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Abstract—This paper is devoted to the development of com-
puter vision models capable of solving problems of simultaneous
detection and recognition of handwritten text. As a starting
point, the YOLOv8 family of architectures for object detection
is considered. We formulate line detection as different tasks
depending on the text shape: straight lines as object detection,
slanted lines as oriented bounding box (OBB) detection, and
curved lines as instance segmentation. For each version of the
model, a suitable pooling procedure is developed that extracts a
feature description within a bounding box or a mask.

For the instance segmentation problem, a modification of the
segmentation mechanism is proposed that takes into account the
features of lines as graphic objects and operates on a geometric
principle. To recognize the formatting of handwritten text, in
particular, to determine strikethrough and underlining, a tran-
sition to an extended alphabet is carried out with the prediction
of two components—a symbol and its style—separately.

The effectiveness of the developed methods is estimated on
real original data—a set of diary pages of the Russian states-
man Modest Andreevich Korf (1800-1876), which is a valuable
historical source. All models successfully cope with the task and
demonstrate a character error rate (CER) of about 3-4%, which
makes the recognized text easily readable by a person. At the
same time, the quality of recognition increases with increasing
complexity of the model, which justifies the consideration of
various variants of the problem.

The code is available at https://github.com/nlomov/yolo-htr.

I. INTRODUCTION

In recent years, the widespread use of digital technologies

and machine learning tools has had a significant impact on the

nature of the work of researchers in the humanities. Not only

has the digitalization of archives and document collections

made it possible to access them remotely, but methods for

intelligently analyzing the documents themselves, including

searching and navigating them, summarizing and categorizing

them, make it possible to cover previously unimaginable

volumes of information. Handwriting recognition, aimed at

converting a scanned or photographed document image into a

textual transcription, is a fundamental challenge in this field.

Several software tools offer complex handwriting recog-

nition functionality, including Kraken OCR [1], Transkribus

[2] and OCR4all [3]. They provide broad opportunities for

solving problems associated with HTR, such as extracting,

binarizing and normalizing text lines, layout analysis, collect-

ing training samples and training your own models. Among

the resources focused on recognizing documents in Russian,

we can highlight Yandex Vision OCR [4], commercial system

with access via API. Also, handwriting recognition systems

based on multimodal language models are easy-to-use and

offer enormous potential [5].

At the same time, even large datasets do not eliminate the

problem of handwriting diversity, which makes it difficult to

apply a pre-trained model to previously unseen writing styles.

Even greater obstacles are associated with insufficient amounts

of data for training in the case of non-trivial languages and

alphabets other than Latin. For these reasons, the development

of computer vision models that can train on small amounts of

data, for example, handwriting samples of a particular person,

still seems to be a relevant task. The study [6] shows that when

tuning for a specific handwriting, the volume of training data

of several hundred lines is insufficient, since stabilization of

quality metrics is not achieved, so it is more appropriate to

talk about thousands of lines.

Thus, the task of developing handwriting recognition mod-

els that are both user-friendly and easy to train remains a

pressing issue. The actual survey [7] on the problem considers

two groups of approaches: up-to-line level, including word and

line recognition, and beyond line-level, concerning paragraph-

and document-level challenges. However, the input data is

rarely represented by images of lines, so using the methods in

the first class requires extracting the strings from the image,

and often doing significant preprocessing of those crops. It

is natural to encapsulate all subtasks within a single model,

which defines our choice in favor of page-level approaches

that, owing to advances in computing power, have been

attracting increasing research interest.

As an additional task we consider the analysis of hand-

written text formatting, in particular the highlighting of un-

derlined and crossed-out fragments, interlinear insertions, and

characteristic abbreviations. Formatting features help to trace

the progress of work on the manuscript, compare its various

versions, record what the author himself paid special attention

to, and what he considered generally applicable. For example,

such problems were addressed by researchers of the works of

Lope de Vega [8] and Charles Dickens [9].

Our work is aimed at creating page models that combine

search and recognition of lines of formatted handwritten

text, for various formulations of the search problem—such

as classical detection, oriented bounding box detection and

instance segmentation.

The main achievements of this work are as follows:
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• Three main architectures from the YOLOv8 family are

modified in such a way as to support text recognition

within the corresponding area.

• We propose a new principle of instance segmentation,

which works on a geometric principle and copes better

with visually similar objects.

• We demonstrate a method for recognizing text formatting

that uses an extended alphabet of symbol-style pairs.

II. RELATED WORK

Models aimed at recognizing line-level images are quite

well developed and varied in architecture. They can be fully

convolutional [10], use multivariate recurrent connections [11],

or be based on cutting-edge architectures like Visual Trans-

former [12].

There are a number of works in which a full-fledged text

recognition system at the page level is assembled from several

modules, one of which is the extraction of text lines, which

allows for end-to-end inference, but not end-to-end training.

