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Abstract—In the context of digital twins and industrial IoT
systems, robust sensor fusion is essential for accurate real-
time localization. This paper presents a comparative evaluation
of three sensor fusion strategies for indoor 2D localization: a
classical Extended Kalman Filter (EKF), a hybrid architecture
combining the filter with a Recurrent Neural Network (RNN) for
error compensation, and a pure AI model that learns the fusion
process directly from multi-sensor sequences.

Experimental results show that the hybrid approach consis-
tently achieves the best trade-off between accuracy and real-time
responsiveness, outperforming both the classical and the purely
Al-based alternative.

I. INTRODUCTION

Accurate real-time localization is a key requirement for
autonomous robots, automated guided vehicles (AGVs), and
Industry 4.0 systems. With the rise of digital twins and per-
vasive [oT infrastructures, reliable localization is essential to
ensure safety and efficiency in dynamic indoor environments.

Sensor fusion addresses this challenge by combining hetero-
geneous inputs such as inertial measurement units, ultrasonic
beacons, ultra-wideband (UWB) tags, and optical trackers [1],
[2]. The Extended Kalman Filter (EKF) has long been the stan-
dard approach for sensor fusion due to its recursive efficiency,
probabilistic structure, and interpretability [3], [4]. However,
EKF performance is limited by its reliance on accurate models,
Gaussian noise assumptions, and synchronous measurements.

Recent advances in artificial intelligence offer alternatives.
Recurrent Neural Networks (RNNs), particularly Gated Recur-
rent Units (GRUs), can learn temporal patterns and nonlinear
sensor dynamics directly from data [5], [6]. By bypassing
explicit motion models, such methods promise adaptability
to complex environments. However, they typically demand
extensive datasets and exhibit potential stability issues.

Hybrid methods seek to combine the strengths of both
paradigms. By augmenting a Kalman filter with a learned
correction or adaptive mechanism, they aim to retain stabil-
ity and interpretability while improving accuracy in noisy,
asynchronous conditions [7]-[10]. Early studies indicate their
promise, but few works provide systematic real-world com-
parisons of classical, hybrid, and fully Al-based pipelines.
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The main contribution of this work is an experimental
comparison of classical, hybrid, and Al-based sensor fusion
pipelines implemented on the same dataset and platform.
The paper is organized as follows: Section II presents the
framework architecture, Section III details the methodology,
Section IV describes the experimental setup, Section V reports
the results, Section VI discusses the findings, and Section VII
concludes the paper.

II. ARCHITECTURE
A. Hardware Setup

The experimental platform was deployed in the 6G Fu-
ture Factory Lab at DFKI Kaiserslautern as part of the
TwindTrucks project. Multiple positioning systems were
mounted on an automated guided vehicle (AGV), providing
heterogeneous and asynchronous sensor data.

The ground truth was provided by a motion capture system
consisting of 24 infrared cameras, delivering sub-millimeter
accuracy. Three commercial indoor localization technologies
were mounted on the AGV for the experiments:

1) Ultra-Wideband (UWB): RF-based tags and anchors
measuring time-of-flight to provide 3D position esti-
mates.

2) Ultrasonic: Fixed beacons and a mobile tag providing
trilateration-based positions, with optional IMU-based
motion estimates.

3) Infrared: Sweep-based system delivering six-degree-of-
freedom position and orientation tracking.

Such heterogeneous sensor setups are increasingly common
in industrial and robotic localization tasks, where combining
ultrasonic and infrared systems has shown complementary
benefits [11].

B. Software Setup

To handle multiple sensor streams and maintain modularity,
the system was implemented as a containerized software
pipeline. Two core services were developed:

1) SensorFusionNode: the three fusion

pipelines:

Implements
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a) Classical Extended Kalman Filter (EKF) for base-
line comparison.

b) Hybrid fusion with error compensation, which
learns residual corrections.

c) Standalone Al-based fusion, which directly pre-
dicts fused positions.

2) MockSensorNode: Replays previously recorded sen-
sor logs with original timestamps to emulate real-time
asynchronous behavior. Gaussian noise was added to
preserve variability and test robustness.

