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Abstract—In the context of digital twins and industrial IoT
systems, robust sensor fusion is essential for accurate real-
time localization. This paper presents a comparative evaluation
of three sensor fusion strategies for indoor 2D localization: a
classical Extended Kalman Filter (EKF), a hybrid architecture
combining the filter with a Recurrent Neural Network (RNN) for
error compensation, and a pure AI model that learns the fusion
process directly from multi-sensor sequences.

Experimental results show that the hybrid approach consis-
tently achieves the best trade-off between accuracy and real-time
responsiveness, outperforming both the classical and the purely
AI-based alternative.

I. INTRODUCTION

Accurate real-time localization is a key requirement for

autonomous robots, automated guided vehicles (AGVs), and

Industry 4.0 systems. With the rise of digital twins and per-

vasive IoT infrastructures, reliable localization is essential to

ensure safety and efficiency in dynamic indoor environments.

Sensor fusion addresses this challenge by combining hetero-

geneous inputs such as inertial measurement units, ultrasonic

beacons, ultra-wideband (UWB) tags, and optical trackers [1],

[2]. The Extended Kalman Filter (EKF) has long been the stan-

dard approach for sensor fusion due to its recursive efficiency,

probabilistic structure, and interpretability [3], [4]. However,

EKF performance is limited by its reliance on accurate models,

Gaussian noise assumptions, and synchronous measurements.

Recent advances in artificial intelligence offer alternatives.

Recurrent Neural Networks (RNNs), particularly Gated Recur-

rent Units (GRUs), can learn temporal patterns and nonlinear

sensor dynamics directly from data [5], [6]. By bypassing

explicit motion models, such methods promise adaptability

to complex environments. However, they typically demand

extensive datasets and exhibit potential stability issues.

Hybrid methods seek to combine the strengths of both

paradigms. By augmenting a Kalman filter with a learned

correction or adaptive mechanism, they aim to retain stabil-

ity and interpretability while improving accuracy in noisy,

asynchronous conditions [7]–[10]. Early studies indicate their

promise, but few works provide systematic real-world com-

parisons of classical, hybrid, and fully AI-based pipelines.

The main contribution of this work is an experimental

comparison of classical, hybrid, and AI-based sensor fusion

pipelines implemented on the same dataset and platform.

The paper is organized as follows: Section II presents the

framework architecture, Section III details the methodology,

Section IV describes the experimental setup, Section V reports

the results, Section VI discusses the findings, and Section VII

concludes the paper.

II. ARCHITECTURE

A. Hardware Setup

The experimental platform was deployed in the 6G Fu-

ture Factory Lab at DFKI Kaiserslautern as part of the

Twin4Trucks project. Multiple positioning systems were

mounted on an automated guided vehicle (AGV), providing

heterogeneous and asynchronous sensor data.

The ground truth was provided by a motion capture system

consisting of 24 infrared cameras, delivering sub-millimeter

accuracy. Three commercial indoor localization technologies

were mounted on the AGV for the experiments:

1) Ultra-Wideband (UWB): RF-based tags and anchors

measuring time-of-flight to provide 3D position esti-

mates.

2) Ultrasonic: Fixed beacons and a mobile tag providing

trilateration-based positions, with optional IMU-based

motion estimates.

3) Infrared: Sweep-based system delivering six-degree-of-

freedom position and orientation tracking.

Such heterogeneous sensor setups are increasingly common

in industrial and robotic localization tasks, where combining

ultrasonic and infrared systems has shown complementary

benefits [11].

B. Software Setup

To handle multiple sensor streams and maintain modularity,

the system was implemented as a containerized software

pipeline. Two core services were developed:

1) SensorFusionNode: Implements the three fusion

pipelines:
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a) Classical Extended Kalman Filter (EKF) for base-

line comparison.

b) Hybrid fusion with error compensation, which

learns residual corrections.

c) Standalone AI-based fusion, which directly pre-

dicts fused positions.

2) MockSensorNode: Replays previously recorded sen-

sor logs with original timestamps to emulate real-time

asynchronous behavior. Gaussian noise was added to

preserve variability and test robustness.

