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Abstract—Feeding a burgeoning global population amid cli-
mate change and dwindling resources presents a profound chal-
lenge for agriculture. This paper examines ”smart agriculture”
(Agriculture 4.0) as a pivotal solution, integrating technologies
like IoT, AI, and robotics to cultivate data-driven, efficient, and
sustainable farming. We emphasize the growing effectiveness of
multi-modal data fusion—combining diverse sensor inputs—for
improved pest detection, water management, and yield predic-
tion. A critical shift towards decentralized edge intelligence
is also explored, facilitating real-time, on-farm decisions and
overcoming connectivity hurdles. While acknowledging that
successful implementations are highly context-specific and that
synthetic data can address scarcity, we also confront persistent
obstacles: high adoption costs, the digital divide, unreliable rural
connectivity, and cybersecurity risks. Ultimately, realizing smart
agriculture’s full potential—a more resilient and productive
global food system—requires sustained investment in affordable
sensors, robust and explainable AI, and autonomous robotics to
translate data insights into actionable field-level strategies.

Index Terms—Smart Agriculture, Non-Invasive Agriculture,
Artificial Intelligence, Internet of Things, Sensors, Green En-
ergy, Machine Learning, Robotics, Precision Agriculture

I. INTRODUCTION

The worldwide agro-economy is at a crossroad and facing a

huge challenge to feed the world population expected to reach

nearly 10 billion by 2050 [1] [2]. However, this need must be

fulfilled in the face of strong headwinds, including the impact

of the climate change, the reductions in natural resources, and

an increased demand for environmental sustainability [3] [4].

In reaction, it has resulted in a technological revolution in

the agricultural field, leading to farming processes shaping

into “smart agriculture” or “Agriculture 4.0” [1]. That new

model requires the use new technologies such as IoT, AI, ML

and robotics to build data-driven, automated and sustainable

farming system [5] [6]. Using real-time data from various

sources that range from sensors in fields to aerial drones,

smart agriculture intends to optimize the use of resources,

in- crease crop yield, and reduce the environmental impact

of cultivating crops, thus paving the way for a precision and

sustainable agriculture revolution [1]. This review synthesizes

the results of a number of recent studies to give a broad

overview of these game-changing technologies and their

applications in all areas of agriculture.

II. BACKGROUND: THE EMERGENCE OF

SMART-FARMING AND PRECISION-AGRICULTURE

Precision agriculture and smart farming are technological

advancements in agriculture which are required to cope

with the ever-increasing food needs of expanding global

population while dealing with uncertainties that prevail in

the form of climate, resource availability, and loss of agri-

cultural lands [1]. Of particular note, climate change is

causing significant impacts on water resource availability and

crop growth shortening the growing season, and effective

management becomes critical [2]. The general expectation

among industry analysts is that the pervasive adoption of

new technologies like cloud computing, Internet of Things

(IoT), robotics and Artificial Intelligence (AI) will revolu-

tionize agriculture, albeit while creating obstacles that help to

undermine existing farming practices [3] [6]. Smart farming

can optimize resources such as water and fertilizers [4] and

improve production while preserving the environment [1].

This method helps the agriculture evolved from the existing

farming practices to a more standard, precise, and efficient

practice, which is called “Agriculture 4.0” that uses digital

technology to smart up farming and maximize output [1]. A

key aspect of smart farming leverages technologies to collect

massive amounts of data for decision making [4]; contributing

to a better yield of crop, better management of resources, and

sustainability of the environment [5]. By modernizing classic

farming principles, this kind of technology makes farm work

resemble a smart and automated system [1].

