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Abstract—Audio analysis is a cornerstone of modern human-
computer interaction, powering applications in smart devices
such as phones, watches, and speakers. Key tasks enabling this
interaction include voice activity detection, speech command
recognition, and age and gender identification. While large-scale
models can seamlessly integrate these tasks without significant
performance degradation, their computational cost prohibits
deployment on resource-constrained devices. In contrast, compact
models suitable for embedded systems face a significant chal-
lenge: their limited parameter budget makes integrating multiple
tasks without destructive interference difficult, and the optimal
weight-sharing strategy is highly dependent on the specific task
combination. This paper presents an analysis of weight-sharing
architectures for multi-task learning on audio data. We sys-
tematically investigate the synergies and conflicts between tasks,
evaluating pairwise and higher-order combinations. Based on our
findings, we propose a novel low-complexity model that simulta-
neously executes four core tasks—voice activity detection, speech
command recognition, age and gender identification—with fewer
than 57,000 parameters. This represents a 53% reduction in
model size compared to a naive ensemble of single-task models.
Our work not only achieves state-of-the-art performance on each
individual task but also reveals that while most tasks exhibit
positive synergy, the introduction of a more complex task, such
as speaker diarization, can lead to performance degradation
in larger task sets, highlighting the importance of careful task
selection and architectural design for stable multi-task learning.

I. INTRODUCTION

The proliferation of intelligent devices—including smart-
phones, smart speakers, and wearables—has driven increasing
demand for efficient, on-device audio analysis systems. Such
systems are essential for enabling natural human—computer
interaction (HCI) through a suite of fundamental audio un-
derstanding tasks, including voice activity detection (VAD),
speech command recognition (SCR), and speaker biometrics
such as age and gender classification. Integrating these capa-
bilities allows devices to build richer contextual awareness of
users and their environments, supporting more personalized
and responsive interactions. For example, a device may adapt
its acoustic model based on inferred speaker characteristics or
use VAD to identify segments where more resource-intensive
server-side processing may be applied, thereby reducing over-
all latency.

State-of-the-art approaches to these tasks typically employ
deep learning architectures, often combining multi-layer con-
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volutional neural networks (CNNs) with recurrent layers or at-
tention mechanisms for temporal modeling [1]-[6]. A common
pipeline involves first converting raw audio waveforms into
log-mel spectrograms via the Short-Time Fourier Transform
(STFT). A CNN then processes this feature sequence into
encoded representations, which are subsequently transformed
into final predictions using either linear projections (for global
classification) or recurrent neural networks (for frame-wise
predictions).

Notable standalone models include the SILERO frame-
work [7] for VAD, which achieves ROC-AUC scores
94% on benchmarks such as AI-SHELL-4 [8] and ALI-
MEETINGS [9] utilizing 260,000 parameters. For speaker
biometrics, recent work [4] reports error rates of 3.6% for
age classification and 30% for gender classification on the
Mozilla Common Voice dataset [10] using the CNN model
with 30,000 trainable weights. In speech command recogni-
tion, top-performing models [11] reach accuracies of 95.3%
on the Google Speech Commands V2 dataset [12]. While
performant, deploying separate models for each task incurs
a linear increase in memory usage with the number of tasks,
rendering this approach impractical for resource-constrained
devices.

Multi-task learning (MTL) [13] presents a promising al-
ternative, though it is predominantly applied in large-scale
models (e.g., Qwen-Audio [14]) with billions of parameters,
unsuitable for on-device inference [15]-[23]. Naively applying
MTL to low-complexity models introduces two significant
challenges: (1) determining optimal weight-sharing strategies
across tasks to maintain performance, and (2) selecting com-
patible tasks that exhibit positive synergies without destructive
interference.

In this work, we present a study of architectural and
task-compositional factors in low-complexity multi-task audio
models. We systematically evaluate weight-sharing configura-
tions and task subsets to identify synergistic combinations and
avoid detrimental interactions. Furthermore, we explore the
impact of incorporating more complex tasks, such as speaker
diarization, and demonstrate that improper task inclusion can
significantly degrade performance. Based on our analysis, we
propose efficient multi-task architectures that simultaneously
address multiple audio tasks with minimal parameter overhead,
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achieving state-of-the-art accuracy while significantly reducing
model size compared to naive ensemble of single-task base-
lines.