All components communicate through a standardized mes-

sage format defined in Protocol Buffers (Protobuf), ensuring

consistent data representation across the fusion pipelines.

This architecture enables reproducible evaluation of classical,

hybrid, and AI-based approaches under identical runtime con-

ditions.

III. METHODOLOGY

This work evaluates three complementary sensor fusion

strategies: a classical Extended Kalman Filter, a hybrid fusion

approach, and an AI-based fusion model. All methods are

implemented within the same software framework to ensure

comparability under real-time conditions.

A. Classical Extended Kalman Filter
The Extended Kalman Filter (EKF) serves as the baseline

due to its widespread use in robotics and real-time localization.

The state vector is defined as

x =
[
x y θ

]T
, (1)

where (x, y) denote position and θ is the orientation (yaw).

Control inputs are the linear and angular velocities u =
[v, ω]T , which in this work are derived from ground truth

trajectories to maintain consistency, as opposed to onboard

odometry, from which these values are typically obtained.
The EKF prediction step propagates the state using the

nonlinear motion model f(x,u), while the update step in-

corporates asynchronous sensor measurements through the

observation model h(x). A conservative covariance inflation

strategy is applied across all modalities, ensuring filter stability

under heterogeneous and noisy conditions [12].

B. Hybrid EKF with GRU-Based Error Compensation
To address limitations of purely model-based filtering, the

EKF is augmented with a Gated Recurrent Unit (GRU) net-

work. After each EKF update, the fused position estimate

x̂k (from Eq. 1) is stored in a sliding window of 50 time

steps. This sequence forms the GRU input, which predicts the

residual error Δek between the EKF output and ground truth.

The compensated position is obtained as given in Eq. 2:

x̂ comp
k = x̂k −Δek (2)

GRU architectures were optimized using Optuna hyperpa-

rameter search, with evaluation metrics including mean abso-

lute error (MAE), mean squared error (MSE), and coefficient

of determination (R2). All training and validation runs were

tracked in MLflow.

C. AI-Based Fusion
The third approach removes the filter framework entirely.

Instead, a GRU model is trained to directly predict the fused

position from sequences of asynchronous sensor readings.

Each input consists of a sliding window of 10 multi-sensor

measurements, standardized and aligned in time. The GRU

outputs the estimated current position (x, y) without requiring

motion models, control vectors, or covariance matrices.
This method provides a lightweight inference pipeline but

requires larger training datasets to generalize. While less stable

in edge cases, it serves as a benchmark for assessing the

potential of fully end-to-end AI-based sensor fusion under

real-time constraints.

TABLE I. COMPARISON OF GRU-BASED ARCHITECTURES FOR 
HYBRID AND AI-BASED FUSION MODELS

No. Layer Type Hybrid Fusion AI-Based Fusion
1 GRU 256 256
2 Dropout 0.3 0.3
3 GRU 128 128
4 Dropout 0.1 -
5 GRU 64 -

Table I summarizes the GRU-based architectures used in the

Hybrid and AI-Based fusion models. Both architectures consist

of stacked GRU and dropout layers with varying depths, as

shown. Each model is followed by an output layer of type

Dense. All GRU layers use the ReLU activation function.

IV. EXPERIMENTAL SETUP

A. Data Collection
Experiments were conducted using an Automated Guided

Vehicle (AGV) equipped with three different positioning sys-

tems, as described in Section II. The AGV was driven along

trajectories designed to cover a variety of motion patterns,

including straight lines, curves, and acceleration phases, in

order to expose the fusion algorithms to diverse kinematic

conditions.

B. Evaluation Metrics
Performance was assessed using complementary error met-

rics that capture different aspects of localization quality. Mean

Absolute Error (MAE) reflects the average deviation from

ground truth, while Root Mean Squared Error (RMSE) em-

phasizes the impact of larger deviations. The coefficient of

determination (R2) was used to quantify how well predicted

trajectories explain the variance of the ground truth.
However, as the primary measure, we focused on the

Mean Euclidean Error, which directly reflects trajectory-level

accuracy in two dimensions and is also used in the visual

comparison of methods. This metric was used for the final

comparisons.
In addition to accuracy, inference time per update was

measured to evaluate real-time feasibility. A threshold of

100 ms was applied, representing the maximum acceptable

delay for continuous AGV localization.
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V. RESULTS

A. Trajectory Comparison

Fig. 1 shows a representative trajectory segment for all three

fusion methods compared against the ground truth.

