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Abstract—Audio analysis is a cornerstone of modern human-
computer interaction, powering applications in smart devices
such as phones, watches, and speakers. Key tasks enabling this
interaction include voice activity detection, speech command
recognition, and age and gender identification. While large-scale
models can seamlessly integrate these tasks without significant
performance degradation, their computational cost prohibits
deployment on resource-constrained devices. In contrast, compact
models suitable for embedded systems face a significant chal-
lenge: their limited parameter budget makes integrating multiple
tasks without destructive interference difficult, and the optimal
weight-sharing strategy is highly dependent on the specific task
combination. This paper presents an analysis of weight-sharing
architectures for multi-task learning on audio data. We sys-
tematically investigate the synergies and conflicts between tasks,
evaluating pairwise and higher-order combinations. Based on our
findings, we propose a novel low-complexity model that simulta-
neously executes four core tasks—voice activity detection, speech
command recognition, age and gender identification—with fewer
than 57,000 parameters. This represents a 53% reduction in
model size compared to a naive ensemble of single-task models.
Our work not only achieves state-of-the-art performance on each
individual task but also reveals that while most tasks exhibit
positive synergy, the introduction of a more complex task, such
as speaker diarization, can lead to performance degradation
in larger task sets, highlighting the importance of careful task
selection and architectural design for stable multi-task learning.

I. INTRODUCTION

The proliferation of intelligent devices—including smart-

phones, smart speakers, and wearables—has driven increasing

demand for efficient, on-device audio analysis systems. Such

systems are essential for enabling natural human–computer

interaction (HCI) through a suite of fundamental audio un-

derstanding tasks, including voice activity detection (VAD),

speech command recognition (SCR), and speaker biometrics

such as age and gender classification. Integrating these capa-

bilities allows devices to build richer contextual awareness of

users and their environments, supporting more personalized

and responsive interactions. For example, a device may adapt

its acoustic model based on inferred speaker characteristics or

use VAD to identify segments where more resource-intensive

server-side processing may be applied, thereby reducing over-

all latency.

State-of-the-art approaches to these tasks typically employ

deep learning architectures, often combining multi-layer con-

volutional neural networks (CNNs) with recurrent layers or at-

tention mechanisms for temporal modeling [1]–[6]. A common

pipeline involves first converting raw audio waveforms into

log-mel spectrograms via the Short-Time Fourier Transform

(STFT). A CNN then processes this feature sequence into

encoded representations, which are subsequently transformed

into final predictions using either linear projections (for global

classification) or recurrent neural networks (for frame-wise

predictions).

Notable standalone models include the SILERO frame-

work [7] for VAD, which achieves ROC-AUC scores

94% on benchmarks such as AI-SHELL-4 [8] and ALI-

MEETINGS [9] utilizing 260,000 parameters. For speaker

biometrics, recent work [4] reports error rates of 3.6% for

age classification and 30% for gender classification on the

Mozilla Common Voice dataset [10] using the CNN model

with 30,000 trainable weights. In speech command recogni-

tion, top-performing models [11] reach accuracies of 95.3%

on the Google Speech Commands V2 dataset [12]. While

performant, deploying separate models for each task incurs

a linear increase in memory usage with the number of tasks,

rendering this approach impractical for resource-constrained

devices.

Multi-task learning (MTL) [13] presents a promising al-

ternative, though it is predominantly applied in large-scale

models (e.g., Qwen-Audio [14]) with billions of parameters,

unsuitable for on-device inference [15]–[23]. Naively applying

MTL to low-complexity models introduces two significant

challenges: (1) determining optimal weight-sharing strategies

across tasks to maintain performance, and (2) selecting com-

patible tasks that exhibit positive synergies without destructive

interference.

In this work, we present a study of architectural and

task-compositional factors in low-complexity multi-task audio

models. We systematically evaluate weight-sharing configura-

tions and task subsets to identify synergistic combinations and

avoid detrimental interactions. Furthermore, we explore the

impact of incorporating more complex tasks, such as speaker

diarization, and demonstrate that improper task inclusion can

significantly degrade performance. Based on our analysis, we

propose efficient multi-task architectures that simultaneously

address multiple audio tasks with minimal parameter overhead,
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achieving state-of-the-art accuracy while significantly reducing

model size compared to naive ensemble of single-task base-

lines.

