ISSN 2305-7254

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

Batch Updates and CDC at Scale: A Comparative
Study of Iceberg and Paimon

Kirill Ievlev

Moscow Technical University of Communications and
Informatics
Moscow, Russia
ievlev.k.o@yandex.ru

Abstract—Business digitalization in data-intensive sectors
such as fintech, advertising, and telecommunications has shifted
early-stage storage toward extract-load—transform (ELT)-centric
data lakes, while the need for transactional guarantees and SQL
semantics has accelerated the rise of data lakehouse architecture.
This paper evaluates the practical use of open table formats
within a financial analytics platform, focusing on Apache Iceberg
and Apache Paimon.

We report two experiments. First, we model data-mart
maintenance by generating a 1 TB table (~10 billion keys) and
executing staged SELECT/UPDATE operations over 10-50% of
keys, exposing how table format choices affect update-heavy
patterns. Second, we assess ingestion via a Change Data Capture
(CDC)-Kafka-Flink—Paimon pipeline that replays 1.5 billion
CDC operations per day with strong recency skew and assess its
viability for long-term data-mart storage and incremental
updates without intermediate databases. We also benchmark a
CDC-Kafka—Spark—Parquet ingestion approach to estimate the
performance gain by using the open table format. Our findings
surface design trade-offs that materially influence read and write
performance and operational overhead, and we derive practical
guidance for selecting open table formats when building
lakehouse architectures in financial settings.

L

Modern banks operate hundreds of information systems that
support operational activities across various business lines.
Rather than rebuilding data management from scratch,
organizations favor incremental modernization and integration
with existing solutions [1], [2]. These realities raise the bar for
low-latency data processing and flexible integration—needs
well served by open table formats (OTFs). OTFs are the
foundation of the data lakehouse, which unifies data lake
scalability with data warehouse semantics across batch and
streaming workloads [1]. In what follows, we review prevalent
OTFs and discuss which are best suited to integration
workloads and to improving processing timeliness.

INTRODUCTION

II. OVERVIEW OF OPEN TABLE FORMATS

Between 2017 and 2019, Apache Hudi, Delta Lake, and
Apache Iceberg emerged as open table formats for data lakes
and lakehouse architectures, adding transactional semantics and
governance on top of file-based storage (typically Apache
Parquet) across S3, Hadoop Distributed File System (HDFS)
and other types of distributed storage systems. Their shared
goal is to provide a unified tabular abstraction over raw files.
All three offer table-level atomicity, consistency, isolation,
durability (ACID) guarantees, snapshots, and atomic commits,
enabling a wide range of enterprise workloads—from BI and

370

Vadim Surpin
Moscow, Russia
vadim.supin@mail.ru

ad hoc analytics to MLOps and streaming—while lowering
total cost of ownership and accelerating time to insight [3], [4].

Although Delta is open source and under the Linux
Foundation, its ecosystem remains closely coupled with
Databricks: many key optimizations and the best user
experience are delivered through the Databricks cloud (e.g.,
Unity Catalog, Photon, Delta Live Tables, advanced optimizers
and automation), implying stronger vendor lock-in relative to
alternatives.

As of August 2025 (per GitHub repository statistics; see
Table I), Iceberg leads Hudi in community signals—stars/forks
(7841/2730 vs 5912/2432), total commits (7336 vs 6574), and
fewer open issues at larger scale—suggesting higher
development velocity and broader adoption. Accordingly,
Iceberg appears to be the more popular choice for cross-engine
analytics, while Hudi remains active and mature in its core
niche of real-time/CDC and incremental pipelines.

TABLE I. GITHUB COMMUNITY AND DEVELOPMENT SIGNALS FOR APACHE
HUDI AND APACHE ICEBERG (AUG. 2025)

OTF Apache Hudi Apache Iceberg
Total commits 6574 7336
Stars 5912 7841
Forks 2432 2730
Open issues 1085 610
Origins 2016 2017

Apache Foundation Top- June 4, 2020 May 20, 2020
Level Project announcement

Therefore, we chose Apache Iceberg for our study.

Since 2022, Apache Paimon has emerged as an open table
format and storage engine for “streaming-lakehouse”
workloads. Originating as Flink Table Store (announced by the
Apache Flink community in June 2022), it was spun out as the
Apache Paimon incubating project in September 2022 and
graduated to Top-Level Project status in April 2024 [5].
Paimon targets primary-keyed datasets, high-frequency
upserts/deletes, and continuous change processing, reflecting
users’ need to unify streaming and analytical processing over
object storage and distributed file systems without tight
coupling to a specific Database Management System (DBMS)
[6]. Given its recent spin-out, we do not directly compare
Paimon and Iceberg using GitHub repository metrics.