III. KEY TECHNOLOGIES IN NON-INVASIVE

AGRICULTURAL TECHNIQUES

Modern agriculture is rapidly evolving, with non-invasive

techniques becoming central to sustainable and efficient farm-

ing practices. These approaches heavily rely on advanced

technologies to monitor, analyze, and manage crop health

and environmental conditions without disturbing the plants

or soil. Figure 1 demonstrate the main technologies used in

the field of smart farming system.
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Fig. 1. General Architecture of a Smart Farming System

processing layer [10] [11]. (diverse sensors scattered over

fields which measures the important parameters such as soil

moisture, temperature, humidity, the pH of soil, concentration

of soil nutrients including N, P, K [12] [13] [14]. This

data is transmitted by the connectivity layer over wireless

communication protocols. Such technologies as Wi-Fi and

mobile (GSM/4G) are wide present, but for remote areas

with poor infrastructure, Low Power Wide-Area Network

(LPWAN) standards, such as of LoRaWAN, are more suitable

[15] [16] [17]. LoRaWAN allows long-range (up to 15

km), low-power, secure data transfer and is well suited to

connect battery-powered sensor nodes distributed in large

farms [15] [18]. In some more sophisticated systems, UAVs

are employed as mobile gateways and they fly over the rural

areas to collect data from ground nodes that do not have

terrestrial internet [19]. Other systems adopt routing algo-

rithms following the IEEE 802.15.4 standard for efficient data

routing from sensors to UAVs [19]. This data is collected and

forwarded to a centralized platform, typically a cloud server

by platforms such as ThingSpeak, where it is processed,

organized on dashboards for visualization, and analyzed for

triggering automatic actions and making decisions [1] [12].

B. The Role of Artificial Intelligence (AI) and Machine
Learning (ML)

for learning, problem-solving, and wise decision-making in

agricultural contexts [6] [20] [21]. In smart farming, AI is

used for a wide range of applications, including pest and

disease detection, yield prediction, weed management, and

agricultural robotics [1] [5] [6] [22]. AI-based algorithmic

models analyze the data collected by IoT sensors to pro-

vide actionable insights [2]. For example, AI can analyze

images of plant leaves to diagnose diseases [22] [23] or

use sound data from IoT devices to detect the presence of

pests like the Red Palm Weevil [24] [25]. Some advanced

systems utilize an Autonomous Cycle of Data Analysis Tasks

(ACODAT), which integrates multiple AI techniques. For

example, a cycle might use XGBoost for pest classification,

a fuzzy system for yield diagnosis, and genetic algorithms

for prescribing the best management strategies for a given

crop [4] [25]. Furthermore, Generative AI is being used to

create realistic, synthetic data to augment real-world datasets
[5] [26]. This is particularly useful for training more robust

and accurate predictive models for crop yield forecasting,

especially when real data is limited [5] [27]. The ultimate

goal of integrating AI into agriculture is to create more

autonomous, efficient, a nd s ustainable f arming s ystems that

can adapt to changing conditions and improve productivity

[21] [27]. Machine Learning (ML), a field within AI, provides

the algorithms that allow systems to learn from data and make

predictions or decisions without being explicitly programmed

[13] [27]. ML is invaluable for analyzing the complex and

high-dimensional data generated in modern agriculture [5]

[28]. Various ML models are used for specific t asks. For

predicting crop suitability, models like Decision Trees (DT),

Random Forests (RF), Support Vector Machines (SVM), and

K-Nearest Neighbors (KNN) are used to analyze climate,

environmental, and soil factors [13] [28]. For more complex

tasks like soil nutrient prediction from spectral data, models

such as Partial Least Squares Regression (PLSR) and Support

Vector Machine Regression (SVMR) have proven effective,

yielding high accuracy in generating soil suitability maps

[24] [29]. Deep learning, a more advanced form of ML

using complex neural networks, is particularly effective at

handling large datasets and identifying intricate patterns [5]

[29]. For instance, Convolutional Neural Networks (CNNs)

are widely used for image-based tasks such as identifying

pests on tomato leaves [30] [31] or detecting diseases in

palm trees [24] [32]. Advanced architectures like Vision

Transformers are also being used to classify rice leaf diseases

from images taken in uncontrolled field c onditions ( “in the

wild”) [33] [34]. Another innovative application is the use

of ML models as “virtual sensors,” which can predict sensor

values in locations where no physical hardware is deployed,

offering a cost-effective and scalable alternative to dense sen-

sor networks [34] [35]. The Light Gradient Boosting Machine

(LGBM) model, for example, has proven highly accurate for

this purpose [35] [34]. By processing historical and real-time

data, ML algorithms provide accurate predictions that support

data-driven decision-making for better crop management and

resource allocation [13] [27].