Our key contributions are:

1) A systematic analysis of weight-sharing strategies in
low-complexity multi-task audio models, including an
evaluation of pairwise and higher-order task synergies.

2) A parameter-efficient multi-task architecture that simul-
taneously supports four core tasks—VAD, SCR, age,
and gender classification—with under 57K parameters,
achieving state-of-the-art accuracy while reducing model
size by 53%.

3) A key insights revealing that while many tasks benefit
from joint learning, introducing complex tasks (e.g.,
diarization) can impair performance in larger task sets,
highlighting the importance of careful task selection and
model design for on-device MTL.

This paper is organized as follows. In Section II, we
detail our proposed method, including the baseline single-task
architectures and the systematic multi-task learning framework
with three distinct weight-sharing strategies. In Section III we
describe the experimental setup, specifying the datasets, train-
ing procedures, evaluation metrics, and model configurations
used for our analysis. In Section IV, we present and analyze
the results, examining the impact of weight-sharing ratios,
quantifying pairwise and higher-order task synergies, and
evaluating the disruptive effect of integrating complex tasks.
Finally, in Section V, we discuss the limitations of our work
and suggest future research directions, and in Section VI, we
conclude by summarizing our key findings and the successful
development of a parameter-efficient unified audio model.

II. METHOD
A. Conventional single-task classification

This section outlines the conventional methodologies for the
core tasks under investigation: VAD, SCR, and age and gender
classification. Additionally, we incorporate the task of two-
speaker diarization, defined as the process of determining the
temporal segments during which each of two distinct speakers
is active in an audio signal. Formally, our prediction model is
defined by the operation Y = Dy, (Ey,, (X)). Here, F denotes
an encoder and D a decoder, with #g and 0p representing
their respective sets of trainable parameters. The input X =
(z1,...,2N) is a sequence of log-mel spectrogram feature
vectors, where each x; € RP and N is the total number of
time frames. The encoder produces a sequence of embeddings
Ep.(X)=Q = (q1,...,q9n), which the decoder then maps
to the final output Y = Dy, (Q). The total model complexity
is consequently defined as the number of trainable parameters,
given by |0g| + |0p].

These five tasks can be categorized into two distinct groups
based on their output structure: global classification and frame-
wise classification. The first group, comprising SCR and age
and gender classification, requires the model to produce a
single label probability for the entire audio waveform, denoted
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asY € RY, where C is the total number of predefined classes.
The second group consists of VAD and speaker diarization,
which require a sequence of outputs. For VAD, the output
is Y € RY, representing the probability of speech presence
for each time frame. For speaker diarization, the output is
Y € RY*2, indicating the probability of each of the two
speakers being active at every time frame.

In this work, we employ a conventional multi-layer convolu-
tional neural network as the encoder E, optionally augmented
with an attention mechanism at its final stage. For global clas-
sification tasks, the decoder D consists of a single linear layer
that projects the encoded embedding into the log-probabilities
of predefined classes. In contrast, for frame-wise classification
tasks, the decoder is implemented as a bidirectional Gated
Recurrent Unit (GRU), followed by a linear projection layer
to produce the final sequence of output predictions.

B. Conventional multi-task learning

Multi-task learning (MTL) is a well-established paradigm
in machine learning that enables a single model to address
multiple related tasks concurrently. This is typically achieved
through a shared encoder network, which extracts a common
latent representation from the input, coupled with a set of
task-specific decoders. Formally, an MTL model comprises
a shared encoder E¥ : X — () and a collection of ¢ distinct
decoders Dy, ..., D;, where ¢t denotes the number of tasks.
Each decoder D; transforms the shared representation () into
task-specific predictions Y;. A principal advantage of this ar-
chitecture is the significant improvement in computational and
memory efficiency resulting from the reuse of the encoder’s
output across all tasks during inference.