Paimon’s storage is log-structured merge-tree
(LSM)-inspired: records are hashed into buckets by primary
key (or by full row in its absence) and persisted as ordered

ISSN 2305-7254

Sorted String Table (SST) runs [7]. LSM-tree designs are
widely used (e.g., ClickHouse, HBase) and are well suited to
streaming-heavy write patterns [8]. Paimon additionally
supports choosing row- or column-oriented formats per LSM
level [9], a capability that could position it for Hybrid
Transactional/Analytical Processing (HTAP) scenarios.

Next, we examine pipeline mechanisms using OTFs
through the lens of their architectures. We first discuss the
semantics and costs of UPDATE/DELETE operations, then
turn to key performance aspects of streaming ingestion.

III. ARCHITECTURAL CHARACTERISTICS OF APACHE ICEBERG
AND APACHE PAIMON

A. Drawbacks of data lake table storage

Hadoop-based data lakes typically store data in Parquet or
ORC [1], [3], [10]. When updates are required, the common
approach is to rewrite an entire table or partition. At scale this
is compute- and I/O-intensive and, due to the absence of
snapshot-level isolation, readers may observe transient errors or
inconsistent states during rewrites [1, 10]. A central component
of this stack is the Hive Metastore (HMS), which catalogs
schemas, partitions, physical locations, and statistics for
compute engines [10]. Fig. 1 shows a data storage scheme
when using Hive Metastore and Parquet. In practice, HMS
introduces constraints: metadata drift when files are added
outside the metastore (necessitating MSCK REPAIR/ALTER
PARTITION sweeps), limited scalability with very large
partition counts (slow listing and planning, high load on the
backing RDBMS), no snapshot consistency and limited ACID
guarantees for Parquet tables, and high operational cost for
bulk DDL and statistics maintenance [3], [10].

Metastore (HMS)

Table

location

File S

Y

ystem

Catalog

file.parquet

file.parquet

file.parquet

Fig. 1. Hive Metastore + Parquet storage system design

371

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

B. Snapshot abstraction in OTFs

Open table formats such as Apache Iceberg and Apache
Paimon introduce the data “snapshot™ abstraction. A snapshot
is metadata that points to a specific set of immutable data files;
on updates, only a subset of files is replaced, and the metadata
atomically switches to a new snapshot [10]. This ensures an
atomic version switch and immediate data consistency: a
consumer reads a strictly defined snapshot without observing
partially applied changes. As a result, the volume of rewritten
data is reduced compared with a “full rewrite”, which
positively affects latency and resource consumption for client
tasks. Integration for existing pipelines is generally
transparent: read/write operations gain performance and
functionality (atomic commits, schema evolution management,
time travel, etc.) without substantial changes to user code [3,
10].

C. Divergent update design

The differences between Iceberg and Paimon are largely
determined by their change-commit mechanisms and storage
organization. Iceberg supports two modes for row-level
changes: copy-on-write (COW) and merge-on-read (MOR). In
MOR mode, updates and deletes are recorded via “delete files”
(position deletes and/or equality deletes), and new/replacement
rows go into new data files; readers apply delete masks when
reading the corresponding snapshot. In COW mode, files
containing modified rows are repackaged in full. Both
approaches are committed as new metadata snapshots and
provide instant version switching for readers [10]. The
simplified data update scheme in Apache Iceberg is presented in
Fig. 2.

(— R ———)
I SNP-1 ; SNP-2 i
i datal : E deletel data3 E
i .parquet i Remove thei .parquet .parquet i
! i rowl ! i
| O ()
1 | Remove the1 1
i 1 rowK E !
| |
Row Row
: data2 i ! i
i .parquet ! ; !
N\ /

Fig. 2. Simplified data update scheme in Apache Iceberg

Paimon uses a different storage organization—based on an
LSM tree with buckets—which is oriented toward key-based
updates. When a primary key is present, an update is
represented as an upsert: a new version of the key is added to

ISSN 2305-7254

the next snapshot without the need to read the previous state
[11]. Consolidation and ordering of versions are performed via
background compactions. In typical scenarios, this approach
reduces write cost and latency compared with repackaging
files or extensive use of delete files. The data update scheme in
Apache Paimon is presented in Fig. 3. It should be noted that
updates/inserts in Paimon are appended as new runs and
reconciled on read, with background compaction merging files
later. This is merge-on-read by design. There is no copy-on-
write storage mode Paimon.

Remove the
row with id=M

SNP-1 i SNP-2
datal i data3
.parquet | Update the .parquet
i row with id=1
id=1 Row :

Row

data2
.parquet

I
1
I
I
I
1
1
1
I
1
I
I
1
1
I
1
I
I
1
1
I
1
1
1

7

Fig. 3. Simplified data update scheme in Apache Paimon

D. Streaming ingestion patterns

When processing an incoming data stream (e.g., from
Apache Kafka), Iceberg-based pipelines running on Spark
commonly adopt a match-against-current-state approach. The
system plans execution using table metadata, reads only the
relevant partitions, and joins the arriving increment with the
current snapshot to identify changed keys or rows. Despite
effective partition pruning, this strategy incurs substantial read
I/O and shuffle/join stages, which lowers end-to-end pipeline
throughput [10]. A simplified stream processing scheme with
Iceberg is described in Fig. 4.