Our key contributions are:

1) A systematic analysis of weight-sharing strategies in

low-complexity multi-task audio models, including an

evaluation of pairwise and higher-order task synergies.

2) A parameter-efficient multi-task architecture that simul-

taneously supports four core tasks—VAD, SCR, age,

and gender classification—with under 57K parameters,

achieving state-of-the-art accuracy while reducing model

size by 53%.

3) A key insights revealing that while many tasks benefit

from joint learning, introducing complex tasks (e.g.,

diarization) can impair performance in larger task sets,

highlighting the importance of careful task selection and

model design for on-device MTL.

This paper is organized as follows. In Section II, we

detail our proposed method, including the baseline single-task

architectures and the systematic multi-task learning framework

with three distinct weight-sharing strategies. In Section III we

describe the experimental setup, specifying the datasets, train-

ing procedures, evaluation metrics, and model configurations

used for our analysis. In Section IV, we present and analyze

the results, examining the impact of weight-sharing ratios,

quantifying pairwise and higher-order task synergies, and

evaluating the disruptive effect of integrating complex tasks.

Finally, in Section V, we discuss the limitations of our work

and suggest future research directions, and in Section VI, we

conclude by summarizing our key findings and the successful

development of a parameter-efficient unified audio model.

II. METHOD

A. Conventional single-task classification

This section outlines the conventional methodologies for the

core tasks under investigation: VAD, SCR, and age and gender

classification. Additionally, we incorporate the task of two-

speaker diarization, defined as the process of determining the

temporal segments during which each of two distinct speakers

is active in an audio signal. Formally, our prediction model is

defined by the operation Y = DθD (EθE (X)). Here, E denotes

an encoder and D a decoder, with θE and θD representing

their respective sets of trainable parameters. The input X =
(x1, . . . , xN ) is a sequence of log-mel spectrogram feature

vectors, where each xi ∈ RD and N is the total number of

time frames. The encoder produces a sequence of embeddings

EθE (X) = Q = (q1, . . . , qN ), which the decoder then maps

to the final output Y = DθD (Q). The total model complexity

is consequently defined as the number of trainable parameters,

given by |θE |+ |θD|.
These five tasks can be categorized into two distinct groups

based on their output structure: global classification and frame-

wise classification. The first group, comprising SCR and age

and gender classification, requires the model to produce a

single label probability for the entire audio waveform, denoted

as Y ∈ RC , where C is the total number of predefined classes.

The second group consists of VAD and speaker diarization,

which require a sequence of outputs. For VAD, the output

is Y ∈ RN , representing the probability of speech presence

for each time frame. For speaker diarization, the output is

Y ∈ RN×2, indicating the probability of each of the two

speakers being active at every time frame.

In this work, we employ a conventional multi-layer convolu-

tional neural network as the encoder E, optionally augmented

with an attention mechanism at its final stage. For global clas-

sification tasks, the decoder D consists of a single linear layer

that projects the encoded embedding into the log-probabilities

of predefined classes. In contrast, for frame-wise classification

tasks, the decoder is implemented as a bidirectional Gated

Recurrent Unit (GRU), followed by a linear projection layer

to produce the final sequence of output predictions.

B. Conventional multi-task learning

Multi-task learning (MTL) is a well-established paradigm

in machine learning that enables a single model to address

multiple related tasks concurrently. This is typically achieved

through a shared encoder network, which extracts a common

latent representation from the input, coupled with a set of

task-specific decoders. Formally, an MTL model comprises

a shared encoder E : X → Q and a collection of t distinct

decoders D1, . . . , Dt, where t denotes the number of tasks.

Each decoder Di transforms the shared representation Q into

task-specific predictions Yi. A principal advantage of this ar-

chitecture is the significant improvement in computational and

memory efficiency resulting from the reuse of the encoder’s

output across all tasks during inference.