One of the fundamental technologies for smart agriculture

is the (IoT) which establishes a network of interconnected

smart sensors which interact over the internet to monitor,

control and visualize different farm activities in real time

[1] [2] [6] [7] [8]. This major platform of the Industry 4.0

revolution is impacting many aspects of everyday lives, and

is now on track to drive the agriculture industry forward

[5] [9]. The architecture of such systems usually consists

of a sensor input layer, a connectivity layer, and a data

A. The Role of the Internet of Things (IoT)

Artificial I ntelligence ( AI), t he s cience a nd engineering

of making intelligent machines, is a key driver in the

shift towards smart agriculture [1] [20]. AI technologies
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Fig. 2. Various Sensor Types used to implement smart non-invasive
agriculture

Thermal cameras can measure plant temperature to

detect water stress or disease symptoms [37]. Acoustic

sensors can identify the presence of pests (e.g., Red

Palm Weevil) through sound waves [24] [25].

• Weather Sensors: Collect atmospheric data such as

air temperature, humidity, wind speed and direction,

precipitation, and solar radiation. This information is

vital for planning agricultural activities like planting,

harvesting, and spraying [2] [37].

• Positioning Sensors (GPS/GNSS): Provide precise po-

sitioning in agricultural fields. This allows for accurate

guidance of tractors and other agricultural machinery,

precise planting and fertilization, and the creation of

yield maps [5] [38].

• Imaging Sensors (Cameras and Multispec-
tral/Hyperspectral Sensors): Mounted on UAVs

and satellites, these sensors capture high-resolution

images of large areas. These images are used for

detailed analyses of plant density, growth rate, disease

spread, and weed detection [36] [30] [39] [40].

Multispectral images, in particular, can reveal plant

health issues invisible to the human eye [41].

The integration and analysis of sensor data form the foun-

dation of smart agriculture. This data, combined with AI and

ML algorithms, provides customized recommendations to

farmers and enables autonomous systems (robots, UAVs) to

perform precise interventions in the field. Non-invasive sen-

sors offer a more sustainable and efficient approach compared

to traditional methods by allowing continuous monitoring

without harming plants or soil.

D. The Role of Green Energy Solutions

Green energy solutions are important to contribute to

the sustainability goals of smart agriculture systems and

to reduce their environmental impact. Figure 3 shows how

green energy integrates into agriculture. It is not unusual for

greenhouse gas emissions to occur as a result of fossil fuel

use on traditional farm enterprises. The reliance on green

energy helps to alleviate this dependency and is a more

environmental-friendly and efficient form of agricultural pro-

duction.

There are major methodsof applying green energy to non-

invasive agricultural methods:

• Solar Power: take advantage of the sun by using solar

panel to charge the inbuilt battery during the day and

Fig. 3. The integration of the green energy to the agriculture

operate at night for sensors, iot devices, irrigation pumps

and any other electrical equipment, both in the case of

Solar energy to provide clean and Renewable energy in

Agriculture. In particular for off-grid or remote rural

areas, is solar power to drive autonomous farming.

UAV charging stations or sensor nodes solar-powered

guarantee a constant operation and data collection [21]

[42] [43].

C. The Role of Sensor Technologies

Sensor technologies form the backbone of smart agricul-

ture systems, enabling non-invasive monitoring by providing

critical data on environmental conditions, plant health, and

soil properties. Fig 2 shows how sensors are used in

obtaining different information related to agriculture.