-
Input data
stream Data reading
(Kafka)

Shuffle
Snapshot
Data

Fig. 4. Data update scheme with Apache Iceberg (MOR approach)

Merge-Into
process

(HDFS)

Merge-Into Data storage
process (HDFS)

Data storage]

In Paimon, the analogous task is typically optimized on the
write path. Kafka stream is ingested as a sequence of upsert
operations; records are shuffled by bucket and sorted within

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

each bucket, after which background processes compact the
data asynchronously [12]. Because only the incremental batch
(rather than the entire snapshot) is sorted and merged, network
and disk overhead are generally lower than with full matching
against the persisted state. In most practical cases, this yields
an advantage for Paimon in both write latency and write cost.

Data writing Dat; ;t:srage
Input data i (:
Data reading
L stream process
(Kafka) Bata wiiking Data storage
Shuffle (HDFS)

by bucket
Fig. 5. Data update scheme with Apache Paimon

IV. METHODOLOGY AND EXPERIMENTAL DESIGN
FOR DATA UPDATE

A. Experiment description

We conduct an experimental comparison of operation latency
and throughput on the Iceberg and Paimon OTFs. To assess
comparative performance across Parquet, Iceberg, and Paimon,
we generate a large synthetic dataset and execute a staged
workload comprising sequential SELECT and UPDATE
operations. This methodology intentionally abstracts away
pipeline complexity to approximate data-mart construction
while isolating storage-level effects. The resulting
measurements reveal practical differences in how the evaluated
table formats manage data updates and reads, providing
empirically grounded guidance for format selection in
real-world deployments.

B. Dataset description and table structure

The following datasets are used for experiments (Table II).

TABLE II. DATASETS DESCRIPTION

Table name Description

parquet_10b_part Partitioned Parquet Table (1 TB)

iceberg 10b_cow | Partitioned Iceberg Table (copy-on-write mode, 1 TB)

iceberg 10b_mor | Ppartitioned Iceberg Table (merge-on-read mode, 1 TB)

paimon_10b_part | Ppartitioned Paimon Table (merge-on-read mode, 1 TB)

All datasets consist of the table of the following format
(Table III):

TABLE III. TABLE FORMAT DESCRIPTION

Field name Type Description
id bigint integer value from 0 to 10,000,000,000
id_str string string in the form "id_" + a number from 1 to
10,000,000,000, left-padded with zeros to a
fixed length of 11 characters
data string random ASCII characters (a 100-character
string)
dt string current datetime (string) in the format "%Y-
%m-%d %H:%M:%S"
part int integer value from 0 to 10,000

ISSN 2305-7254

The data sample is presented in Table IV.

TABLE IV. Table data sample

id id_str data dt part
0 id_00000000000 | VTVEU... | 2025-03-07 0
21:40:08
1 id_00000000001 | J6TPR... 2025-03-07 0
21:40:08
9999999998 | id_09999999998 | TVCMI... | 2025-03-07 | 99999
22:02:12
9999999999 | 1d_09999999999 | G4839... 2025-03-07 | 99999
22:02:12

Table V summarizes the hardware configuration of the cluster
used for our experiments:

TABLE V. CLUSTER HARDWARE CONFIGURATION

Parameter Specification
CPU Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
RAM 768 GB (32 Gb x 24) DDR4 2400MHz
Disk Info 6Tb SATA III 7200rpm 128Mb
Number of 4
worker nodes

C. Component versions

Tests were carried out using the following versions of
programs (Table VI):

TABLE VI. CLUSTER SOFTWARE COMPONENTS VERSIONS

Software version
1.13.1
1.6.1
1.1.1
3.5.1
1.18

Software name
Apache Parquet
Apache Iceberg
Apache Paimon
Apache Spark
Apache Flink

D. Experiment description

Perform a read of 10% of the data using a filter on the
textual copy of the identifier

T write=a + bp

(M

select count (*) from where

id str < 'id 01000000000

{table}

Perform an update of 10% of the data using a filter on
the textual copy of the identifier

update {table} set dt {current} where
id str < 'id 01000000000' where id 3 0

%

Perform a read of the previously updated 10% of the
data using a filter on the textual copy of the identifier

select count (*) from {table} where

id str < 'id 01000000000

Perform an update of 20% of the data, with the first
10% updated twice

update {table} set dt {current} where
id str < 'id 02000000000' where id 3 1

%

373

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

twice

Perform a read of 10% of the data that were updated

select count (*) from where

id str < 'id 01000000000

{table}

Perform an update of 50% of the data, with the first
10% updated three times and the first 20% updated twice

update {table} set dt
id str < 'id 05000000000' where id

{current} where
% 3 2

°

 Perform a read of 10% of the data that were updated three
times

select count (*) from where

id str < 'id 01000000000

{table}

It should be noted, that the “id % 3" operation is used to avoid
rewriting entire data files.