In particular, the system described in [13] includes not only

separate networks for searching and recognizing marginalia,

and the second of them contains a learning module based on

thin-plate spline for straightening words. The system presented

in [14] goes down from the page level to the level of individual

words, different neural network architectures are compared to

solve subtasks. In [15], the authors combined YOLOv8-driven

detector of text regions with a simple RNN-based handwritten

text recognition model.

Some models work at the paragraph level, assuming that

lines of text are stacked neatly on top of each other and not

too warped. To distinguish individual lines, vertical attention

[10] or sequential vertical upsampling and horizontal down-

sampling to collapse the horizontal dimension [16] is used.

It is worth noting that models that work directly at the page

level are still relatively rare [17]–[19] and are quite difficult

to train—for example, they usually involve pre-training on

synthetic datasets.

The first successful attempt to implement the end-to-end

paragraph handwritten text recognition was undertaken in

[20], where text scanning was carried out using the attention

mechanism implemented by a multi-dimensional Long Short-

Term Memory (LSTM) network. In the Start, Follow, Read

method [21] three networks are trained together at once: to

search for the starts of lines, to track them with the formation

of a straightened image of the line, and to recognize its text.

One way to make the network end-to-end learnable is

to connect the output of the detector to the input of the

recognizer using some pooling procedure. In [22], a RoI

Pooling operation is used, which consists of resampling the

detected word from the original image by a grid of a fixed

height. In [23], a similar operation is called Text Pooling and

extracts crops of feature masks for lines of text, but not words.

In [24], features are extracted within the rotated box, and an

adversarial feature learning network is used to approximate the

distributions of these features and the synthetic image’s ones.

The [25] uses a spatial transformer network to detect words

of non-handwritten text in natural scene images and allows a

wider class of affine transformations during resampling.

The tasks of detecting text elements—strings of words and

letters (usually in the case of hieroglyphic writing)—can be

combined with various recognition tasks. Thus, the work [26]

demonstrates an example of simultaneous recognition of the

letter itself and its box, for which the CTC loss is modified. In

the work [27], the problems of detecting handwritten words,

classifying them by types of named entities and direct text

recognition are simultaneously solved.

In [28], various types of text formatting, including

strikethroughs, underlines, and multi-line text, are detected

using a network with an architecture based on the Gener-

ative Adversarial Network (GAN). The tasks of formatting

recognition are often accompanied by image restoration tasks.

Thus, in the work [29] the word detection problem is solved,

strikethrough words are presented as a separate class. Then the

appearance of the word without strikethrough is restored by

a combination of U-Net and Bi-LSTM networks. Search and

removal of user marks, such as underlining, is implemented

in the work [30] using line slope analysis and morphological

operations.

III. ARCHITECTURE DESIGN

The work [31] proposed the YOLO-HTR architecture, the

idea of which is to replace the YOLOv8 network encoder

with an encoder from a network designed to recognize text

lines. The features obtained by the Vertical Attention Network

(VAN) [10] have proven themselves to be good for text

recognition. The network encoder consists of 10 consecutive

blocks, like the YOLOv8 network encoder, therefore, as in the

YOLOv8 network, the outputs of the 5th, 7th and 10th blocks

are sent to the head part, which is directly responsible for the

regression of the box parameters. Next, the features from the

last layer of the encoder were masked by boxes and freed from

vertical dimension using a special box pooling procedure.

Image
Encoder
(VAN)

Region Decoder
(YOLOv8 Head)

Region
Pooling

Text Decoder
(LSTM + FC)

image feats region feats

image feats

region params & probs
Lreg + Lcls

Lctc

char probs

Fig. 1. General scheme of the YOLO-HTR architecture. The region can be a
bounding box, an oriented bounding box, or a bounding box with a mask. In
the first two cases, Lreg is equal to Lbox, in the last case—to Lbox +Lseg .
Hidden layer size in LSTM in Text Decoder is 512.

We will follow the general scheme of this approach, shown

in Figure 1. Note that in the original version of YOLO-HTR

only a network for classical object detection with straight

boxes was considered. We will develop networks for oriented

bounding boxes’ detection and instance segmentation, too,

with heads taken from the corresponding YOLO variants. We

also need to modify the connection between the encoder and

the region decoder in order to better handle lines—objects that

are usually wide and low.
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Indeed, it should be noted that the text recognition encoder

is local and pays attention to a small neighborhood of the

pixel, sufficient to recognize an individual character and its

neighbors. At the same time, for successful detection of the

entire line, the network must “see” it in full width with some

neighborhood, and therefore must have a sufficiently wide

receptive field. Let us estimate its size for all layers of the VAN

encoder and three detection blocks—in small (S), medium

(M) and large (L) scales—with a “naive” replacement of the

encoder.

