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Abstract—Feeding a burgeoning global population amid cli-
mate change and dwindling resources presents a profound chal-
lenge for agriculture. This paper examines ’smart agriculture”
(Agriculture 4.0) as a pivotal solution, integrating technologies
like IoT, Al and robotics to cultivate data-driven, efficient, and
sustainable farming. We emphasize the growing effectiveness of
multi-modal data fusion—combining diverse sensor inputs—for
improved pest detection, water management, and yield predic-
tion. A critical shift towards decentralized edge intelligence
is also explored, facilitating real-time, on-farm decisions and
overcoming connectivity hurdles. While acknowledging that
successful implementations are highly context-specific and that
synthetic data can address scarcity, we also confront persistent
obstacles: high adoption costs, the digital divide, unreliable rural
connectivity, and cybersecurity risks. Ultimately, realizing smart
agriculture’s full potential—a more resilient and productive
global food system—requires sustained investment in affordable
sensors, robust and explainable AI, and autonomous robotics to
translate data insights into actionable field-level strategies.

Index Terms—Smart Agriculture, Non-Invasive Agriculture,
Artificial Intelligence, Internet of Things, Sensors, Green En-
ergy, Machine Learning, Robotics, Precision Agriculture

I. INTRODUCTION

The worldwide agro-economy is at a crossroad and facing a
huge challenge to feed the world population expected to reach
nearly 10 billion by 2050 [1] [2]. However, this need must be
fulfilled in the face of strong headwinds, including the impact
of the climate change, the reductions in natural resources, and
an increased demand for environmental sustainability [3] [4].
In reaction, it has resulted in a technological revolution in
the agricultural field, leading to farming processes shaping
into “smart agriculture” or “Agriculture 4.0” [1]. That new
model requires the use new technologies such as IoT, AI, ML
and robotics to build data-driven, automated and sustainable
farming system [5] [6]. Using real-time data from various
sources that range from sensors in fields to aerial drones,
smart agriculture intends to optimize the use of resources,
in- crease crop yield, and reduce the environmental impact
of cultivating crops, thus paving the way for a precision and
sustainable agriculture revolution [1]. This review synthesizes
the results of a number of recent studies to give a broad
overview of these game-changing technologies and their
applications in all areas of agriculture.
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II. BACKGROUND: THE EMERGENCE OF
SMART-FARMING AND PRECISION-AGRICULTURE

Precision agriculture and smart farming are technological
advancements in agriculture which are required to cope
with the ever-increasing food needs of expanding global
population while dealing with uncertainties that prevail in
the form of climate, resource availability, and loss of agri-
cultural lands [1]. Of particular note, climate change is
causing significant impacts on water resource availability and
crop growth shortening the growing season, and effective
management becomes critical [2]. The general expectation
among industry analysts is that the pervasive adoption of
new technologies like cloud computing, Internet of Things
(IoT), robotics and Artificial Intelligence (AI) will revolu-
tionize agriculture, albeit while creating obstacles that help to
undermine existing farming practices [3] [6]. Smart farming
can optimize resources such as water and fertilizers [4] and
improve production while preserving the environment [1].
This method helps the agriculture evolved from the existing
farming practices to a more standard, precise, and efficient
practice, which is called “Agriculture 4.0 that uses digital
technology to smart up farming and maximize output [1]. A
key aspect of smart farming leverages technologies to collect
massive amounts of data for decision making [4]; contributing
to a better yield of crop, better management of resources, and
sustainability of the environment [5]. By modernizing classic
farming principles, this kind of technology makes farm work
resemble a smart and automated system [1].