The parameter efficiency of MTL can be quantified by

comparison to a naive baseline employing t independent

single-task models. This baseline requires t dedicated encoders

E1, . . . , Et and t decoders D1, . . . , Dt, resulting in a total

parameter count of
∑t

i=1 |Ei| +
∑t

i=1 |Di|. In contrast, the

MTL framework utilizes a single encoder E and t decoders,

requiring only |E|+∑t
i=1 |Di| parameters. Under the assump-

tion of architecturally similar encoders (|Ei| ≈ |E| ∀i), the

parameter savings approximate (t − 1)|E|. As the encoder

generally constitutes the majority of a model’s parameters,

this reduction is substantial. Furthermore, the architecture is

highly scalable; integrating an additional task introduces only

the parameters of a new task-specific decoder Dt+1, indicating

that the marginal cost of expanding the task set is low once

the shared encoder is established.

However, applying MTL to low-complexity models intro-

duces significant constraints. The strictly limited parameter

budget can hinder the model’s capacity to achieve competitive

accuracy across all tasks simultaneously, a problem seldom

encountered in large-scale models due to their abundant

representational capacity. Consequently, the selection of a

compatible task set and a deliberate weight-sharing strategy

becomes critical. Careful architectural design is essential to

mitigate destructive interference and leverage potential syner-
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Fig. 1. Architecture of the multi-layer convolution neural network

TABLE I. A COMPARISON OF STATE-OF-THE-ART
APPROACHES WITH OUR SINGLE-TASK MODELS

Task Metric Dataset Baseline Ours
VAD ROC-AUC AI-SHELL-4 [8] 94% [7] 93.3%
GC1 ER MCV [10] 3.6% [4] 3.8%
AC2 ER MCV [10] 30% [4] 32.8%
SCR Accuracy GSC v2 [12] 95.3% [11] 94.5%
1 Gender classification
2 Age group classification

gies between tasks to ensure robust performance across the

entire multi-task system.

C. The proposed method

Based on the preceding analysis, two primary research

questions emerge: (i) how are the tasks in the target set

correlated, and (ii) how should parameters be shared between

tasks exhibiting either strong or weak synergistic potential?

To address these questions systematically, we propose the

following experimental methodology.

First, we establish strong single-task baselines using a

widely-adopted architectural template. Each individual model

consist of an encoder comprising eight convolutional lay-

ers, each followed by batch normalization, ReLU activation

function, and a residual connection. Optionally, an attention

mechanism may be applied across the time axis atop the

convolutional stack (see Fig. 1). For tasks requiring a global

prediction (e.g., command recognition, age, or gender classifi-

cation), the decoder consists of a single linear projection layer.

For frame-wise prediction tasks (e.g., voice activity detection,

diarization), the decoder is implemented as a bidirectional

gated recurrent unit (GRU), followed by a linear layer to

produce probabilities at each time step as shown in Fig. 2. This

architecture first is trained and evaluated individually on each

task to reproduce near state-of-the-art performance, thereby

validating the baseline design (see Table I).

Subsequently, we conduct an exhaustive multi-task learning

(MTL) analysis over all possible subsets of tasks. For each

task combination, a multi-task model is constructed using a

shared encoder and task-specific decoders. To evaluate the

impact of weight-sharing strategy, each such model is trained

(a) Global classification decoder          (b) Frame-wise classification
             decoder 

Fig. 2.Architecture of the classification decoders

and evaluated under three distinct sharing configurations (see

Fig. 3):

1) Partial Sharing (7 Layers): The first seven convolutional

layers are shared; the eighth layer and the optional

attention mechanism are kept task-specific.

2) Full CNN Sharing (8 Layers): All eight convolutional

layers are shared; the optional attention mechanism

remains task-specific.

3) Complete Sharing (8 Layers + Attention): The entire

encoder, including all eight convolutional layers and the

attention mechanism, is shared across all tasks.

This structured ablation study enables a rigorous quantifi-

cation of how the proportion of shared parameters influences

final prediction accuracy across each individual task within

every possible combination, thereby directly addressing our

core research questions regarding task synergy and optimal

sharing strategy.

III. EXPERIMENTS

A. Dataset

For the VAD task, model training and validation were

conducted using the Mozilla Common Voice dataset [10],

where human speech is present in approximately 75% of the

annotated time segments. To ensure a rigorous comparison

with state-of-the-art methods, evaluation was performed on

the established benchmark datasets AI-SHELL-4 [8] and ALI-

MEETINGS [9]. These benchmarks feature a higher speech

density, with approximately 90% of segments containing

speech. A strong correlation was observed between model

performance on these two test sets. Therefore, for brevity and

to simplify the analysis, we report detailed results only on the

AI-SHELL-4 dataset in the subsequent sections.