The parameter efficiency of MTL can be quantified by
comparison to a naive baseline employing ¢ independent
single-task models. This baseline requires ¢ dedicated encoders
Fq,...,E; and t decoders Dy, ..., Dy, resulting in a total
parameter count of 22:1 |E;| + 22:1 |D;|. In contrast, the
MTL framework utilizes a single encoder E and ¢ decoders,
requiring only |E|+Y"'_, | D;| parameters. Under the assump-
tion of architecturally similar encoders (|E;| ~ |FE| Vi), the
parameter savings approximate (¢ — 1)|E|. As the encoder
generally constitutes the majority of a model’s parameters,
this reduction is substantial. Furthermore, the architecture is
highly scalable; integrating an additional task introduces only
the parameters of a new task-specific decoder D, 1, indicating
that the marginal cost of expanding the task set is low once
the shared encoder is established.

However, applying MTL to low-complexity models intro-
duces significant constraints. The strictly limited parameter
budget can hinder the model’s capacity to achieve competitive
accuracy across all tasks simultaneously, a problem seldom
encountered in large-scale models due to their abundant
representational capacity. Consequently, the selection of a
compatible task set and a deliberate weight-sharing strategy
becomes critical. Careful architectural design is essential to
mitigate destructive interference and leverage potential syner-
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Fig. 1. Architecture of the multi-layer convolution neural network

TABLE 1. A COMPARISON OF STATE-OF-THE-ART
APPROACHES WITH OUR SINGLE-TASK MODELS

Task | Metric Dataset Baseline Ours
VAD | ROC-AUC | AI-SHELL-4 [8] 94% (7] | 93.3%
GC! | ER MCV [10] 3.6% 4] | 3.8%
AC? | ER MCV [10] 30% [4] | 32.8%
SCR Accuracy GSC v2 [12] 95.3% [11] | 94.5%

T Gender classification
2 Age group classification

gies between tasks to ensure robust performance across the
entire multi-task system.

C. The proposed method

Based on the preceding analysis, two primary research
questions emerge: (i) how are the tasks in the target set
correlated, and (ii) how should parameters be shared between
tasks exhibiting either strong or weak synergistic potential?
To address these questions systematically, we propose the
following experimental methodology.

First, we establish strong single-task baselines using a
widely-adopted architectural template. Each individual model
consist of an encoder comprising eight convolutional lay-
ers, each followed by batch normalization, ReLU activation
function, and a residual connection. Optionally, an attention
mechanism may be applied across the time axis atop the
convolutional stack (see Fig. 1). For tasks requiring a global
prediction (e.g., command recognition, age, or gender classifi-
cation), the decoder consists of a single linear projection layer.
For frame-wise prediction tasks (e.g., voice activity detection,
diarization), the decoder is implemented as a bidirectional
gated recurrent unit (GRU), followed by a linear layer to
produce probabilities at each time step as shown in Fig. 2. This
architecture first is trained and evaluated individually on each
task to reproduce near state-of-the-art performance, thereby
validating the baseline design (see Table I).

Subsequently, we conduct an exhaustive multi-task learning
(MTL) analysis over all possible subsets of tasks. For each
task combination, a multi-task model is constructed using a
shared encoder and task-specific decoders. To evaluate the
impact of weight-sharing strategy, each such model is trained
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Fig. 2.Architecture of the classification decoders

and evaluated under three distinct sharing configurations (see
Fig. 3):

1) Partial Sharing (7 Layers): The first seven convolutional
layers are shared; the eighth layer and the optional
attention mechanism are kept task-specific.

2) Full CNN Sharing (8 Layers): All eight convolutional
layers are shared; the optional attention mechanism
remains task-specific.

3) Complete Sharing (8 Layers + Attention): The entire
encoder, including all eight convolutional layers and the
attention mechanism, is shared across all tasks.

This structured ablation study enables a rigorous quantifi-
cation of how the proportion of shared parameters influences
final prediction accuracy across each individual task within
every possible combination, thereby directly addressing our
core research questions regarding task synergy and optimal
sharing strategy.

III. EXPERIMENTS

A. Dataset

For the VAD task, model training and validation were
conducted using the Mozilla Common Voice dataset [10],
where human speech is present in approximately 75% of the
annotated time segments. To ensure a rigorous comparison
with state-of-the-art methods, evaluation was performed on
the established benchmark datasets AI-SHELL-4 [8] and ALI-
MEETINGS [9]. These benchmarks feature a higher speech
density, with approximately 90% of segments containing
speech. A strong correlation was observed between model
performance on these two test sets. Therefore, for brevity and
to simplify the analysis, we report detailed results only on the
AI-SHELL-4 dataset in the subsequent sections.