III. KEY TECHNOLOGIES IN NON-INVASIVE
AGRICULTURAL TECHNIQUES

Modern agriculture is rapidly evolving, with non-invasive
techniques becoming central to sustainable and efficient farm-
ing practices. These approaches heavily rely on advanced
technologies to monitor, analyze, and manage crop health
and environmental conditions without disturbing the plants
or soil. Figure 1 demonstrate the main technologies used in
the field of smart farming system.
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A. The Role of the Internet of Things (IoT)

One of the fundamental technologies for smart agriculture
is the (IoT) which establishes a network of interconnected
smart sensors which interact over the internet to monitor,
control and visualize different farm activities in real time
[17 [2] [6] [7] [8]. This major platform of the Industry 4.0
revolution is impacting many aspects of everyday lives, and
is now on track to drive the agriculture industry forward
[5] [9]. The architecture of such systems usually consists
of a sensor input layer, a connectivity layer, and a data
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Fig. 1. General Architecture of a Smart Farming System

processing layer [10] [11]. (diverse sensors scattered over
fields which measures the important parameters such as soil
moisture, temperature, humidity, the pH of soil, concentration
of soil nutrients including N, P, K [12] [13] [14]. This
data is transmitted by the connectivity layer over wireless
communication protocols. Such technologies as Wi-Fi and
mobile (GSM/4G) are wide present, but for remote areas
with poor infrastructure, Low Power Wide-Area Network
(LPWAN) standards, such as of LoRaWAN, are more suitable
[15] [16] [17]. LoRaWAN allows long-range (up to 15
km), low-power, secure data transfer and is well suited to
connect battery-powered sensor nodes distributed in large
farms [15] [18]. In some more sophisticated systems, UAVs
are employed as mobile gateways and they fly over the rural
areas to collect data from ground nodes that do not have
terrestrial internet [19]. Other systems adopt routing algo-
rithms following the IEEE 802.15.4 standard for efficient data
routing from sensors to UAVs [19]. This data is collected and
forwarded to a centralized platform, typically a cloud server
by platforms such as ThingSpeak, where it is processed,
organized on dashboards for visualization, and analyzed for
triggering automatic actions and making decisions [1] [12].

B. The Role of Artificial Intelligence (AI) and Machine
Learning (ML)

Artificial I ntelligence ( Al), t he s cience a nd engineering
of making intelligent machines, is a key driver in the
shift towards smart agriculture [1] [20]. AI technologies
enable machines to simulate human intelligence, allowing
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for learning, problem-solving, and wise decision-making in
agricultural contexts [6] [20] [21]. In smart farming, Al is
used for a wide range of applications, including pest and
disease detection, yield prediction, weed management, and
agricultural robotics [1] [5] [6] [22]. Al-based algorithmic
models analyze the data collected by IoT sensors to pro-
vide actionable insights [2]. For example, Al can analyze
images of plant leaves to diagnose diseases [22] [23] or
use sound data from IoT devices to detect the presence of
pests like the Red Palm Weevil [24] [25]. Some advanced
systems utilize an Autonomous Cycle of Data Analysis Tasks
(ACODAT), which integrates multiple Al techniques. For
example, a cycle might use XGBoost for pest classification,
a fuzzy system for yield diagnosis, and genetic algorithms
for prescribing the best management strategies for a given
crop [4] [25]. Furthermore, Generative Al is being used to
create realistic, synthetic data to augment real-world datasets
[5] [26]. This is particularly useful for training more robust
and accurate predictive models for crop yield forecasting,
especially when real data is limited [5] [27]. The ultimate
goal of integrating Al into agriculture is to create more
autonomous, efficient, and s ustainable f arming s ystems that

can adapt to changing conditions and improve productivity
[21] [27]. Machine Learning (ML), a field within Al, provides
the algorithms that allow systems to learn from data and make
predictions or decisions without being explicitly programmed
[13] [27]. ML is invaluable for analyzing the complex and
high-dimensional data generated in modern agriculture [5]
[28]. Various ML models are used for specific t asks. For

predicting crop suitability, models like Decision Trees (DT),
Random Forests (RF), Support Vector Machines (SVM), and
K-Nearest Neighbors (KNN) are used to analyze climate,
environmental, and soil factors [13] [28]. For more complex
tasks like soil nutrient prediction from spectral data, models
such as Partial Least Squares Regression (PLSR) and Support
Vector Machine Regression (SVMR) have proven effective,
yielding high accuracy in generating soil suitability maps
[24] [29]. Deep learning, a more advanced form of ML
using complex neural networks, is particularly effective at
handling large datasets and identifying intricate patterns [5]
[29]. For instance, Convolutional Neural Networks (CNNs)
are widely used for image-based tasks such as identifying
pests on tomato leaves [30] [31] or detecting diseases in
palm trees [24] [32]. Advanced architectures like Vision
Transformers are also being used to classify rice leaf diseases
from images taken in uncontrolled field c onditions ( “in the