The same Mozilla Common Voice [10] dataset was also

used for the biometric tasks of age and gender classification.

Samples with missing gender or age metadata were excluded

during preprocessing. The final curated dataset contained

approximately 500,000 samples of male speech and 200,000

samples of female speech.
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(a) Partial Sharing (7 Layers) (b) Full CNN Sharing (8 Layers) (c) Complete Sharing (8 Layers +
Attention)

Fig. 3. Multi-task learning weights sharing configurations

TABLE II. A SUMMARY OF THE DATASETS STATISTICS

Dataset Number of samples Duration in hours
AI-SHELL-4 [8] 3,065 12.7
ALI-MEETINGS [9] 10,379 43

MCV1 [10] test 16,263 27
MCV [10] train 1,087,672 1718

GSC2 v2 test [12] 11,005 3
GSC v2 train [12] 84,849 23
1 Mozilla Common Voice
2 Google Speech Commands

For age classification, only samples with defined age groups

were retained, resulting in the following distribution: 300,000

samples from speakers in their twenties, 150,000 in their

thirties, 111,000 in their forties, 75,000 from teenagers, 70,000

in their fifties, 61,000 in their sixties, 6,000 in their seventies,

1,000 in their eighties, and 178 samples from speakers in their

nineties. Following the methodology of the baseline model [4],

these samples were grouped into three broader age categories:

under 30, 30 to 60, and over 60. The Mozilla Common Voice

dataset was also used for testing these biometric tasks.

Finally, for the SCR task, the Google Speech Commands

V2 [12] dataset was employed. This corpus contains 35 unique

command classes, with each command represented by 1,000

to 3,000 samples in the training set and 150 to 450 samples

in the test set.

A summary of the datasets statistics is provided in Table II.

All audio samples are resampled to a 16 kHz sampling rate and

subsequently transformed into log-mel spectrograms. These

spectrograms are generated using 64-channel filter banks,

computed over a 20ms window with a 10ms stride.

B. Training

A standardized training pipeline was employed for all

experiments. For global classification tasks, the cross-entropy

loss function was used, while binary cross-entropy was applied

to frame-wise classification tasks. Optimization was performed

using the AdamW optimizer with a weight decay of 0.01 and

a batch size of 64.

The learning rate was scheduled using a cosine annealing

strategy with an initial linear warmup phase. The warmup

period comprised the first 5% of the total training epochs,

during which the learning rate was linearly increased to a

maximum value of 10−3. For the remaining 95% of the

training, the learning rate was decayed following a cosine

annealing schedule. All models were trained for 100,000

epochs or until convergence was observed.

For MTL experiments, the overall loss was defined as a

linear combination of the individual task losses with equal

coefficients. Training batches were constructed by sampling

uniformly across all tasks within the considered set. Model

checkpoints were selected to minimize the worst-case relative

performance degradation across all tasks, thereby ensuring

balanced learning without significant compromise on any

single objective.

The experimental results showed low variance, with stan-

dard deviations across multiple runs remaining within 1% of

the reported metric values for all configurations. A single

training run required approximately 10 hours of computation

on an NVIDIA Tesla H100 GPU with 80GB of memory.

C. Evaluation metrics

Model performance was evaluated using standard task-

specific metrics. For VAD, we employed the Area Under the

Receiver Operating Characteristic Curve (ROC-AUC). This

metric evaluates the model’s ability to distinguish between

speech and non-speech segments across all classification

thresholds, providing a robust single-figure measure of detec-

tion quality that is independent of the chosen operating point.

For the biometric tasks of age and gender classification, per-

formance was quantified using the Error Rate (ER), calculated

as the proportion of incorrect predictions to total predictions.