All components communicate through a standardized mes-
sage format defined in Protocol Buffers (Protobuf), ensuring
consistent data representation across the fusion pipelines.
This architecture enables reproducible evaluation of classical,
hybrid, and Al-based approaches under identical runtime con-
ditions.

III. METHODOLOGY

This work evaluates three complementary sensor fusion
strategies: a classical Extended Kalman Filter, a hybrid fusion
approach, and an Al-based fusion model. All methods are
implemented within the same software framework to ensure
comparability under real-time conditions.

A. Classical Extended Kalman Filter

The Extended Kalman Filter (EKF) serves as the baseline
due to its widespread use in robotics and real-time localization.
The state vector is defined as

x=1[z y 0", e

where (x,y) denote position and 6 is the orientation (yaw).
Control inputs are the linear and angular velocities u =
[v,w]T, which in this work are derived from ground truth
trajectories to maintain consistency, as opposed to onboard
odometry, from which these values are typically obtained.

The EKF prediction step propagates the state using the
nonlinear motion model f(x,u), while the update step in-
corporates asynchronous sensor measurements through the
observation model h(x). A conservative covariance inflation
strategy is applied across all modalities, ensuring filter stability
under heterogeneous and noisy conditions [12].

B. Hybrid EKF with GRU-Based Error Compensation

To address limitations of purely model-based filtering, the
EKF is augmented with a Gated Recurrent Unit (GRU) net-
work. After each EKF update, the fused position estimate
X (from Eq. 1) is stored in a sliding window of 50 time
steps. This sequence forms the GRU input, which predicts the
residual error Aey between the EKF output and ground truth.
The compensated position is obtained as given in Eq. 2:

leomp = }A(k — Aek (2)

GRU architectures were optimized using Optuna hyperpa-
rameter search, with evaluation metrics including mean abso-
lute error (MAE), mean squared error (MSE), and coefficient
of determination (R2). All training and validation runs were
tracked in MLflow.
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C. Al-Based Fusion

The third approach removes the filter framework entirely.
Instead, a GRU model is trained to directly predict the fused
position from sequences of asynchronous sensor readings.
Each input consists of a sliding window of 10 multi-sensor
measurements, standardized and aligned in time. The GRU
outputs the estimated current position (x, y) without requiring
motion models, control vectors, or covariance matrices.

This method provides a lightweight inference pipeline but
requires larger training datasets to generalize. While less stable
in edge cases, it serves as a benchmark for assessing the
potential of fully end-to-end Al-based sensor fusion under
real-time constraints.

TABLE I. COMPARISON OF GRU-BASED ARCHITECTURES FOR
HYBRID AND AI-BASED FUSION MODELS

No. | Layer Type | Hybrid Fusion | Al-Based Fusion
1 GRU 256 256
2 Dropout 0.3 0.3
3 GRU 128 128
4 Dropout 0.1 -
5 GRU 64 -

Table I summarizes the GRU-based architectures used in the
Hybrid and Al-Based fusion models. Both architectures consist
of stacked GRU and dropout layers with varying depths, as
shown. Each model is followed by an output layer of type
Dense. All GRU layers use the ReLU activation function.

IV. EXPERIMENTAL SETUP
A. Data Collection

Experiments were conducted using an Automated Guided
Vehicle (AGV) equipped with three different positioning sys-
tems, as described in Section II. The AGV was driven along
trajectories designed to cover a variety of motion patterns,
including straight lines, curves, and acceleration phases, in
order to expose the fusion algorithms to diverse kinematic
conditions.

B. Evaluation Metrics

Performance was assessed using complementary error met-
rics that capture different aspects of localization quality. Mean
Absolute Error (MAE) reflects the average deviation from
ground truth, while Root Mean Squared Error (RMSE) em-
phasizes the impact of larger deviations. The coefficient of
determination (R?) was used to quantify how well predicted
trajectories explain the variance of the ground truth.

However, as the primary measure, we focused on the
Mean Euclidean Error, which directly reflects trajectory-level
accuracy in two dimensions and is also used in the visual
comparison of methods. This metric was used for the final
comparisons.