wild”) [33] [34]. Another innovative application is the use
of ML models as “virtual sensors,” which can predict sensor
values in locations where no physical hardware is deployed,
offering a cost-effective and scalable alternative to dense sen-
sor networks [34] [35]. The Light Gradient Boosting Machine
(LGBM) model, for example, has proven highly accurate for
this purpose [35] [34]. By processing historical and real-time
data, ML algorithms provide accurate predictions that support
data-driven decision-making for better crop management and
resource allocation [13] [27].
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C. The Role of Sensor Technologies

Sensor technologies form the backbone of smart agricul-
ture systems, enabling non-invasive monitoring by providing
critical data on environmental conditions, plant health, and
soil properties. Fig. 2 shows how sensors are used in
obtaining different information related to agriculture.

These sensors offer farmers a real-time flow of infor-
mation, allowing them to make more informed and timely
decisions. Sensors used in agriculture cover a wide range,
primarily including:

o Soil Sensors: Measure soil moisture, temperature, pH
levels, and nutrient (N, P, K) concentrations. This data
is used to optimize irrigation and fertilization programs,
thereby preventing resource waste and increasing effi-
ciency [12] [13] [34]. For example, precision irrigation
systems adjust water distribution based on data from
soil moisture sensors, significantly improving water use
efficiency [34].

Plant Sensors: Monitor plant health, growth, and stress
levels. Spectral sensors analyze light reflected from plant
leaves to provide information on chlorophyll content,
disease presence, and nutrient deficiencies [36] [37].

Sensor Application
SOIL 3| Soil Moisture
Irrigation
Spectral
—
PLANT Plant Health
)
WEATHER — 5| Temperature
Frost Protection
POSITIONING ———— | |, GPS
recision Farming
Spectral
—
Lalislie Plant Health
Fig. 2. Various Sensor Types used to implement smart non-invasive
agriculture

Thermal cameras can measure plant temperature to
detect water stress or disease symptoms [37]. Acoustic
sensors can identify the presence of pests (e.g., Red
Palm Weevil) through sound waves [24] [25].
Weather Sensors: Collect atmospheric data such as
air temperature, humidity, wind speed and direction,
precipitation, and solar radiation. This information is
vital for planning agricultural activities like planting,
harvesting, and spraying [2] [37].

Positioning Sensors (GPS/GNSS): Provide precise po-
sitioning in agricultural fields. This allows for accurate
guidance of tractors and other agricultural machinery,
precise planting and fertilization, and the creation of
yield maps [5] [38].
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o Imaging Sensors (Cameras and Multispec-
tral/Hyperspectral Sensors): Mounted on UAVs
and satellites, these sensors capture high-resolution
images of large areas. These images are used for
detailed analyses of plant density, growth rate, disease
spread, and weed detection [36] [30] [39] [40].
Multispectral images, in particular, can reveal plant
health issues invisible to the human eye [41].

The integration and analysis of sensor data form the foun-
dation of smart agriculture. This data, combined with Al and
ML algorithms, provides customized recommendations to
farmers and enables autonomous systems (robots, UAVs) to
perform precise interventions in the field. Non-invasive sen-
sors offer a more sustainable and efficient approach compared
to traditional methods by allowing continuous monitoring
without harming plants or soil.

D. The Role of Green Energy Solutions

Green energy solutions are important to contribute to
the sustainability goals of smart agriculture systems and
to reduce their environmental impact. Figure 3 shows how
green energy integrates into agriculture. It is not unusual for
greenhouse gas emissions to occur as a result of fossil fuel
use on traditional farm enterprises. The reliance on green
energy helps to alleviate this dependency and is a more
environmental-friendly and efficient form of agricultural pro-
duction.