A lower ER indicates higher accuracy in classifying speaker

demographics. SCR was assessed using classification accuracy,

defined as the percentage of correctly identified voice com-

mands within the test set. This provides a direct and intuitive

measure of the model’s practical utility for command-based

interaction. In addition to task performance, we reported the

overall model complexity in terms of the total number of

trainable parameters. This metric is critical for determining the

feasibility of deployment on resource-constrained devices and

for comparing the architectural efficiency of different multi-

task learning configurations.
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TABLE III. MULTI-TASK LEARNING PERFORMANCE FOR ALL PAIRWISE TASK COMBINATIONS. THE UPPER-RIGHT PART

REPORTS ABSOLUTE PERFORMANCE METRICS FOR MODELS TRAINED ON TWO TASKS. THE LOWER-LEFT PART

QUANTIFIES THE RELATIVE PERFORMANCE REDUCTION COMPARED TO SINGLE-TASK BASELINES

Accuracy VAD GC1 AC2 SCR
VAD 93.3 93.1/4 93/4.1 93.6/4.2 91.9/34 91.7/33.6 91.6/34 92.9/94 92.4/94.1 92.7/93.3
GC1 -0.3% -0.33% -0.4% 3.8 4.3/33.6 4.6/33.5 5.1/33.7 4.6/94.2 4.9/94.2 11.3/89.2
AC2 -1.7% -1.76% -1.85% -1.2% -1% -1.4% 32.8 34/92.8 37.6/93.6 39.9/90.9
SCR -0.6% -1% -1.3% -0.8% -1.2% -7.8% -2% -7% -10.5% 94.5

Size VAD GC1 AC2 SCR
VAD 32K 47K(-23%) 47K(-23%) 47K(-23%)
GC1 29K 34K(-41%) 34K(-41%)
AC2 29K 34K(-41%)
SCR 30K
1 Gender classification
2 Age group classification

D. Configurations

We now provide a detailed description of our model ar-

chitecture. The encoder network comprises eight sequential

layers with 21 channels in each layer. Each layer consists of

a two-dimensional convolutional operation, followed by batch

normalization and a Rectified Linear Unit (ReLU) activation

function. Residual connections are incorporated between lay-

ers that maintain an equivalent number of channels to facilitate

gradient flow and stabilize the training process. An attention

mechanism is applied over the temporal axis atop the encoder

to enhance the integration of long-range contextual features.

The chosen architecture contains approximately 30,000

trainable parameters. This specific capacity was selected for

several reasons. First, it aligns with the size of high-performing

baseline models for biometric tasks [4]. Second, while state-

of-the-art dedicated models for voice activity detection can be

significantly larger (e.g., 260K parameters in [7]), our objec-

tive was to develop a compact multi-task architecture. Finally,

through ablation studies, we determined that this parameter

budget is sufficient for a single-task convolutional model to

achieve competitive, near-state-of-the-art performance on the

speech command recognition task, establishing it as a valid

baseline for a efficient model.

Decoder architectures are task-dependent. For global classi-

fication tasks (e.g., age, gender, and speech command recog-

nition), the decoder consists of a single linear projection

layer that maps the hidden representation to the number

of target classes. For frame-wise classification tasks (e.g.,

voice activity detection), the decoder is implemented as a

multi-layer bidirectional Gated Recurrent Unit (GRU), which

processes the temporal sequence of features to produce per-

frame predictions.

In the MTL setup, the encoder is shared across tasks and

uses the same hyperparameters as in the single-task models.

The decoders remain task-specific and are identical to those

used in the single-task experiments. For each subset of tasks,

we investigate three distinct weight-sharing configurations:

1) Partial Sharing: The first seven convolutional layers are

shared; the eighth layer and the attention mechanism are

task-specific.

2) Full CNN Sharing: All eight convolutional layers are

shared; the attention mechanism remains task-specific.

3) Complete Sharing: The entire encoder, including all

convolutional layers and the attention mechanism, is

shared across tasks.

To further demonstrate the critical importance of task selec-

tion in MTL, we introduce an additional complex task—two-

speaker diarization—and analyze its impact on model per-

formance when integrated into the existing task sets. This

allows us to empirically evaluate how task complexity and

compatibility influence the stability and effectiveness of low-

resource multi-task models.

IV. RESULTS

This section addresses the core research questions of our

study: (1) how various tasks influence one another during

multi-task learning (MTL) under different weight-sharing

configurations, and (2) the importance of task selection, as

illustrated by incorporating the complex task of two-speaker

diarization.