The same Mozilla Common Voice [10] dataset was also
used for the biometric tasks of age and gender classification.
Samples with missing gender or age metadata were excluded
during preprocessing. The final curated dataset contained
approximately 500,000 samples of male speech and 200,000
samples of female speech.
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Fig. 3. Multi-task learning weights sharing configurations

TABLE II. A SUMMARY OF THE DATASETS STATISTICS

Dataset Number of samples | Duration in hours
AI-SHELL-4 [8] 3,065 12.7
ALI-MEETINGS [9] | 10,379 43

MCVT [10] test 16,263 27

MCYV [10] train 1,087,672 1718

GSC? v2 test [12] 11,005 3

GSC v2 train [12] 84,849 23

T Mozilla Common Voice
2 Google Speech Commands

For age classification, only samples with defined age groups
were retained, resulting in the following distribution: 300,000
samples from speakers in their twenties, 150,000 in their
thirties, 111,000 in their forties, 75,000 from teenagers, 70,000
in their fifties, 61,000 in their sixties, 6,000 in their seventies,
1,000 in their eighties, and 178 samples from speakers in their
nineties. Following the methodology of the baseline model [4],
these samples were grouped into three broader age categories:
under 30, 30 to 60, and over 60. The Mozilla Common Voice
dataset was also used for testing these biometric tasks.

Finally, for the SCR task, the Google Speech Commands
V2 [12] dataset was employed. This corpus contains 35 unique
command classes, with each command represented by 1,000
to 3,000 samples in the training set and 150 to 450 samples
in the test set.

A summary of the datasets statistics is provided in Table II.
All audio samples are resampled to a 16 kHz sampling rate and
subsequently transformed into log-mel spectrograms. These
spectrograms are generated using 64-channel filter banks,
computed over a 20 ms window with a 10 ms stride.

B. Training

A standardized training pipeline was employed for all
experiments. For global classification tasks, the cross-entropy
loss function was used, while binary cross-entropy was applied
to frame-wise classification tasks. Optimization was performed
using the AdamW optimizer with a weight decay of 0.01 and
a batch size of 64.

The learning rate was scheduled using a cosine annealing
strategy with an initial linear warmup phase. The warmup
period comprised the first 5% of the total training epochs,
during which the learning rate was linearly increased to a
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maximum value of 1073, For the remaining 95% of the
training, the learning rate was decayed following a cosine
annealing schedule. All models were trained for 100,000
epochs or until convergence was observed.

For MTL experiments, the overall loss was defined as a
linear combination of the individual task losses with equal
coefficients. Training batches were constructed by sampling
uniformly across all tasks within the considered set. Model
checkpoints were selected to minimize the worst-case relative
performance degradation across all tasks, thereby ensuring
balanced learning without significant compromise on any
single objective.

The experimental results showed low variance, with stan-
dard deviations across multiple runs remaining within 1% of
the reported metric values for all configurations. A single
training run required approximately 10 hours of computation
on an NVIDIA Tesla H100 GPU with 80GB of memory.

C. Evaluation metrics

Model performance was evaluated using standard task-
specific metrics. For VAD, we employed the Area Under the
Receiver Operating Characteristic Curve (ROC-AUC). This
metric evaluates the model’s ability to distinguish between
speech and non-speech segments across all classification
thresholds, providing a robust single-figure measure of detec-
tion quality that is independent of the chosen operating point.
For the biometric tasks of age and gender classification, per-
formance was quantified using the Error Rate (ER), calculated
as the proportion of incorrect predictions to total predictions.
A lower ER indicates higher accuracy in classifying speaker
demographics. SCR was assessed using classification accuracy,
defined as the percentage of correctly identified voice com-
mands within the test set. This provides a direct and intuitive
measure of the model’s practical utility for command-based
interaction. In addition to task performance, we reported the
overall model complexity in terms of the total number of
trainable parameters. This metric is critical for determining the
feasibility of deployment on resource-constrained devices and
for comparing the architectural efficiency of different multi-
task learning configurations.
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TABLE III. MULTI-TASK LEARNING PERFORMANCE FOR ALL PAIRWISE TASK COMBINATIONS. THE UPPER-RIGHT PART
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REPORTS ABSOLUTE PERFORMANCE METRICS FOR MODELS TRAINED ON TWO TASKS. THE LOWER-LEFT PART