There are major methodsof applying green energy to non-
invasive agricultural methods:

o Solar Power: take advantage of the sun by using solar
panel to charge the inbuilt battery during the day and

INTEGRATING GREEN ENERGY INTO
SMART AGRICULTURE
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Fig. 3. The integration of the green energy to the agriculture

operate at night for sensors, iot devices, irrigation pumps
and any other electrical equipment, both in the case of
Solar energy to provide clean and Renewable energy in
Agriculture. In particular for off-grid or remote rural
areas, is solar power to drive autonomous farming.
UAV charging stations or sensor nodes solar-powered
guarantee a constant operation and data collection [21]
[42] [43].
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e Wind — Small wind turbines can supplement an on-farm
energy system and may be appropriate for agricultural
operations in high-wind areas. These turbines are capa-
ble of providing the required energy to farm buildings,
warehouses or irrigation systems [44].

« Biomass Energy: Agricultural residue (plant residue,
animal manure) can be utilised by biomass energy. The
biogas plants can convert methane gas out of this waste
into electric power and heat. This would allow for better
waste disposal while enhancing the energy autonomy of
the farms [45].

o Geothermal Energy: Geothermal energy may be used
for purposes such as the heating of greenhouses, or
water heating. It is an ideal way to save energy and
reduce carbon release, especially based on controlled
environment agriculture [45].

Adopting green energy innovation in smart agriculture
systems also serves to protect the environment and scale up
farmers’ profits, as their energy costs are nipped in the bud.
This is essential for long-term sustainability of agriculture
and makes the agricultural sector more robust and self-reliant
[45].

IV. ANALYSIS OF PROVIDED PAPERS AND THEIR
USEFULNESS IN AGRICULTURE

The papers, which were provided in this paper, present
a broad range of applications in smart agriculture, using
technologies including Al, IoT, robotics, and so on, to solve
different problems. They can also be grouped according to
their main use in agriculture.

A. Crop Observation, Diseases Recognition and Pest Fore-
casting

This is the majority class for the provided papers, depicting
the great significance of such challenges to observe the health
of crops and predict yields with high levels of accuracies
for them to be realized for food production and to em-
ploy sustainable practices. EdgePlantNet, a light-weight two-

branched Convolutional Neural Network (CNN) is
presented which is capable of real-time plant disease
detection on resource-limited edge devices such as a
Raspberry Pi [23][45]. Its novelty is based on an
advanced spatial attention mechanism, which leverages the
processed original leaf im-ages and segmented leaf images
to achieve high accuracy and require for fewer number of
data samples.

Furthermore, some studies proposes an I[oT and deep
learning based sustainable system for tomato pest manage-
ment. This system uses a camera and moisture sensor to
detect humidity and uses ten different learning models for
observation of the conditions where dense net 201 delivers
the highest accuracy of 94% in classifying seven pests [46]
[47]. The work on Red Palm Weevil (RPW) inspection
proposes a novel solution that aggregates both audio and
visual data (UAV based images) collected by IoT devices for
identifying and mapping the presence of RPW infestation
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in palm trees [24] [47]. It aims at classifying the health of
the tree from weevil sound, while detecting trees and
reaching high accuracy for 26 infected plants, using deep
learning models (InceptionV3 and YOLOVS) that classify
the health of the tree based on sound weevil and detect the
trees from images. The study which developed predictive
model on crop growth rate of Amaranthus Viridis in a
hydroponic setup compares a total of twelve machine
learning models and finds XGBoost to be the best among
the compared models to automate the crop prediction
process [35] [48]. The study on the AloT oriented soil
nutrient analysis system suggests farmers using an Android
motioned app with crop suggestions from soil real-time
parameters (N, P, K, pH) along with the environmental
parameters [13]. It compares five machine learning
algorithms and it is observed that Decision Tree with
AdaBoost provides better (98% accuracy) crop
recommendation results. A deep learning approach to crop
monitoring in greenhouses is presented in [49] [50] where
IoT sensor data and different deep learning models are
applied for long-term monitoring as well as for autonomous
regulation of the greenhouse, so that resource usage can be
optimized and productivity increased. The study regarding
precision of the rice grain moisture content (GMC) that
makes use of a UAV with multi-spectral sensor for the
development of a nondestructive method for estimation of
GMC was conducted by [36] [50]. With the combination of
FC, the significant improvement of FVS systems and the
machine-learning models (RF, SVM, MLP), the system can
achieve high accuracy for prediction compared to pre-vious
works, which helps the farmer to efficiently dry the
agriculture output as well as to increase the crop quality.
Another paper deals with personalized crop-specific feature
formulation by means of genetic programming (GP) for
early and in season crop mapping, which is a hard problem
brought about by limited image access [30]. The GP
approach also designs features automatically which amplify
slight spectral differences between crops that outweigh
traditional spectral features and those vegetation indices
particularly in early-season mapping. The ICM study
proposes an Autonomous Cycle of Data Analysis Tasks
(ACODAT) with integration of several Al methods [4]
[51]. It employs XGBoost to classify insects, fuzzy decision
to predict and diagnose cotton yield, and genetic algorithm
to prescribe the best decision choices and achieving high
accuracy in its various tasks.