TABLE I. THE SIZES OF THE RECEPTIVE FIELD WITH A ”NAIVE” 
ENCODER REPLACEMENT

Block Scaled Original Block Scaled Original
Encoder 1 7 x 7 7 x 7 Encoder 8 32 x 22 256 x 352
Encoder 2 8 x 13 16 x 13 Encoder 9 38 x 28 304 x 448
Encoder 3 8 x 11 32 x 22 Encoder 10 44 x 34 352 x 544
Encoder 4 8 x 10 64 x 40
Encoder 5 14 x 10 112 x 80 Detector S 80 x 104 640 x 832
Encoder 6 20 x 10 160 x 160 Detector M 53 x 65 848 x 1040
Encoder 7 26 x 16 208 x 256 Detector L 39 x 45 1248 x 1440

Table I presents the receptive field sizes in the downsampled

resolution (columns ”Scaled”) and in the original one (”Origi-

nal”). The results show that the maximum line that the detector

can capture is 1248 pixels wide. This may not be enough

to describe long lines, especially with random scaling during

augmentation. Note that the original YOLOv8 network has

field sizes of Detector S/M/L in original pixels equal to 1728,

1728, and 2368, the same in width and height. To expand the

network’s field of view, we add separately to each of the layers

read out (5th, 7th and 10th) the corresponding layer from the

YOLO encoder. As a result, we increase the field sizes of

Detector S/M/L to 1248x1440, 1648x1840 and 2080x2272,

which is quite enough for training on large images of about

2000 pixels.
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Fig. 2. Encoder of YOLO-HTR+ architecture. The arrows pointing down lead
to the region (Box/OBB/Mask) decoder, the right arrow leads to the region
pooling.

A detailed diagram of the new YOLO-HTR+ network

encoder is shown in Figure 2. Minor modifications were made

to the VAN encoder in terms of layer sizes and downsampling

rates to enable more successful processing of closely spaced

lines based on the results of previous work on YOLO-HTR.

Also, the decoder structure in the form of a combination

of LSTM and a fully connected (FC) layer was taken from

the page-level, rather than the line-level, version of VAN,

since it was recognized more suitable for processing complex

handwriting.

IV. REGION POOLING PROCEDURE

The aim of the region pooling procedure, which does not

have trainable parameters, is to preserve the features of only

those points that fall within the predicted box and to eliminate

the vertical dimension in preparation for text recognition

using CTC loss. The specific type of region pooling operation

depends on the region representation—as a straight bounding

box, an oriented bounding box, or a straight box with a mask.

The input to the procedure is a set of boxes b = {bi}mi=1

and a feature map F ∈ R
H′×W ′×n, at the output we have

a tensor G ∈ R
m×W ′×n. Since the procedure is carried out

independently by features and boxes, it is sufficient to examine

the map of a single feature Ft ∈ R
H′×W ′

and the single box

b, the obtained result F ′′
t ∈ R

1×W ′
will be a slice of G.

A. Straight Boxes

For straight boxes, the region pooling procedure is described

in [31]. Assuming that the box coordinates b = (x, y, w, h)
are specified in the scale of the feature map, for each of its

H ′ ×W ′ cells we determine the fraction of the cell that falls

within the box:

wx(j) = 1− clip
((

x− w

2

)
− j − 1

)
− clip

(
j −

(
x+

w

2

))
,

j = 1, . . . ,W ′,

wy(i) = 1− clip

((
y − h

2

)
− i− 1

)
− clip

(
i−

(
y +

h

2

))
,

i = 1, . . . , H ′,

where clip(a) = min(max(a, 0), 1). Considering that

wx ∈ R
1×W ′

, wy ∈ R
H′×1, the map of the t-th feature

Ft masked by the box, can be represented in matrix form

F ′
t = (wyw

T
x ) � Ft. For aggregation, we average the values

inside the box vertically, noting that the sum of wy is equal

to h in the case when the box fits completely into the image:

F ′′
t = 1

h [1, ..., 1]× F ′
t .

Developing analogues of the pooling procedure for detection

tasks in other formulations will provide a more accurate

description of line shapes. This, in turn, will enable the

extraction of more relevant text features, leading to improved

text recognition quality.

B. Rotated Boxes

In this case, the box is augmented by an angle α: b =
(x, y, w, h, α). We define the centers of all cells in the feature

map Ft:

x̄j = j − 0.5, ȳi = i− 0.5,

C = {(x̄i, ȳj)}, j = 1, . . . ,W ′, i = 1, . . . , H ′.
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When both the box itself and the points of the set C are

rotated by an angle −α:[
x′

y′

]
= M

[
x
βy

]
,

[
x̄′
ij

ȳ′ij

]
= M

[
x̄j

βȳi

]
,

M =

[
cosα sinα,

− 1
β sinα 1

β cosα

]
,

the box b′ = (x′, y′, w, h, 0) becomes straight. The parameter

β is needed here to correct different scales along the X and Y
axes—in particular, since W ′ = W

8 , H ′ = H
16 , β = 2, we need

to stretch the map along the Y axis twice for proportionality.