A. Impact of weight-sharing ratio
A general trend observed across all task subsets (Table III

and Table IV) is that increasing the proportion of shared

parameters correlates with a slight degradation in overall

task performance. For instance, in the pair comprising age

classification and speech command recognition (SCR), sharing

only 7 convolutional layers results in a performance decrease

of approximately 2%. This reduction grows to 7% when

sharing all 8 convolutional layers, and reaches 10.5% when

the attention mechanism is also shared.
However, the extent of accuracy degradation is highly de-

pendent on the specific task set. For instance, the combination

of gender classification (GC) and voice activity detection

(VAD) exhibited strong resilience to parameter sharing, ex-

hibiting a performance reduction of only 0.4% even under

complete sharing of all eight convolutional layers and the

attention mechanism. In contrast, the model’s performance

on speech command recognition (SCR) and age classification

(AC) deteriorated significantly under an equivalent sharing

configuration, despite the use of task-specific decoders with

dedicated attention layers.
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This differential sensitivity was further pronounced in three-

task configurations. Sets containing both SCR and AC ex-

perienced substantial performance degradation under deeper

parameter sharing. Conversely, task sets containing only one

of these tasks exhibited greater robustness; the combination

of VAD, GC, and AC showed a quality reduction of only

3.6% under complete sharing, while the set comprising VAD,

GC, and SCR maintained near state-of-the-art performance (a

reduction of only 1.3%) even with full sharing of all eight

convolutional layers.

Notably, introducing VAD to the AC–SCR pair resulted in

a significant quality drop of 7.3% under full sharing including

attention. Similarly, adding GC to the same pair led to a 6.3%

reduction in performance, even when sharing only the con-

volutional layers. These results underscore the critical role of

task compatibility and the non-linear interactions that arise in

multi-task learning, particularly under constrained parameter

budgets.

B. Pairwise task synergy

The degree of synergy varies significantly across different

task pairs (Table III). The most synergistic pair is voice activity

detection (VAD) and gender classification, where the MTL

model achieves near state-of-the-art performance—exhibiting

a relative accuracy reduction of no more than 0.4%—even in

complete sharing mode (8 layers + attention). In contrast, the

least synergistic pair is SCR and age classification, where shar-

ing 8 convolutional layers leads to a performance decrease of

nearly 7%. Furthermore, VAD emerges as the most universally

compatible task in MTL setups, as its performance degrades

by less than 2% across all sharing configurations.

A distinct pattern of performance degradation is observed

for pairs of global classification tasks. Model accuracy re-

mains near state-of-the-art when sharing 7 or 8 convolutional

layers while maintaining task-specific attention mechanisms.

However, sharing the attention layer results in significant

quality reduction. For instance, for the pair comprising speech

command recognition (SCR) and gender classification (GC),

performance decreases by merely 1.2% under full CNN shar-

ing, but declines by up to 7.8% when the attention mechanism

is shared.

Conversely, the pair of gender classification (GC) and age

classification (AC) exhibits strong inherent synergy. This is ev-

idenced by the minimal performance reduction observed even

under complete parameter sharing, which includes a single

attention layer common to both tasks. This result suggests

that these biometric tasks are highly correlated and can be

processed simultaneously within a shared representation space

with remarkable efficiency, highlighting the importance of task

relatedness in multi-task learning performance.