QUANTIFIES THE RELATIVE PERFORMANCE REDUCTION COMPARED TO SINGLE-TASK BASELINES

Accuracy VAD GCT AC? SCR
VAD 933 03.1/4  93/41 93.6/42 | 91.9/34 91.7/33.6 91.6/34 | 92.9/94 92.4/941 92.7/933
GC! 03% -033% -0.4% 3.8 43/33.6  4.6/33.5  5.1/33.7 | 4.6/942  4.9/942  11.3/89.2
AC? 179%  -1.76%  -1.85% | -12%  -1% -1.4% 32.8 34/92.8  37.6/93.6  39.9/90.9
SCR -0.6% -1% -13% | -08% -12%  -1.8% 2% 7% -10.5% 94.5
Size VAD GCT AC? SCR
VAD 32K 4TK(-23%) 4TK(-23%) 4TK(-23%)
GC! 29K 34K(-41%) 34K(-41%)
AC? 29K 34K (-41%)
SCR 30K

T Gender classification
2 Age group classification

D. Configurations

We now provide a detailed description of our model ar-
chitecture. The encoder network comprises eight sequential
layers with 21 channels in each layer. Each layer consists of
a two-dimensional convolutional operation, followed by batch
normalization and a Rectified Linear Unit (ReLU) activation
function. Residual connections are incorporated between lay-
ers that maintain an equivalent number of channels to facilitate
gradient flow and stabilize the training process. An attention
mechanism is applied over the temporal axis atop the encoder
to enhance the integration of long-range contextual features.

The chosen architecture contains approximately 30,000
trainable parameters. This specific capacity was selected for
several reasons. First, it aligns with the size of high-performing
baseline models for biometric tasks [4]. Second, while state-
of-the-art dedicated models for voice activity detection can be
significantly larger (e.g., 260K parameters in [7]), our objec-
tive was to develop a compact multi-task architecture. Finally,
through ablation studies, we determined that this parameter
budget is sufficient for a single-task convolutional model to
achieve competitive, near-state-of-the-art performance on the
speech command recognition task, establishing it as a valid
baseline for a efficient model.

Decoder architectures are task-dependent. For global classi-
fication tasks (e.g., age, gender, and speech command recog-
nition), the decoder consists of a single linear projection
layer that maps the hidden representation to the number
of target classes. For frame-wise classification tasks (e.g.,
voice activity detection), the decoder is implemented as a
multi-layer bidirectional Gated Recurrent Unit (GRU), which
processes the temporal sequence of features to produce per-
frame predictions.

In the MTL setup, the encoder is shared across tasks and
uses the same hyperparameters as in the single-task models.
The decoders remain task-specific and are identical to those
used in the single-task experiments. For each subset of tasks,
we investigate three distinct weight-sharing configurations:

1) Partial Sharing: The first seven convolutional layers are
shared; the eighth layer and the attention mechanism are
task-specific.
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2) Full CNN Sharing: All eight convolutional layers are

shared; the attention mechanism remains task-specific.

3) Complete Sharing: The entire encoder, including all

convolutional layers and the attention mechanism, is
shared across tasks.

To further demonstrate the critical importance of task selec-
tion in MTL, we introduce an additional complex task—two-
speaker diarization—and analyze its impact on model per-
formance when integrated into the existing task sets. This
allows us to empirically evaluate how task complexity and
compatibility influence the stability and effectiveness of low-
resource multi-task models.

IV. RESULTS

This section addresses the core research questions of our
study: (1) how various tasks influence one another during
multi-task learning (MTL) under different weight-sharing
configurations, and (2) the importance of task selection, as
illustrated by incorporating the complex task of two-speaker
diarization.