A vision transformer (VT)-based method is introduced for
“in the wild” (i.e., complex, uncontrolled field) image-
based classification of rice leaf diseases [33] [51]. This
approach is robust against class imbalance and outperforms
some other deep learning frameworks . Also, an Al-based
Generative sys-tem involving deep learning (ANN, GAN,
YOLO) combined with GPS and GIS technologies for
smart precision farming, which allows to monitor the crops
and predict the yields with a good level of accuracy [5] [52].
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In the context of a study about plant health monitoring, a
smart irrigation system is proposed based on a bubble
identification method for assessing vascular health of plants
by identifying embolisms as early warnings for health
problems [53].

B. Automation, Robotics, and Advanced Decision System

These papers focus on the integration of robotics and
automated systems to improve the efficiency, sustainability,
and decision-making processes in farming operations.

The work on Advanced Robotic Decision System presents
a Pliant Decision System (PDS) for Farming Robots (FRs)
[21] [54]. It adopts a two-layer-deep RNN model to lead
to syncrhonized multi-opeartional time-sensitive agricultural
activities, and verifies the sustainability forumlation and en-
hances task complete-proness and syncrhonization in robotic
tasks.

o A LoRa-based system with periodic UAV transmissions:
A different communication scheme consistent with the
literature results is presented in a work with scheduled
UAVs communication for rural areas without internet
coverage [55]. A fixed-wing UAV equipped with an on-
board LoRa gateway traverses a predetermined route for
gathering data from periodic transmissions of ground-
based IoT nodes, after which the collected data are then
extracted in an energy-efficient manner.

o Botta et al’s review paper dealing with smart appli-
cations in agriculture, describe the use of automated
vehicles, drones and robotic machinery for activities
such as sowing, spraying or harvesting, and highlights
its application for achieving precision agriculture [56].

e« An article presenting a robot system for automated
picking of mushrooms that employs computer vision and
a 6-degrees of freedom robotic arm to identify and pick
ripe mushrooms, thereby, achieving higher efficiency
and saving human labour power [57]

e An autonomous navigation for robotic agriculture re-
search employing advanced sensor fusion and path plan-
ning algorithms, aiming at enabling robots to work in a
complex farm environments independently, with higher
precision and less human participation [58]

o A study of the use of drones for precision spraying of
grapevines is an example of UAVs to more efficiently
use pesticides and fertilisers, leading to less chemicals
being applied and contributing to reduced pesticide use
and chemicals on the environment [59] [60].

o The work on intelligent decision support system for
irrigation management combines real-time sensor level
information with meteorological predictions and crop
models to obtain the optimal irrigation scheduling, op-
timizing water usage efficiency and crop yield [61].

o Studies of a robot system for high-throughput pheno-
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typing have focused on automatic plant phenotyping

using plant imaging and machine learning for pheno-
typic analysis to support breeding and crop improvement
programs [62].

Despite the great achievements already made in the field
of smart agriculture technology, there are various challenges
that are still preventing this technology from being widely
implemented and reaching its full potential. Such challenges
and future research directions are:

o High Cost of Implementation: The cost of adopting
smart agriculture systems is high, particularly for small-
holder farmers, in terms of its initial setup cost. Equip-
ment such as sensors, IOT devices, software based on
Al and robotics demand considerable investments [63].
Further research should be directed at finding more
economic and large-scale alternatives. Both the costs of
open-source hardware and software can be significantly
lower.