Again, we can determine the fraction of each cell that falls

within the box:

wx(i, j) = 1− clip
((

x′ − w

2

)
− x̄′

ij + 0.5
)
+

− clip
(
x̄′
ij + 0.5−

(
x′ +

w

2

))
,

wy(i, j) = 1− clip

((
y′ − h

2

)
− ȳ′ij + 0.5

)
+

− clip

(
ȳ′ij + 0.5−

(
y′ +

h

2

))
,

w(i, j) = wx(i, j) · wy(i, j),

i = 1, . . . , H ′,
j = 1, . . . ,W ′.

The map of a single feature masked by the box is computed

as F ′
t = W�Ft, vertical aggregation: F ′′

t = cosα
h [1, ..., 1]×F ′

t

(due to the rotation, the intersection of the box with the vertical

line has length h
cosα , and not just h).

C. Straight Boxes with Mask

The shape of an object in this case is described not only

by a straight box b = (x, y, w, h), but also by a mask P ∈
[0, 1]H

′×W ′
of pixels belonging to the object. Let’s crop this

mask to the bounding box using the same wx and wy as in

the case of a straight box:

P ′ = (wy × [1, · · · , 1])� P, F ′
t = P ′ � Ft,

F ′′
t = (F ′

twx)� ([1, ..., 1]× P ′) .
(1)

D. Mask Thinning

When constructing ground truth data for boxes, we must

keep them high enough so that the cell centers fall within them,

and these anchors are assigned to predict boxes. Obviously,

the boxes themselves can overlap due to serious line bends

and writing density—this will lead to the same features

being ”blurred” across different objects, although their text

is obviously different. To reduce the damage from this, only

at the region pooling stage we can consider all boxes to be

one pixel high—this means that in each column information

will be read from either one pixel or two adjacent ones. So,

• in the case of a straight box h is replaced by 1;

• in the case of a rotated box h is replaced by cosα;

• in the case of a straight box with a mask we calculate

average vertical level:

ỹ = ([0.5, 1.5, . . . H ′ − 0.5]× P ′)� ([1, 1, . . . , 1]× P ′)

and adjust

w̃y(i) = 1− clip((ỹ − 0.5− i)− clip(i+ 1− (ỹ + 0.5)),

then recalculating P ′ and F ′′
t in 1 with w̃y instead of wy .

V. PARAMETERIZATION OF ROTATED RECTANGLES

A. Dealing with Parameterization Ambiguity

Although different parameterization methods are possible,

the conventional bounding box is completely defined by four

numbers, for example, the coordinates of its center (x, y),
width w, and height h. At first glance, it seems that to

define a rotated rectangle, it is enough to add one more

parameter to these parameters—the rotation angle α. However,

this immediately raises the problem of ambiguity of such a

representation, illustrated by Fig. 3: a rotated rectangle can

be considered low and wide (height h, width W , h � W )

with a rotation angle π
4 , or high and narrow (height H = W ,

width h = w) with a rotation angle −π
4 . At the same time,

the Intersection over Union-based box loss will not suffer,

since it is determined by comparing the geometric figures

themselves, and not their parameterizations, but the choice of

parameterization method can be critical for the Distribution

Focal Loss (DFL) [32] if we swap disproportionate height and

width.

When using DFL, the task of predicting the parameters

of the box is set not as a regression problem, but as a soft

classification problem. The desired size v is expressed as a

weighted sum of the basic sizes {vi = i · d}Ni=0:

v =
N∑
i=0

wivi, 0 ≤ wi ≤ 1,

N∑
i=0

wi = 1.

The idea of DFL is that among all possible sets of weights

{wi} that yield the desired v, the optimal one is considered

to be a sparse distribution over the two closest to v base sizes

vi and vi+1, i = � v
d�, w̃i = 1− v−vi

d , w̃i+1 = v−vi

d , w̃j = 0
if j /∈ {i, i+ 1}. DFL is defined as

ldfl(w0, . . . , wN ) = −w̃i lnwi − w̃i+1 lnwi+1

and attains a minimum at the optimal set {w̃i}. So the value

of DFL depends critically on what is considered width and

what is considered height.

x

y

W
hw

H

π
4

−π
4

Fig. 3. Ambiguity of parameterization of a rotated rectangle
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Fixing the range of angles (it is logical to make it symmet-

rical with respect to 0, which means no rotation, i.e. a straight

line) within (−π
4 ;

π
4 ], although it leads to an unambiguous pa-

rameterization, does not remove the problem during training:

imagine two low wide rectangles, one with a rotation angle

of π
4 − ε, the other with an angle of π

4 + ε. Then the first of

them will receive a parameterization (x, y, w, h, π
4 − ε), and

the second (x, y, h, w,−π
2 + ε), while visually they will be

almost indistinguishable. This means that our loss function

will be discontinuous in the input, which is the image pixels.
A possible solution here is to consider both parameteriza-

tions as acceptable, both with a positive and negative angle:

l̄dfl(b) = min (ldfl(·|w, h), ldfl(·|h,w)) .
An even finer correction of DFL allows us to pessimize the

alternative parameterization at α values close to 0:

l̂dfl(b) = q(α) · ldfl(·|w, h)+
+ (1− q(α)) ·min (ldfl(·|w, h), ldfl(·|h,w)) .