A. Impact of weight-sharing ratio

A general trend observed across all task subsets (Table III
and Table IV) is that increasing the proportion of shared
parameters correlates with a slight degradation in overall
task performance. For instance, in the pair comprising age
classification and speech command recognition (SCR), sharing
only 7 convolutional layers results in a performance decrease
of approximately 2%. This reduction grows to 7% when
sharing all 8 convolutional layers, and reaches 10.5% when
the attention mechanism is also shared.

However, the extent of accuracy degradation is highly de-
pendent on the specific task set. For instance, the combination
of gender classification (GC) and voice activity detection
(VAD) exhibited strong resilience to parameter sharing, ex-
hibiting a performance reduction of only 0.4% even under
complete sharing of all eight convolutional layers and the
attention mechanism. In contrast, the model’s performance
on speech command recognition (SCR) and age classification
(AC) deteriorated significantly under an equivalent sharing
configuration, despite the use of task-specific decoders with
dedicated attention layers.
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This differential sensitivity was further pronounced in three-
task configurations. Sets containing both SCR and AC ex-
perienced substantial performance degradation under deeper
parameter sharing. Conversely, task sets containing only one
of these tasks exhibited greater robustness; the combination
of VAD, GC, and AC showed a quality reduction of only
3.6% under complete sharing, while the set comprising VAD,
GC, and SCR maintained near state-of-the-art performance (a
reduction of only 1.3%) even with full sharing of all eight
convolutional layers.

Notably, introducing VAD to the AC-SCR pair resulted in
a significant quality drop of 7.3% under full sharing including
attention. Similarly, adding GC to the same pair led to a 6.3%
reduction in performance, even when sharing only the con-
volutional layers. These results underscore the critical role of
task compatibility and the non-linear interactions that arise in
multi-task learning, particularly under constrained parameter
budgets.

B. Fairwise task synergy

The degree of synergy varies significantly across different
task pairs (Table III). The most synergistic pair is voice activity
detection (VAD) and gender classification, where the MTL
model achieves near state-of-the-art performance—exhibiting
a relative accuracy reduction of no more than 0.4%—even in
complete sharing mode (8 layers + attention). In contrast, the
least synergistic pair is SCR and age classification, where shar-
ing 8 convolutional layers leads to a performance decrease of
nearly 7%. Furthermore, VAD emerges as the most universally
compatible task in MTL setups, as its performance degrades
by less than 2% across all sharing configurations.

A distinct pattern of performance degradation is observed
for pairs of global classification tasks. Model accuracy re-
mains near state-of-the-art when sharing 7 or 8 convolutional
layers while maintaining task-specific attention mechanisms.
However, sharing the attention layer results in significant
quality reduction. For instance, for the pair comprising speech
command recognition (SCR) and gender classification (GC),
performance decreases by merely 1.2% under full CNN shar-
ing, but declines by up to 7.8% when the attention mechanism
is shared.

Conversely, the pair of gender classification (GC) and age
classification (AC) exhibits strong inherent synergy. This is ev-
idenced by the minimal performance reduction observed even
under complete parameter sharing, which includes a single
attention layer common to both tasks. This result suggests
that these biometric tasks are highly correlated and can be
processed simultaneously within a shared representation space
with remarkable efficiency, highlighting the importance of task
relatedness in multi-task learning performance.

This behavior, however, does not hold for combinations
involving voice activity detection (VAD)—a frame-wise clas-
sification task—alongside global tasks. We hypothesize that
this discrepancy arises from the fundamental differences in
output structure between frame-wise and global classification
problems. Specifically, the VAD decoder may rely less on
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TABLE 1IV. EXPERIMENTAL RESULTS FOR ALL
HIGH-ORDER TASKS SUBSETS

Sharing Size VAD GC!' AC?2 SCR | AR?