o Digital Divide and Poor Technical Knowledge: Farmers
in Third World countries and rural areas may not have
much access to technology and technical knowledge.
This all slows the rollout of smart agriculture technol-
ogy. Training, user friendly applications and support
in local languages are necessary to fill this gap. Fur-
thermore, there is a need to widely promote successful
pilot projects to build farmers’ confidence in adopting
technology [64].

o Inconsistent Rural Connectivity: Both IoT devices and
cloud-based Al require good internet connection to
reliably and quickly function. Yet this is not available
in much of rural. 5G and satellite Internet services (e.g.,
Starlink) have the potential of solving this problem.
Another approach to decrease dependence from connec-
tivity can be approximated by edge computing solutions
which allow data processing at home [64].

o Data Privacy and Cybersecurity: Smart agriculture sys-
tems copiously gather confidential and sensitive infor-
mation (crop data, soil analyses, farm operations). We
certainly need to secure this data against unauthorized
access and abuse. It is essential to build robust encryp-
tion, safe data storage and ethical use-of-data practices.
Data integrity and transparency as a potential solution
to ensure data integrity and transparency, blockchain
technology may be adopted [5].

o Data Integration and Standardization: Absence of data
integration and interoperability between sensors and
platforms provided by different vendors complicates
smart farming systems. Interoperable data formats and
open APIs will enable the various systems to commu-
nicate freely with one another and lead to the creation
of better integrated, more efficient systems [65].
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e Growth of Autonomous Robotics and Automation:
Robotics and automation for agriculture, if performed by
robots, could help to reduce human labor associated with
planting, harvesting, weeding and spraying. Yet, these
robots still require additional research and development
to enable them to function in completely autonomous
way in miniaturing and dynamic agricultural settings.
In particular, it is an issue to realize the robots which
can walk in irregular terrains and produce the motion in
an exact work position [1].

o Green Energy Integration: Fulfilling the energy demand
of smart agriculture only with renewables is a must for
achieving environmental sustainability though achieving
this objective remains a challenge. In addition, hybrid
energy systems (such as solar and wind), energy storage,
and energy-efficiency scheduling are promising research
focused for the future in this area [6].

Addressing these challenges is critical for smart agriculture
to achieve its full potential in securing global food supply
and promoting environmental sustainability. Interdisciplinary
cooperation, theory and practice cooperation, and innovative
research strategies will be necessary in order to reach these
goals. Non-invasive cultivation methods are also expected to
become well-known in the integrated system of future food
production and are hoped to become bright prospects in the
sustainable agricultural future.

V. CONCLUSION

This review article discusses the evolution of Artificial
Intelligence (AI), Internet of Things (IoT), sensors system,
and green energy concepts in the perspective of non-invasive
agriculture practices in breadth. This paradigm, commonly
termed smart agriculture of Agriculture 4.0, is driven by the
pressures of worldwide challenges and demands like food
security, resource efficiency, and environmental sustainability
[1] [6] [63]. Real-time collection of data using IoT sensors,
AI/ML data analysis and robotic automation are at the base
of next-generation farming. Although some previous studies
compared the performance of single-modal with multi-mode
data fusion techniques and reported more accurate and robust
results in disease detection, water stress assessment and yield
prediction [4] [13] [21] [36]. A move in architecture from
centralized cloud computing to edge computing has been
recognized to be necessary to speed up on-farm decision
making and to cope with connectivity constraints.

From the literature review conducted, smart agriculture
instruments have been verified u seful i n t he fi eld of crop
system monitoring, disease and pest detection, automation,
and advanced decision support systems. Nevertheless, there
are still some obstacles such as high cost of deployment,
the digital divide, unstable rural connections, and threat of
cyber security [5] [63] [64]. Concentrated research is required
in affordable sensors, securer and explainable Al models
and autonomous robots to address these challenges. The

417

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

application of green energy solutions has the potential to
alleviate environmental impacts of agricultural activities as
well as promoting energy independence [1] [2] [3] [4] [6]
[65].

In summary, smart agriculture powered by digital tools
holds strong promise in boosting the global food system
that is more reliable and productive. To unlock the promise
of these technologies also takes innovation, cross-cutting
cooperation and the creation of products that respond to
farmer needs. Non-contact farming methods will be the key
to the future food production and will bring a great hope for
our agriculture future.
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