This behavior, however, does not hold for combinations

involving voice activity detection (VAD)—a frame-wise clas-

sification task—alongside global tasks. We hypothesize that

this discrepancy arises from the fundamental differences in

output structure between frame-wise and global classification

problems. Specifically, the VAD decoder may rely less on

TABLE IV. EXPERIMENTAL RESULTS FOR ALL 
HIGH-ORDER TASKS SUBSETS

Sharing Size VAD GC1 AC2 SCR AR3

Partial 57K 92.9 4.8 34.2 92.5 -2.1%
Full CNN 45K 92.8 6.5 37.7 91.1 -7.2%
Complete 43.5K 86.4 14.2 40.5 88.8 -11.5%
Partial 52K 92.2 4.9 33.2 -1.2%
Full CNN 44K 92.6 5.4 33.7 -1.7%
Complete 43.5K 90.6 5.1 35.2 -3.6%
Partial 52K 94.2 4.3 94.5 -0.6%
Full CNN 44K 92.1 4.9 93.7 -1.3%
Complete 43.5K 91.7 9.4 90.4 -5.7%
Partial 52K 92.5 34.6 93.9 -2.6%
Full CNN 44K 92.8 36.5 92.4 -5.5%
Complete 43.5K 90.4 37.7 90.4 -7.3%
Partial 39K 5.4 35.9 92.8 -4.6%
Full CNN 31K 7.1 37 92.5 -6.3%
Complete 29.8K 9.4 39.7 86.7 -10.3%
1 Gender classification
2 Age group classification
3 Relative accuracy reduction

attention-based feature refinement, instead leveraging its tem-

poral modeling capacity (e.g., via GRU layers) to achieve

high performance. Interestingly, the shared attention layer does

not introduce disruptive interference to VAD performance,

suggesting that the attention mechanism may remain function-

ally viable for both task types when appropriately isolated or

designed.

These observations highlight the nuanced interplay between

architectural sharing and task nature, emphasizing that the

optimal sharing strategy must account for both the semantic

and structural characteristics of the tasks involved.

C. Higher-order task combinations

We next examine MTL performance on larger task sets

(Table IV). For the combination of all four primary tasks, a

model sharing 7 convolutional layers achieves performance

within 2.1% of the single-task baselines, while reducing the

total model size by 53% (utilizing only 57,000 parameters).

This result suggests a promising scalable paradigm: adding fu-

ture tasks may require only one additional convolutional layer

with attention and a small task-specific decoder, implying the

possibility of solving numerous tasks with drastically reduced

resource consumption. However, deeper weight-sharing (e.g.,

sharing all layers including attention) leads to more substantial

quality degradation, with performance reductions of up to

10%.

Analysis of three-task subsets (Table IV) indicates that

sharing the attention mechanism consistently degrades perfor-

mance, likely due to the need for task-specific feature aggre-

gation from the final encoder representation. This architectural

choice resulted in performance reductions ranging from 3.6%

to 30%. The most effective three-task configuration consists

of voice activity detection (VAD), gender classification, and

speech command recognition (SCR), which exhibited only a

1.3% performance reduction while achieving a 52% reduction

in model size. Interestingly, although age classification appears

conceptually similar to gender classification, it demonstrates
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TABLE V. PERFORMANCE OF MULTI-TASK MODELS 
COMBINING SPEAKER DIARIZATION WITH OTHER TASKS. 

RESULTS SHOW THE DIARIZATION ERROR RATE (DER) FOR 
THE DIARIZATION TASK AND CORRESPONDING METRICS FOR 

CO-TRAINED TASKS

Configuration Sharing DER STM4 AR3

Diar+VAD Partial 14.7 79.1 -15%
Full CNN 14.5 82.5 -11.5%
Complete 14.5 82.5 -11.5%

Diar+GC1 Partial 13.5 6.1 -2.4%
Full CNN 13.7 10.8 -7.3%
Complete 14.9 18 -15%

Diar+AC2 Partial 15 39.5 -12.1%
Full CNN 15.9 40.4 -19%
Complete 17.1 42 -37.5%

Diar+SCR Partial 14 92.7 -4.7%
Full CNN 16.8 91.5 -25.2%
Complete 17.1 92.7 -27.3%

1 Gender classification
2 Age group classification
3 Relative accuracy reduction
4 Second task metric value

notably weaker synergistic properties with other tasks. The

most synergistic trio overall proved to be VAD, gender classi-

fication, and age classification, which maintained competitive

performance with only a 3.6% reduction in overall quality

despite employing complete parameter sharing.

D. Effect of adding a complex task

To further analyze the influence of task complexity on

multi-task learning performance, we introduced an additional

challenging task: two-speaker diarization. This task was im-

plemented using Permutation Invariant Training (PIT) [24] and

evaluated on the Libri2Mix dataset [25], with performance

measured by the Diarization Error Rate (DER). Our single-

task baseline model for diarization achieved a DER of 13.4%.