In this case, q(α) should be equal to 1 when α = 0 and

equal to 0 when α = ±π
4 . The function q(α) = cos2(2α) is

suitable for this.

B. Transition between Parameterizations
Recall that in DFL we predict distances from the anchor

(x̄, ȳ) to the sides of the rectangle. Let us generalize the

necessary formulas to the case of a rotated rectangle specified

by the parameters (x, y, w, h, α). When rotating by −α, we

move to the case of a straight box with the anchor[
x̄′

ȳ′

]
= M

[
x̄
ȳ

]

and the center of the box[
x′

y′

]
= M

[
x
y

]
,

where

M =

[
cosα sinα
− sinα cosα

]
.1

Assuming that

d′x = x′ − x̄′, d′y = y′ − ȳ′,

we need to predict the values, shown in Fig. 4:

l =
w

2
− d′x, r =

w

2
+ d′x, t =

h

2
− d′y, b =

w

2
+ d′y.

Finally, we will also need the inverse transformation from

(t, l, b, r) to to decode the prediction results using DFL:

w = l + r, h = t+ b, d′x =
r − l

2
, d′y =

b− t

2
,

[
x
y

]
=

[
x̄
ȳ

]
+MT ·

[
d′x
d′y

]
.

1Note that in the original implementation of YOLOv8 from Ultralytics a
serious mistake is made—this rotation is simply not performed, and it is
assumed that dx = x − x̄, dy = y − ȳ. This is the reason for the very
unconvincing quality of the rotated box detectors even in tasks that do not
look particularly complex, an example can be seen in figures (a)-(d) on the
page https://docs.ultralytics.com/ru/datasets/obb/#yolo-obb-format

x

y

l

r
b

t
d′y

d′x
h
2

w
2

d

d

(0, 0)

Fig. 4. Relationship between (t, l, b, r) and (x, y, w, h) parametrizations in
an oriented bounding box. The filled dot is the center of the box, the unfilled
dot is the anchor.

VI. INSTANCE SEGMENTATION BY CENTER PREDICTION

A. Segmentation Principle

In the classic version of YOLOv8, in the instance segmen-

tation task, not only a bounding box coordinates are predicted

for each object, but also a feature description Q of length 32.

The same feature description K must be obtained for each

downsampled pixel of the image. To assess the correspondence

of a pixel falling within the box to its object, the value is

calculated: v = sigmoid(QTK), this method of assessment

resembles the well-known attention mechanism. Note that if

a pixel belongs to a unique mask but falls within the boxes

of two close objects, their features Q1 and Q2 must differ

drastically from each other so that QT
1 K and QT

2 K have

opposite signs. However, it is difficult to single out any visual

characteristics that fundamentally distinguish one line of text

from another, since they all represent a strip of contrasting

thin strokes.

For more successful segmentation, we will completely

change the principle of assessing pixels to objects and will

predict for each pixel (x, y) its offset to the corresponding

center of the object, again in the form of soft classification:

v =
N∑

i=−N

wi · vi, vi = di,

N∑
i=−N

wi = 1,

where v is the offset along x or y. Note that, unlike the

distances to the edge of the box considered earlier, these values

can be both positive and negative. Also, for each pixel its

objectness p is calculated. As a result, we do not calculate

keys K at all, and change the length of Q to 1 + 2(2N + 1)
while maintaining the rest of the architecture.

The pixel is considered to belong to the object with the

center (x, y) and the box b if:

• it falls within b,
• p > t,
• there is no object with a closer center in terms of the

metric: ( x̄+dx−x
β )2 + (ȳ + dy − y)2.

Thus, each pixel is tied to no more than one object. The β
parameter is needed for more accurate processing of horizon-

tally elongated objects: the deviation along y is considered

more critical, and β is set equal to 10.
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The proposed approach is illustrated by Figure 5 and is

based on the work of [33].

Fig. 5. Instance segmentation mechanism. Black and white background
reflects the visibility p of pixels, lines show the offset vectors (dx, dy), dark
dots show predicted box centers for different pixels

B. Loss Function
Based on the segmentation principle, the loss function

should reflect

• whether an image pixel belongs to an object (denote the

union of all object masks by F ) or to the background,

for which binary cross-entropy is used:

Lfg = − 1

WH

( ∑
(x̄,ȳ)∈F

ln p(x̄, ȳ)+

+
∑

(x̄,ȳ)/∈F

ln(1− p(x̄, ȳ))

)
,

• accuracy of predicting the box center (x, y) using the

mean square error:

Ldist =
1

|F |
∑

(x̄,ȳ)∈F

(
x̄+ dx − x(x̄, ȳ)

β

)2

+

+ (ȳ + dy − y(x̄, ȳ))2,

• also for a more concentrated prediction of offsets to the

center, the DFL considered earlier is used:

Ldfl =
1

β2|F |
∑

(x̄,ȳ)∈F

ldfl(w
(x)
−N (x̄, ȳ), . . . , w

(x)
N (x̄, ȳ))+

+
1

|F |
∑

(x̄,ȳ)∈F

ldfl(w
(y)
−N (x̄, ȳ), . . . , w

(y)
N (x̄, ȳ))

)
.