Partial 57K 92.9 48 342 925 | 21%
Full CNN | 45K 92.8 65 377 911 | -712%
Complete | 43.5K | 86.4 142 405 888 | -11.5%
Partial 52K 022 49 332 1.2%
Full CNN | 44K 92.6 54 337 -1.7%
Complete | 43.5K | 90.6 51 352 -3.6%
Partial 52K 942 43 945 | -0.6%
Full CNN | 44K 92.1 4.9 93.7 | -13%
Complete | 43.5K | 91.7 9.4 90.4 | -5.7%
Partial 52K 9235 346 939 | 2.6%
Full CNN | 44K 92.8 365 924 | -55%
Complete | 43.5K | 90.4 377 904 | -7.3%
Partial 39K 54 359 928 | -46%
Full CNN | 31K 7.1 37 92.5 | -6.3%
Complete | 29.8K 94 397 867 | -10.3%

T Gender classification
2 Age group classification
3 Relative accuracy reduction

attention-based feature refinement, instead leveraging its tem-
poral modeling capacity (e.g., via GRU layers) to achieve
high performance. Interestingly, the shared attention layer does
not introduce disruptive interference to VAD performance,
suggesting that the attention mechanism may remain function-
ally viable for both task types when appropriately isolated or
designed.

These observations highlight the nuanced interplay between
architectural sharing and task nature, emphasizing that the
optimal sharing strategy must account for both the semantic
and structural characteristics of the tasks involved.

C. Higher-order task combinations

We next examine MTL performance on larger task sets
(Table 1V). For the combination of all four primary tasks, a
model sharing 7 convolutional layers achieves performance
within 2.1% of the single-task baselines, while reducing the
total model size by 53% (utilizing only 57,000 parameters).
This result suggests a promising scalable paradigm: adding fu-
ture tasks may require only one additional convolutional layer
with attention and a small task-specific decoder, implying the
possibility of solving numerous tasks with drastically reduced
resource consumption. However, deeper weight-sharing (e.g.,
sharing all layers including attention) leads to more substantial
quality degradation, with performance reductions of up to
10%.

Analysis of three-task subsets (Table IV) indicates that
sharing the attention mechanism consistently degrades perfor-
mance, likely due to the need for task-specific feature aggre-
gation from the final encoder representation. This architectural
choice resulted in performance reductions ranging from 3.6%
to 30%. The most effective three-task configuration consists
of voice activity detection (VAD), gender classification, and
speech command recognition (SCR), which exhibited only a
1.3% performance reduction while achieving a 52% reduction
in model size. Interestingly, although age classification appears
conceptually similar to gender classification, it demonstrates
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TABLE V. PERFORMANCE OF MULTI-TASK MODELS
COMBINING SPEAKER DIARIZATION WITH OTHER TASKS.
RESULTS SHOW THE DIARIZATION ERROR RATE (DER) FOR
THE DIARIZATION TASK AND CORRESPONDING METRICS FOR
CO-TRAINED TASKS

Configuration | Sharing DER | STM* AR3
Diar+VAD Partial 14.7 79.1 -15%
Full CNN | 145 82.5 -11.5%
Complete 14.5 82.5 -11.5%
Diar+GC! Partial 13.5 6.1 -2.4%
Full CNN | 13.7 10.8 -7.3%
Complete 14.9 18 -15%
Diar+AC? Partial 15 39.5 -12.1%
Full CNN | 15.9 404 -19%
Complete 17.1 42 -37.5%
Diar+SCR Partial 14 92.7 -4.7%
Full CNN 16.8 91.5 -25.2%
Complete 17.1 92.7 -27.3%

T Gender classification

2 Age group classification

3 Relative accuracy reduction
4 Second task metric value

notably weaker synergistic properties with other tasks. The
most synergistic trio overall proved to be VAD, gender classi-
fication, and age classification, which maintained competitive
performance with only a 3.6% reduction in overall quality
despite employing complete parameter sharing.

D. Effect of adding a complex task

To further analyze the influence of task complexity on
multi-task learning performance, we introduced an additional
challenging task: two-speaker diarization. This task was im-
plemented using Permutation Invariant Training (PIT) [24] and
evaluated on the Libri2Mix dataset [25], with performance
measured by the Diarization Error Rate (DER). Our single-
task baseline model for diarization achieved a DER of 13.4%.