• The EKF baseline exhibits noticeable drift, particularly

on curved paths.

• The Hybrid approach remains closest to ground truth,

though occasional overcompensation is observed.

• The AI-based approach tracks overall motion well but

produces jittery behavior in cornering sections.

Fig. 1. Trajectory comparison of classical, hybrid and AI-based approaches
against ground truth.

B. Error Heatmaps and CDF Analysis

Fig. 2 illustrates spatial error distributions across the test

environment. The classical EKF shows concentrated bias in

curved regions, while the Hybrid filter distributes errors more

evenly and reduces overall magnitude. The AI-based model

demonstrates competitive accuracy but introduces localized

instabilities.

Cumulative Distribution Functions (CDFs) of Euclidean

error are shown in Fig. 3. The Hybrid filter achieves the most

favorable error distribution, with a clear left shift indicating

that lower errors occur more frequently. The AI-based model

approaches Hybrid performance in mid-range errors but is less

reliable at extreme values. The EKF remains the most stable

but suffers from consistently higher error levels.

VI. DISCUSSION

The experimental results highlight the complementary

strengths and weaknesses of classical, hybrid, and AI-based

fusion approaches.

The classical EKF demonstrated the expected robustness

and computational efficiency. Its recursive structure guarantees

stability under diverse runtime conditions. However, the EKF

struggled with curved motion segments and sensor asynchrony,

resulting in higher overall error compared to learning-based

approaches.

The hybrid EKF consistently outperformed both alterna-

tives in terms of accuracy and robustness. By leveraging

Fig. 2. Error heatmaps for all three approaches. Darker color indicates higher
error.

the EKF’s probabilistic structure and the GRU’s capacity to

learn residual dynamics, the hybrid method achieved the most

favorable error distribution while remaining real-time capable.

Occasional overcompensation was observed, indicating that

learned corrections may amplify errors when the filter state

is already close to the true trajectory.

The AI-based GRU fusion approach showed competitive

accuracy and in some cases rivaled the hybrid method. Its

advantage lies in bypassing the need for motion models or

noise parameter tuning, making it attractive for deployment in

environments where system dynamics are poorly understood.

However, it also exhibited higher variance, particularly in

edge cases, suggesting limited generalization compared to the

hybrid method.

Overall, the results confirm that combining model-based

and learning-based components provides a practical balance

between interpretability, stability, and adaptability. This trade-

off is summarized in Fig. 4, which compares Mean Euclidean

ISSN 2305-7254________________________________________PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 410 ----------------------------------------------------------------------------



Fig. 3. CDF of Euclidean error across all methods.

Fig. 4. Comparison of Mean Euclidean Error versus fusion/update interval
across the classical, hybrid and AI-based approaches. Lower-left indicates the
most desirable trade-off between accuracy and latency.

Error against fusion/update interval. The plot illustrates that

the hybrid EKF is consistently closest to the ideal low-error,

low-latency region, making it the most suitable approach for

safety-critical real-time applications such as AGV localization

in industrial environments.

While a detailed computational complexity analysis was be-

yond the scope of this work, all methods maintained inference

times below 100 ms per update, fulfilling real-time localization

requirements.

VII. CONCLUSION AND FUTURE WORK

This paper presented a comparative study of classical,

hybrid, and AI-based sensor fusion pipelines under identical

experimental conditions. The results showed that the hybrid

fusion approach consistently achieved the best trade-off be-

tween accuracy and responsiveness, confirming that learned

residuals can effectively complement model-based estimation.

The classical EKF remained the most computationally efficient

but suffered from higher error. On the other hand, the AI-based

approach produced competitive results but lacked robustness

across all motion scenarios.

Future work can explore deeper integration of learning

into model-based filtering, such as adaptive tuning of process

and measurement covariances (Q and R) or reliability-aware

weighting of individual sensor streams. In addition, multi-

modal neural architectures and attention mechanisms could

further improve adaptability.
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