These sensors offer farmers a real-time flow of infor-

mation, allowing them to make more informed and timely

decisions. Sensors used in agriculture cover a wide range,

primarily including:

• Soil Sensors: Measure soil moisture, temperature, pH

levels, and nutrient (N, P, K) concentrations. This data

is used to optimize irrigation and fertilization programs,

thereby preventing resource waste and increasing effi-

ciency [12] [13] [34]. For example, precision irrigation

systems adjust water distribution based on data from

soil moisture sensors, significantly improving water use

efficiency [34].

• Plant Sensors: Monitor plant health, growth, and stress

levels. Spectral sensors analyze light reflected from plant

leaves to provide information on chlorophyll content,

disease presence, and nutrient deficiencies [36] [37].
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• Wind – Small wind turbines can supplement an on-farm

energy system and may be appropriate for agricultural

operations in high-wind areas. These turbines are capa-

ble of providing the required energy to farm buildings,

warehouses or irrigation systems [44].

• Biomass Energy: Agricultural residue (plant residue,

animal manure) can be utilised by biomass energy. The

biogas plants can convert methane gas out of this waste

into electric power and heat. This would allow for better

waste disposal while enhancing the energy autonomy of

the farms [45].

• Geothermal Energy: Geothermal energy may be used

for purposes such as the heating of greenhouses, or

water heating. It is an ideal way to save energy and

reduce carbon release, especially based on controlled

environment agriculture [45].

Adopting green energy innovation in smart agriculture

systems also serves to protect the environment and scale up

farmers’ profits, as their energy costs are nipped in the bud.

This is essential for long-term sustainability of agriculture

and makes the agricultural sector more robust and self-reliant

[45].

IV. ANALYSIS OF PROVIDED PAPERS AND THEIR

USEFULNESS IN AGRICULTURE

The papers, which were provided in this paper, present

a broad range of applications in smart agriculture, using

technologies including AI, IoT, robotics, and so on, to solve

different problems. They can also be grouped according to

their main use in agriculture.

A. Crop Observation, Diseases Recognition and Pest Fore-
casting

This is the majority class for the provided papers, depicting

the great significance of such challenges to observe the health

of crops and predict yields with high levels of accuracies

for them to be realized for food production and to em-

ploy sustainable practices. EdgePlantNet, a light-weight two-

branched Convolutional Neural Network (CNN) is

presented which is capable of real-time plant disease

detection on resource-limited edge devices such as a

Raspberry Pi [23][45]. Its novelty is based on an

advanced spatial attention mechanism, which leverages the

processed original leaf im-ages and segmented leaf images

to achieve high accuracy and require for fewer number of

data samples.

in palm trees [24] [47]. It aims at classifying the health of

the tree from weevil sound, while detecting trees and

reaching high accuracy for 26 infected plants, using deep

learning models (InceptionV3 and YOLOv8) that classify

the health of the tree based on sound weevil and detect the

trees from images. The study which developed predictive

model on crop growth rate of Amaranthus Viridis in a

hydroponic setup compares a total of twelve machine

learning models and finds XGBoost to be the best among

the compared models to automate the crop prediction

process [35] [48]. The study on the AIoT oriented soil

nutrient analysis system suggests farmers using an Android

motioned app with crop suggestions from soil real-time

parameters (N, P, K, pH) along with the environmental

parameters [13]. It compares five machine learning

algorithms and it is observed that Decision Tree with

AdaBoost provides better (98% accuracy) crop

recommendation results. A deep learning approach to crop

monitoring in greenhouses is presented in [49] [50] where

IoT sensor data and different deep learning models are

applied for long-term monitoring as well as for autonomous

regulation of the greenhouse, so that resource usage can be

optimized and productivity increased. The study regarding

precision of the rice grain moisture content (GMC) that

makes use of a UAV with multi-spectral sensor for the

development of a nondestructive method for estimation of

GMC was conducted by [36] [50]. With the combination of

FC, the significant improvement of FVS systems and the

machine-learning models (RF, SVM, MLP), the system can

achieve high accuracy for prediction compared to pre-vious

works, which helps the farmer to efficiently dry the

agriculture output as well as to increase the crop quality.