The incorporation of this complex task starkly illustrates
the boundaries of task compatibility within a low-parameter
MTL framework. Diarization exhibited negligible synergistic
properties with any other task in our set. When trained in a
two-task setup alongside any other objective, model perfor-
mance degraded substantially, with the DER increasing by up
to 37.5% (Table V). More critically, introducing diarization
to existing synergistic pairs of tasks caused a pronounced
negative impact on performance, adversely affecting not only
the diarization task itself but also the accuracy of all other
co-trained tasks (Table VI).

This result underscores a critical finding: the careful selec-
tion of compatible tasks is paramount for successful MTL in
resource-constrained environments. It also serves to validate
that our identified set of four primary tasks—VAD, SCR, and
age and gender classification—constitutes a uniquely syner-
gistic combination, as the introduction of a more complex,
incompatible task like diarization severely disrupts the stability
and performance of the entire system.
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TABLE VI. EXPERIMENTAL RESULTS FOR HIGH-ORDER
TASKS SUBSETS INCLUDING DIARIZATION PROBLEM

Sharing Diar VAD GCT [ AC? | SCR AR3
Partial 19.3 91.8 8.2 36.1 93.2 -44%
Full CNN | 22.7 87.7 12.2 474 88.7 -70%
Complete 23.2 80.3 11.3 42.1 85.5 -72%
Partial 16.1 8 94.2 -20%
Full CNN 14.9 5 92.6 -11.5%
Complete 16.7 12.7 92.6 | -24.6%
Partial 14.6 37.4 91.9 -8.7%
Full CNN 14.9 38.3 909 | -11.3%
Complete 17.2 442 | 934 | -284%

T Gender classification
2 Age group classification
3 Relative accuracy reduction

V. LIMITATIONS AND FUTURE WORK

While the proposed multi-task learning framework achieves
state-of-the-art performance with a significantly reduced pa-
rameter footprint compared to an ensemble of single-task
models, several limitations warrant discussion and present
avenues for future research.

Firstly, this study focuses exclusively on architectural effi-
ciency through weight-sharing and does not incorporate other
powerful model compression techniques, such as quantization
or pruning. Integrating these methods could potentially yield
further reductions in model size and inference latency, enhanc-
ing deployability on even more resource-constrained hardware.

Secondly, our investigation is constrained to a specific
class of encoder-decoder architectures, namely convolutional
neural network (CNN) encoders supplemented with GRU-
based decoders for temporal tasks. The generalizability of
our findings on task synergy and optimal sharing strategies
to other state-of-the-art architectures—such as transformers or
more recent convolutional variants like depth-wise separable
convolutions—remains an open question.

Thirdly, the training protocol employed a standardized set
of hyperparameters across all experimental conditions to en-
sure a controlled comparison. Consequently, the performance
reported herein may not represent the absolute peak achievable
for each model configuration. A more extensive, task-specific
hyperparameter optimization campaign could potentially lead
to further improvements in accuracy and stability.

Finally, the scalability of our framework to a much larger
number of tasks (e.g., 10-20) remains unexplored. The current
analysis, which includes up to four tasks, suggests that task
compatibility is crucial. It is plausible that adding a multitude
of tasks, particularly those that are complex or mutually
antagonistic, could lead to increased negative interference
and performance degradation, challenging the robustness of
the proposed sharing strategies. Future work will involve
stress-testing the architecture’s capacity and developing more
dynamic weight-sharing mechanisms to accommodate larger
and more diverse task sets.

VI. CONCLUSIONS

This paper presented a comprehensive study on low-
complexity multi-task learning for audio analysis, addressing
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two fundamental challenges: optimal weight-sharing strategies
and task compatibility assessment. Our key contributions are
threefold. First, we demonstrated that partial weight-sharing (7
convolutional layers) enables effective integration of four core
audio tasks—voice activity detection, speech command recog-
nition, and age/gender classification—while reducing model
size by 53% (57K parameters) compared to single-task en-
sembles. Second, our systematic analysis revealed distinct task
synergy patterns, showing that voice activity detection exhibits
strong compatibility with speaker biometrics, while speech
command recognition and age classification require more
careful integration. Third, we established that introducing
complex tasks like speaker diarization can cause substantial
performance degradation, highlighting the critical importance
of strategic task selection. These findings provide practical
guidelines for designing efficient multi-task audio systems
suitable for resource-constrained edge devices.
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