The incorporation of this complex task starkly illustrates

the boundaries of task compatibility within a low-parameter

MTL framework. Diarization exhibited negligible synergistic

properties with any other task in our set. When trained in a

two-task setup alongside any other objective, model perfor-

mance degraded substantially, with the DER increasing by up

to 37.5% (Table V). More critically, introducing diarization

to existing synergistic pairs of tasks caused a pronounced

negative impact on performance, adversely affecting not only

the diarization task itself but also the accuracy of all other

co-trained tasks (Table VI).

This result underscores a critical finding: the careful selec-

tion of compatible tasks is paramount for successful MTL in

resource-constrained environments. It also serves to validate

that our identified set of four primary tasks—VAD, SCR, and

age and gender classification—constitutes a uniquely syner-

gistic combination, as the introduction of a more complex,

incompatible task like diarization severely disrupts the stability

and performance of the entire system.

TABLE VI. EXPERIMENTAL RESULTS FOR HIGH-ORDER 
TASKS SUBSETS INCLUDING DIARIZATION PROBLEM

Sharing Diar VAD GC1 AC2 SCR AR3

Partial 19.3 91.8 8.2 36.1 93.2 -44%
Full CNN 22.7 87.7 12.2 47.4 88.7 -70%
Complete 23.2 80.3 11.3 42.1 85.5 -72%
Partial 16.1 8 94.2 -20%
Full CNN 14.9 5 92.6 -11.5%
Complete 16.7 12.7 92.6 -24.6%
Partial 14.6 37.4 91.9 -8.7%
Full CNN 14.9 38.3 90.9 -11.3%
Complete 17.2 44.2 93.4 -28.4%
1 Gender classification
2 Age group classification
3 Relative accuracy reduction

V. LIMITATIONS AND FUTURE WORK

While the proposed multi-task learning framework achieves

state-of-the-art performance with a significantly reduced pa-

rameter footprint compared to an ensemble of single-task

models, several limitations warrant discussion and present

avenues for future research.

Firstly, this study focuses exclusively on architectural effi-

ciency through weight-sharing and does not incorporate other

powerful model compression techniques, such as quantization

or pruning. Integrating these methods could potentially yield

further reductions in model size and inference latency, enhanc-

ing deployability on even more resource-constrained hardware.

Secondly, our investigation is constrained to a specific

class of encoder-decoder architectures, namely convolutional

neural network (CNN) encoders supplemented with GRU-

based decoders for temporal tasks. The generalizability of

our findings on task synergy and optimal sharing strategies

to other state-of-the-art architectures—such as transformers or

more recent convolutional variants like depth-wise separable

convolutions—remains an open question.

Thirdly, the training protocol employed a standardized set

of hyperparameters across all experimental conditions to en-

sure a controlled comparison. Consequently, the performance

reported herein may not represent the absolute peak achievable

for each model configuration. A more extensive, task-specific

hyperparameter optimization campaign could potentially lead

to further improvements in accuracy and stability.

Finally, the scalability of our framework to a much larger

number of tasks (e.g., 10-20) remains unexplored. The current

analysis, which includes up to four tasks, suggests that task

compatibility is crucial. It is plausible that adding a multitude

of tasks, particularly those that are complex or mutually

antagonistic, could lead to increased negative interference

and performance degradation, challenging the robustness of

the proposed sharing strategies. Future work will involve

stress-testing the architecture’s capacity and developing more

dynamic weight-sharing mechanisms to accommodate larger

and more diverse task sets.

VI. CONCLUSIONS

This paper presented a comprehensive study on low-

complexity multi-task learning for audio analysis, addressing
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two fundamental challenges: optimal weight-sharing strategies

and task compatibility assessment. Our key contributions are

threefold. First, we demonstrated that partial weight-sharing (7

convolutional layers) enables effective integration of four core

audio tasks—voice activity detection, speech command recog-

nition, and age/gender classification—while reducing model

size by 53% (57K parameters) compared to single-task en-

sembles. Second, our systematic analysis revealed distinct task

synergy patterns, showing that voice activity detection exhibits

strong compatibility with speaker biometrics, while speech

command recognition and age classification require more

careful integration. Third, we established that introducing

complex tasks like speaker diarization can cause substantial

performance degradation, highlighting the critical importance

of strategic task selection. These findings provide practical

guidelines for designing efficient multi-task audio systems

suitable for resource-constrained edge devices.
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