VII. FORMATTING RECOGNITION

Let us assume that we are recognizing not only a symbol

from the alphabet A, but also its style from the set S. In this

case, the symbol and the style are recognized independently,

i.e. p(a, s) = p(a)p(s), a ∈ A, s ∈ S. For this, the output

of the last layer V before feeding into the CTC loss has the

dimension |A|+ |S|+1, the first |A|+1 values is responsible

for the symbol, including the empty symbol ε, the last |S|—
for its style. We transform these values to get the probability

of the combination:

wi = log softmax(vi | v1, . . . , v|A|+1),

i = 1, . . . , |A|+ 1,

uj = log softmax(vj | v|A|+2, . . . , v|A|+|S|+1),

j = |A|+ 2, . . . , |A|+ |S|+ 1,

pt = wmod(t−1,|A|)+1 + udiv(t−1,|A|)+1,

t = 1, . . . , |A| · |S|,
p|A|·|S|+1 = w|A|+1,

that is, CTC loss is calculated in the alphabet of |A| · |S|+ 1
“symbols-styles” using the matrix P , an empty symbol is not

divided into styles. This approach allows predicting with CTC

loss even those symbols that were not present in the required

style in the training sample, since the symbol and style are

predicted separately.

VIII. EXPERIMENTS

A. Data preparation

The initial data are the diaries of Modest Andreevich Korf

(1800–1876), one of the outstanding representatives of Russian

conservative thought in the mid-19th century, a member of

the State Council, senator, and actual privy councilor. Korf’s

diary archives are extremely extensive and contain about 9,000

pages. Of particular interest is the excellent systematization

of the diary: each volume is preceded by an alphabetical

index listing the entities mentioned—persons, places, events—

with corresponding page numbers. The bulk of the entries are

in a single format—the text is given in a narrow column

on the right half of the page, the left is used for notes.

Text transcriptions for the 100 pages of the third volume,

dating back to 1840, were restored from the edition [34].

The text was broken into lines, a total of 4532, and checked

for assignment to bounding boxes by an expert. Also, for a

more stable allocation of boxes in the training, 40 pages with

an alphabetical index of 1305 lines without a text transcript

from the 1st, 2nd and 3rd volumes were used. The test and

validation samples included 20 images each from different

volumes.

To avoid fragments of lines from other pages in the frame

that do not have markup, these fragments were colored in

the background color, for which segmentation into an object

and background was carried out using Kraken OCR [1]. An

example of such a correction is shown in Figure 6.

To describe the shape of the lines, the same Kraken OCR

was used to extract the baselines of the text with subsequent
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(a) (b) (c)

Fig. 6. Removing unnecessary text fragments. (a) Original page, (b) mask of
redundant fragments, (c) corrected page.

manual correction. Let the baseline b be given as a polyline

{(xi, yi)}ni=1. Let us define the corresponding point of the

upper and lower envelope for each vertex:

x
(t)
i = xi − dt cosαi, y

(t)
i = yi − dt sinαi,

x
(b)
i = xi + db cosαi, y

(b)
i = yi + db sinαi,

where αi are calculated as bisectors of two links of the

polyline adjacent to the point (xi, yi) or as perpendic-

ulars of the extreme links for the ends of the poly-

line. The offsets dt and db are equal to 9
1000 and 7

1000
from the image height, respectively. A mask of arbitrary

shape is defined by a polygon obtained by going over the

points (x
(t)
1 , y

(t)
1 ), . . . , (x

(t)
n , y

(t)
n ), (x

(b)
n , y

(b)
n ), . . . , (x

(b)
1 , y

(b)
1 ).

The rotated box is constructed as a minimal rectangle covering

all these points, and the straight box is constructed by the

minimal and maximal x and y. All types of defining the shape

of lines are demonstrated in Figure 7.

B. Training process

The need to develop specialized networks adapted to spe-

cific handwriting is caused by the lack of ready-made models

that provide sufficient recognition quality. In particular, the

Russian generic handwriting 2 model2, the most relevant for

recognizing Russian text among Transkribus models, showed

results of 31.10% CER and 70.53% WER, on our test sample.

