and A. M. Rahmani, “Dynamic vms placement for energy
efficiency by pso in cloud computing,” Journal of Experimental and
Theoretical Artificial Intelligence, vol. 28, pp. 97–112, 3 2016.

[3] M. Tang and S. Pan, “A hybrid genetic algorithm for the energy-efficient
virtual machine placement problem in data centers,” Neural Processing
Letters, vol. 41, pp. 211–221, 4 2015.

[4] Q. Zheng, R. Li, X. Li, N. Shah, J. Zhang, F. Tian, K. M. Chao, and
J. Li, “Virtual machine consolidated placement based on multi-objective
biogeography-based optimization,” Future Generation Computer Systems,
vol. 54, pp. 95–122, 1 2016.

[5] M. Abdel-Basset, L. Abdle-Fatah, and A. K. Sangaiah, “An improved
lévy based whale optimization algorithm for bandwidth-efficient virtual
machine placement in cloud computing environment,” Cluster Computing,
vol. 22, pp. 8319–8334, 7 2019.

[6] A. H. Özer and C. Özturan, “A model and heuristic algorithms for
multi-unit nondiscriminatory combinatorial auction,” Computers &
Operations Research, vol. 36, no. 1, pp. 196–208, 2009. [Online].
Available: https://doi.org/10.1016/j.cor.2007.08.012

[7] Z. Li, X. Yu, L. Yu, S. Guo, and V. Chang, “Energy-efficient and quality-
aware vm consolidation method,” Future Generation Computer Systems,
vol. 102, pp. 789–809, 1 2020.

[8] X. Fu and C. Zhou, “Virtual machine selection and placement for dynamic
consolidation in cloud computing environment,” Frontiers of Computer
Science, vol. 9, pp. 322–330, 4 2015.

[9] A. Zhou, S. Wang, B. Cheng, Z. Zheng, F. Yang, R. N. Chang, M. R. Lyu,
and R. Buyya, “Cloud service reliability enhancement via virtual machine
placement optimization,” IEEE Transactions on Services Computing,
vol. 10, pp. 902–913, 11 2017.

[10] F. Alharbi, Y. C. Tian, M. Tang, W. Z. Zhang, C. Peng, and M. Fei, “An
ant colony system for energy-efficient dynamic virtual machine placement
in data centers,” Expert Systems with Applications, vol. 120, pp. 228–238,
4 2019.

[11] F. Ahmad, M. Shahid, M. Alam, Z. Ashraf, M. Sajid, K. Kotecha,
and G. Dhiman, “Levelized multiple workflow allocation strategy under
precedence constraints with task merging in iaas cloud environment,”
IEEE Access, vol. 10, pp. 92 809–92 827, 2022.

[12] A. K. Singh, S. R. Swain, and C. N. Lee, “A metaheuristic virtual
machine placement framework toward power efficiency of sustainable
cloud environment,” Soft Computing, vol. 27, pp. 3817–3828, 4 2023.

[13] S. Alshathri, F. M. Talaat, and A. A. Nasr, “A new reliable system for
managing virtual cloud network,” Computers, Materials and Continua,
vol. 73, pp. 5863–5885, 2022.

[14] S. Talwani, K. Alhazmi, J. Singla, H. J. Alyamani, and A. K. Bashir,
“Allocation and migration of virtual machines using machine learning,”
Computers, Materials and Continua, vol. 70, pp. 3349–3364, 2022.

[15] C. H. Tran, T. K. Bui, and T. V. Pham, “Virtual machine migration
policy for multi-tier application in cloud computing based on q-learning
algorithm,” Computing, vol. 104, pp. 1285–1306, 6 2022.

[16] R. Meroni and J. Guitart, “Scalable energy-aware VM allocation on
cloud data centers through mathematical programming models,” Future
Generation Computer Systems, vol. 174, p. 108011, 2026, online: July
16, 2025.

ISSN 2305-7254__PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

-- 35 --