Another paper deals with personalized crop-specific feature

formulation by means of genetic programming (GP) for

early and in season crop mapping, which is a hard problem

brought about by limited image access [30]. The GP

approach also designs features automatically which amplify

slight spectral differences between crops that outweigh

traditional spectral features and those vegetation indices

particularly in early-season mapping. The ICM study

proposes an Autonomous Cycle of Data Analysis Tasks

(ACODAT) with integration of several AI methods [4]

[51]. It employs XGBoost to classify insects, fuzzy decision

to predict and diagnose cotton yield, and genetic algorithm

to prescribe the best decision choices and achieving high

accuracy in its various tasks.

A vision transformer (VT)-based method is introduced for

“in the wild” (i.e., complex, uncontrolled field) image-

based classification of rice leaf diseases [33] [51]. This

approach is robust against class imbalance and outperforms

some other deep learning frameworks . Also, an AI-based

Generative sys-tem involving deep learning (ANN, GAN,

YOLO) combined
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context of a study about plant health monitoring, a

smart irrigation system is proposed based on a bubble

identification method for assessing vascular health of plants

by identifying embolisms as early warnings for health

problems [53].

B. Automation, Robotics, and Advanced Decision System

These papers focus on the integration of robotics and

automated systems to improve the efficiency, sustainability,

and decision-making processes in farming operations.

The work on Advanced Robotic Decision System presents

a Pliant Decision System (PDS) for Farming Robots (FRs)

[21] [54]. It adopts a two-layer-deep RNN model to lead

to syncrhonized multi-opeartional time-sensitive agricultural

activities, and verifies the sustainability forumlation and en-

hances task complete-proness and syncrhonization in robotic

tasks.

• A LoRa-based system with periodic UAV transmissions:

A different communication scheme consistent with the

literature results is presented in a work with scheduled

UAVs communication for rural areas without internet

coverage [55]. A fixed-wing UAV equipped with an on-

board LoRa gateway traverses a predetermined route for

gathering data from periodic transmissions of ground-

based IoT nodes, after which the collected data are then

extracted in an energy-efficient manner.

• Botta et al.’s review paper dealing with smart appli-

cations in agriculture, describe the use of automated

vehicles, drones and robotic machinery for activities

such as sowing, spraying or harvesting, and highlights

its application for achieving precision agriculture [56].

• An article presenting a robot system for automated

picking of mushrooms that employs computer vision and

a 6-degrees of freedom robotic arm to identify and pick

ripe mushrooms, thereby, achieving higher efficiency

and saving human labour power [57]

• An autonomous navigation for robotic agriculture re-

search employing advanced sensor fusion and path plan-

ning algorithms, aiming at enabling robots to work in a

complex farm environments independently, with higher

precision and less human participation [58]

• A study of the use of drones for precision spraying of

grapevines is an example of UAVs to more efficiently

use pesticides and fertilisers, leading to less chemicals

being applied and contributing to reduced pesticide use

and chemicals on the environment [59] [60].

• The work on intelligent decision support system for

irrigation management combines real-time sensor level

information with meteorological predictions and crop

models to obtain the optimal irrigation scheduling, op-

timizing water usage efficiency and crop yield [61].

• Studies of a robot system for high-throughput pheno-

typing have focused on automatic plant phenotyping

using plant imaging and machine learning for pheno-

typic analysis to support breeding and crop improvement

programs [62].

Despite the great achievements already made in the field

of smart agriculture technology, there are various challenges

that are still preventing this technology from being widely

implemented and reaching its full potential. Such challenges

and future research directions are:

• High Cost of Implementation: The cost of adopting

smart agriculture systems is high, particularly for small-

holder farmers, in terms of its initial setup cost. Equip-

ment such as sensors, IOT devices, software based on

AI and robotics demand considerable investments [63].

Further research should be directed at finding more

economic and large-scale alternatives. Both the costs of

open-source hardware and software can be significantly

lower.

• Digital Divide and Poor Technical Knowledge: Farmers

in Third World countries and rural areas may not have

much access to technology and technical knowledge.