The TrOCR-ru transformer model3 produces more than 50%

errors in characters while operating extremely slowly. Large

language models like ChatGPT 5.0 and Gemini 2.5 Pro require

at least thorough prompt engineering combined with few-shot

learning, otherwise, with a basic prompt, they produce only

partially relevant, albeit readable, text.

To reduce the time costs and demonstrate the possibilities

of transfer learning, the YOLO-HTR model with straight

boxes, previously trained for recognizing the handwriting of

Admiral F.P. Litke [31], was considered as a starting point.

In places where the model architecture changed, new layers

were left initialized randomly. In the last layer of the model,

which calculates the probabilities of symbols, the weights of

2https://app.transkribus.org/models/public/text/
russian-generic-handwriting-2

3https://huggingface.co/kazars24/trocr-base-handwritten-ru

(a) (b)

(c) (d)

Fig. 7. Ground truth line segmentation by baselines (a) for (b) detection, (c)
OBB detection, (d) segmentation problems

the symbols that Litke had were copied from the original

model, the weights of the symbols found only in Korf were

left random, as were the weights responsible for the style—

recognition of the style in Litke was not considered. The

values of the weights of the loss function termns were set

as Lbox = 7.5, Lcls = 0.5, Ldfl = 1.5, Lctc = 0.1,

Lseg = 7.5. Due to the large size of the images, equal to

2048, they were presented individually during training, without

combining them into batches. For images without ground truth

text, the CTC loss was not calculated. All other parameters

were taken from the YOLOv8 implementation by Ultralytics

[35], including the Adam optimizer with a learning rate of

0.002 and a momentum of 0.9.

The training process, visualized in Figure 8, shows the

ability to successfully search for lines in any format on an
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image. At the same time, searching for rotated boxes turns

out to be slightly more difficult than searching for straight

ones, which is evident from the most complex metric mAP50-

95 (mean average precision, averaged over IoU in the range

from 0.5 to 0.95)—apparently due to sensitivity to errors in

restoring the rotation angle.
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Fig. 8. Values of the loss function (a,c,e) and quality metrics (b,d,f) for (a-b)
Detect, (c-d) OBB, (e-f) Segment models. Metrics related to boxes are marked
(B), and to masks (M). Only Segment model has metrics related to masks.

It is noteworthy that since the task of predicting the mask is

not posed at all in the original model, training actually begins

from scratch and the loss function starts with a high value, as

Figure 8e shows.

The performance of the models was measured for two

configurations, with the results presented in Table II:

• Server: Intel Xeon Platinum 8255C / 196GB RAM /

NVIDIA Tesla A100 PCIe 40GB

• Laptop: Intel Core i7-9750H / 16GB RAM / NVidia

GeForce GTX 1660 Ti 6GB

The laptop does not have enough video memory for training.

Server-based training allows for 600–900 training iterations

per day, depending on the model type.

C. Effectiveness of Architectural Solutions

We will separately study the impact of box and mask

prediction accuracy on the quality of text recognition. To do

this, we will compare the character and word error rates (CER

TABLE II. TIME CONSUMPTION IN SECONDS 
PER IMAGE.

Stage + Hardware Detect OBB Segment
Training (Server) 0.887 0.918 1.326
Inference (Server) 0.292 0.304 0.340
Inference (Laptop) 1.262 1.296 1.443

and WER) for ideal boxes/masks and for actually predicted

ones. In Table III, the indicators for ideal and actual boxes,

when only lines with IoU > 0.5 with the ground truth data

are taken into account, do not differ significantly. The slight

advantage of actual boxes over ground truth ones can be

explained by the fact that when calculating CER and WER

for the former, missed difficult boxes are simply ignored, and

they, as a rule, contain more challenging text, for example,

interline insertions.

Also, the original line-level VAN model, which is essentially

YOLO-HTR+ without a box decoder, was trained on a sample

of lines obtained by straightening their polygons relative to the

baseline using piecewise perspective transformation (Fig. 9).

The VAN was unable to outperform the segmentation model

in quality, which speaks, on the one hand, to the importance

of straightening lines (YOLO-HTR+Segment does this in the

feature space), and on the other hand, to the benefit of taking

into account the context that is lost when switching to line-

level sampling. Also note that when considering VAN, the

line detection problem itself is ignored, and its solution is

considered ideal.

TABLE III. THE IMPACT OF LINE DETECTION ACCURACY ON THE QUALITY 
OF TEXT RECOGNITION. THE INDICATORS, AS BELOW, ARE GIVEN IN %.

Model CER WER
predicted ground truth predicted ground truth

Detect 3.846 4.060 14.17 14.69
OBB 3.533 3.713 13.45 13.93

Segment 3.227 3.281 12.64 12.66
Line-level (VAN) − 3.440 − 13.25

Fig. 9. Samples from the line-level dataset

We will also evaluate the usefulness of the move with

reducing the height of the lines to 1 pixel, comparing the

results with and without this normalization. The results in

Table IV indicate the effectiveness of this technique, especially

for straight boxes, which is explained by the strong overlap of

the regions of interest without normalization. For rotated lines,

the effect is least significant, presumably because the shape of

the object itself changes the least with normalization.
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TABLE IV
THE EFFECT OF BOX THINNING ON TEXT RECOGNITION QUALITY

Model CER WER
norm. non-norm. norm. non-norm.