In addition to accuracy, inference time per update was
measured to evaluate real-time feasibility. A threshold of
100 ms was applied, representing the maximum acceptable
delay for continuous AGV localization.
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V. RESULTS
A. Trajectory Comparison

Fig. 1 shows a representative trajectory segment for all three
fusion methods compared against the ground truth.

o The EKF baseline exhibits noticeable drift, particularly
on curved paths.

o The Hybrid approach remains closest to ground truth,
though occasional overcompensation is observed.

o The Al-based approach tracks overall motion well but
produces jittery behavior in cornering sections.

Ground Truth vs EKF vs Hybrid EKF (ID 1) vs Al-Based Fusion (ID 0)
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®  Hybrid EKF (ID 1)

® Al-Based Fusion (ID 0)
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Fig. 1. Trajectory comparison of classical, hybrid and Al-based approaches
against ground truth.

B. Error Heatmaps and CDF Analysis

Fig. 2 illustrates spatial error distributions across the test
environment. The classical EKF shows concentrated bias in
curved regions, while the Hybrid filter distributes errors more
evenly and reduces overall magnitude. The Al-based model
demonstrates competitive accuracy but introduces localized
instabilities.

Cumulative Distribution Functions (CDFs) of Euclidean
error are shown in Fig. 3. The Hybrid filter achieves the most
favorable error distribution, with a clear left shift indicating
that lower errors occur more frequently. The Al-based model
approaches Hybrid performance in mid-range errors but is less
reliable at extreme values. The EKF remains the most stable
but suffers from consistently higher error levels.

VI. DISCUSSION

The experimental results highlight the complementary
strengths and weaknesses of classical, hybrid, and Al-based
fusion approaches.

The classical EKF demonstrated the expected robustness
and computational efficiency. Its recursive structure guarantees
stability under diverse runtime conditions. However, the EKF
struggled with curved motion segments and sensor asynchrony,
resulting in higher overall error compared to learning-based
approaches.

The hybrid EKF consistently outperformed both alterna-
tives in terms of accuracy and robustness. By leveraging
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Fig. 2. Error heatmaps for all three approaches. Darker color indicates higher
error.

the EKF’s probabilistic structure and the GRU’s capacity to
learn residual dynamics, the hybrid method achieved the most
favorable error distribution while remaining real-time capable.
Occasional overcompensation was observed, indicating that
learned corrections may amplify errors when the filter state
is already close to the true trajectory.

The Al-based GRU fusion approach showed competitive
accuracy and in some cases rivaled the hybrid method. Its
advantage lies in bypassing the need for motion models or
noise parameter tuning, making it attractive for deployment in
environments where system dynamics are poorly understood.
However, it also exhibited higher variance, particularly in
edge cases, suggesting limited generalization compared to the
hybrid method.

Overall, the results confirm that combining model-based
and learning-based components provides a practical balance
between interpretability, stability, and adaptability. This trade-
off is summarized in Fig. 4, which compares Mean Euclidean
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Euclidean Error CDF Analysis Across Sensor Fusion Approaches
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Fig. 3. CDF of Euclidean error across all methods.
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Fig. 4. Comparison of Mean Euclidean Error versus fusion/update interval
across the classical, hybrid and Al-based approaches. Lower-left indicates the
most desirable trade-off between accuracy and latency.

Error against fusion/update interval. The plot illustrates that
the hybrid EKF is consistently closest to the ideal low-error,
low-latency region, making it the most suitable approach for
safety-critical real-time applications such as AGV localization
in industrial environments.

While a detailed computational complexity analysis was be-
yond the scope of this work, all methods maintained inference
times below 100 ms per update, fulfilling real-time localization
requirements.

VII. CONCLUSION AND FUTURE WORK

This paper presented a comparative study of classical,
hybrid, and Al-based sensor fusion pipelines under identical
experimental conditions. The results showed that the hybrid
fusion approach consistently achieved the best trade-off be-
tween accuracy and responsiveness, confirming that learned
residuals can effectively complement model-based estimation.
The classical EKF remained the most computationally efficient
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but suffered from higher error. On the other hand, the Al-based
approach produced competitive results but lacked robustness
across all motion scenarios.

Future work can explore deeper integration of learning
into model-based filtering, such as adaptive tuning of process
and measurement covariances () and R) or reliability-aware
weighting of individual sensor streams. In addition, multi-
modal neural architectures and attention mechanisms could
further improve adaptability.
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