This all slows the rollout of smart agriculture technol-

ogy. Training, user friendly applications and support

in local languages are necessary to fill this gap. Fur-

thermore, there is a need to widely promote successful

pilot projects to build farmers’ confidence in adopting

technology [64].

• Inconsistent Rural Connectivity: Both IoT devices and

cloud-based AI require good internet connection to

reliably and quickly function. Yet this is not available

in much of rural. 5G and satellite Internet services (e.g.,

Starlink) have the potential of solving this problem.

Another approach to decrease dependence from connec-

tivity can be approximated by edge computing solutions

which allow data processing at home [64].

• Data Privacy and Cybersecurity: Smart agriculture sys-

tems copiously gather confidential and sensitive infor-

mation (crop data, soil analyses, farm operations). We

certainly need to secure this data against unauthorized

access and abuse. It is essential to build robust encryp-

tion, safe data storage and ethical use-of-data practices.

Data integrity and transparency as a potential solution

to ensure data integrity and transparency, blockchain

technology may be adopted [5].

• Data Integration and Standardization: Absence of data

integration and interoperability between sensors and

platforms provided by different vendors complicates

smart farming systems. Interoperable data formats and

open APIs will enable the various systems to commu-

nicate freely with one another and lead to the creation

of better integrated, more efficient systems [65].
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• Growth of Autonomous Robotics and Automation:

Robotics and automation for agriculture, if performed by

robots, could help to reduce human labor associated with

planting, harvesting, weeding and spraying. Yet, these

robots still require additional research and development

to enable them to function in completely autonomous

way in miniaturing and dynamic agricultural settings.

In particular, it is an issue to realize the robots which

can walk in irregular terrains and produce the motion in

an exact work position [1].

• Green Energy Integration: Fulfilling the energy demand

of smart agriculture only with renewables is a must for

achieving environmental sustainability though achieving

this objective remains a challenge. In addition, hybrid

energy systems (such as solar and wind), energy storage,

and energy-efficiency scheduling are promising research

focused for the future in this area [6].

Addressing these challenges is critical for smart agriculture

to achieve its full potential in securing global food supply

and promoting environmental sustainability. Interdisciplinary

cooperation, theory and practice cooperation, and innovative

research strategies will be necessary in order to reach these

goals. Non-invasive cultivation methods are also expected to

become well-known in the integrated system of future food

production and are hoped to become bright prospects in the

sustainable agricultural future.

V. CONCLUSION

This review article discusses the evolution of Artificial

Intelligence (AI), Internet of Things (IoT), sensors system,

and green energy concepts in the perspective of non-invasive

agriculture practices in breadth. This paradigm, commonly

termed smart agriculture of Agriculture 4.0, is driven by the

pressures of worldwide challenges and demands like food

security, resource efficiency, and environmental sustainability

[1] [6] [63]. Real-time collection of data using IoT sensors,

AI/ML data analysis and robotic automation are at the base

of next-generation farming. Although some previous studies

compared the performance of single-modal with multi-mode

data fusion techniques and reported more accurate and robust

results in disease detection, water stress assessment and yield

prediction [4] [13] [21] [36]. A move in architecture from

centralized cloud computing to edge computing has been

recognized to be necessary to speed up on-farm decision

making and to cope with connectivity constraints.

From the literature review conducted, smart agriculture

instruments have been verified u seful i n t he fi eld of crop

system monitoring, disease and pest detection, automation,

and advanced decision support systems. Nevertheless, there

are still some obstacles such as high cost of deployment,

the digital divide, unstable rural connections, and threat of

cyber security [5] [63] [64]. Concentrated research is required

in affordable sensors, securer and explainable AI models

and autonomous robots to address these challenges. The

In summary, smart agriculture powered by digital tools

holds strong promise in boosting the global food system

that is more reliable and productive. To unlock the promise

of these technologies also takes innovation, cross-cutting

cooperation and the creation of products that respond to

farmer needs. Non-contact farming methods will be the key

to the future food production and will bring a great hope for

our agriculture future.
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