Detect 3.846 10.46 14.17 32.83
OBB 3.533 3.848 13.45 14.92

Segment 3.227 3.921 12.64 14.87

The justification for developing a new mechanism for in-

stance segmentation is demonstrated by Figure 10 with an ex-

ample of processing an image with strongly inclined lines. As

can be seen from the sequence of degraded, broken masks at

the bottom of the left image, the original YOLOv8 mechanism

insufficiently distributes pixels along lines with intersecting

frames. This is confirmed by the numerical estimates from

Table V, where a deviation from the near-perfect segmentation

of our method results in an increase in CER of nearly 2.5

percentage points.

(a) (b)

Fig. 10. The result of the instance segmentation model: (a) Initial, based on
the key-query mechanism, (b) proposed, based on the prediction of the box
center.

TABLE V
COMPARISON OF INSTANCE SEGMENTATION METHODS. SEGMENTATION

QUALITY METRICS ARE GIVEN FOR MASKS.

Model CER WER Precision Recall mAP50 mAP50-95
Original 5.680 17.27 97.54 97.46 97.23 73.13
Proposed 3.227 12.64 99.38 99.15 99.42 88.19

Text formatting in Korf’s diaries includes four options:

regular text, strikethrough, underline, and superscript. Since

ignoring formatting simplifies the task, the percentage of text

recognition errors decreases, as can be seen from Table VI.

Note that since the share of non-trivially formatted text is

2.22%, and the difference in CER is 1.0-1.3%, we can estimate

the share of formatting omissions at 8-10%.

Finally, we check which images show the difference in text

recognition quality by analyzing the data from Table VII (only

14 out of 20 images in the test sample have reference text).

TABLE VI
TEXT RECOGNITION QUALITY WITH AND WITHOUT FORMATTING

Model CER WER
char-style char only char-style char only

Detect 3.846 3.717 14.17 13.90
OBB 3.533 3.394 13.45 13.21

Segment 3.227 3.125 12.64 12.50

TABLE VII
RECOGNITION QUALITY FOR INDIVIDUAL IMAGES (CER IN %)

# Image Detect OBB Segment
1 3 12rev. 3.127 2.971 2.971
2 3 16 3.465 3.612 3.371
3 3 19rev. 7.316 5.918 5.270
4 3 61 3.918 3.437 3.184
5 3 30 2.763 2.016 2.390
6 3 105rev. 3.156 3.024 3.156
7 3 26rev. 5.651 4.751 4.083
8 3 68 3.152 2.189 1.751
9 3 71rev. 4.134 4.690 4.372
10 3 64rev. 4.009 3.480 3.933
11 3 75 3.655 3.421 3.188
12 3 33rev. 2.524 2.004 1.856
13 3 23 2.986 2.403 2.403
14 3 37 3.987 3.255 3.255

It turns out that the greatest increase in recognition quality

when moving to a more complex model is achieved with a

fairly complex format of the original lines, namely:

• the presence of curvature, and not just a slope;

• the presence of abundant interline insertions;

• the presence of fragments with a tight arrangement of

lines.

An example of such a page is 3 19rev., shown in Figure 11.

It can be noted that the segmentation model recognizes the

formatting more successfully.

IX. CONCLUSION

The paper explored the principles of constructing neural

network architectures capable of solving the problems of

handwritten text line search and recognition within a common

model. The YOLOv8 was chosen as a model, whose backbone

was replaced with layers better suited for extracting handwrit-

ten character features. Since these layers have a fairly narrow

receptive field, the basic architecture was modified so that the

cells responsible for line detection could see the lines in full

width with a small number of additional parameters.

The architectures for three different problems—object

detection, oriented bounding box detection, and instance

segmentation—were modified to match three line shape op-

tions of increasing complexity—straight, rotated, and curved

lines. At the same time, theoretical problems associated with

the ambiguity of coding rotated rectangles were discovered

and solved.

Based on the features of the detected objects—an elongated

shape and visual similarity—a new method of instance seg-

mentation was proposed, based on a purely geometric prin-

ciple. The performance of the designed models was analyzed
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(a) (b) (c)

Fig. 11. Test image recognition for different network variants: (a) Detect, (b) OBB, (c) Segment

on a collection of historical documents of significant research

interest—the diaries of Modest Andreevich Korf, totaling

about 9,000 pages. When trained on less than 100 pages with

expert decoding, all three models made only 3-4% of errors in

characters—such a result ensures good readability of the text

both by humans and modern large language models. Note that

not only the text but also its formatting (e.g., strikethrough)

was recognized, enabling deeper text analysis and contextual

search.
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