IV. EXPERIMENTAL RESULTS AND ANALYSIS OF
DATA UPDATE

The results of the experiment are presented in Table VII.

TABLE VII. COMMAND EXECUTION TIME PER STEP

Parquet | Iceberg |Iceberg
Operation Type part (CoW) | (MoR) |Paimon
1. SELECT 10% read 00:57 00:33 00:47 | 00:37
2. UPDATE 10% write 06:00 02:18 02:58 | 03:22
3. SELECT 10% read 00:57 00:33 00:45 | 00:37
4. UPDATE 20% write 12:00 03:54 05:22 | 06:00
5. SELECT 10% read 00:57 00:34 00:47 | 00:35
6. UPDATE 50% write 30:00 07:39 11:28 | 14:28
7. SELECT 10% read 00:57 00:35 00:50 | 00:36

We can conclude that a simple affine model (1) explains the
observed write times with high fidelity and provides
actionable predictions and break-even thresholds among
Parquet, Iceberg (COW/MOR), and Paimon for batch
UPDATE workloads on a 1 TB table under the stated cluster
configuration:

Where

e T write is end-to-end write time for the step

(minutgs),

e p - fraction of rows updated in a step (in percent of
the 1 TB table),

e a (minutes, fixed overhead) — engine- and system-

level overheads that do not scale with p. This term captures

job planning and initialization (e.g., Spark/Flink
scheduling), = metadata = and commit operations
(snapshot/transaction), file/connection setup, and the

minimal I/O required even for very small updates. In the
limitp — 0, T write = a,

e) (minutes per percentage point) — marginal cost per
additional 1% of updated data. This term reflects the
scalable portion of work: file creation/rewrites, generation

and handling of delete files (for MOR modes), shuffle and

ISSN 2305-7254

sorting (and bucketing in Paimon), write amplification, and
portions of compaction work. Smaller b indicates cheaper
scaling of updates.

The visualization of the resulting mathematical model is
presented in Fig. 6.

Write latency vs. updated fraction p (%)
40 Spark executors x 4 vCPU, 16 GB RAM each

- Parquet (partitioned): y = -0.00 + 0.600x, R? = 1.000
——|ceberg (COW): y = 1.10 + 0.132x, Rz = 0.997
= |ceberg (MOR): y = 0.99 + 0.210x, R? = 0.999
== Paimon (MOR): y = 0.52 + 0.279x, R? = 1.000

30

25 A

N
o

Time (minutes)
=
w

10 A

20 30 40 50

Updated fraction p (%)

10

Fig. 6. Write-time model visualization for data update

Linear models for updates exhibit very high explanatory
power (R? > 0.995) for all formats, indicating that, at the tested
scales, per-step write time is well approximated by a fixed
overhead plus a term linear in the updated fraction.

Empirical estimates in our setup (40 Spark executors; 4
vCPU and 16 GB RAM each) illustrate these roles:

e Parquet (partitioned): a~= 0, b = 36.0 (R = 1.000)
Interpretation: purely proportional rewriting cost.
Iceberg (COW): a~57.8, b~ 8.03 (R2=0.995)

Interpretation: non-trivial fixed overhead
(planning/commit), low marginal cost per percent due to
file-level rewrites of affected data only.

Iceberg (MOR): a = 50.5, b = 12.75 (R = 0.998)

Interpretation: lower fixed overhead than COW but higher
marginal cost (delete files + later reconciliation).

Paimon (MOR): a = 35.5,b = 16.65 (R~ 0.999)

Interpretation: small fixed overhead; higher marginal cost
due to shuffle/bucketing and subsequent compactions.

V. METHODOLOGY AND EXPERIMENTAL DESIGN
FOR WAREHOUSE DATA INGESTION

The prior experiment evaluated data-mart—oriented
mutations (modifying records already stored in the
warehouse). Here, we examine warehouse ingestion and how
OTFs support this task efficiently. In banking settings, most
sources are high-throughput relational Online Transaction

374

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

Processing (OLTP) systems. Practically viable extraction
methods are limited to:

Change Data Capture (CDC)

e Application-level data capture

We exclude CDC replication into an intermediate database
with subsequent export to the warehouse because it materially
increases operational cost. In practice, CDC at the source is
casier to deploy (no source code changes), whereas
application-level capture requires per-system development,
integration, and testing [13]. Accordingly, we focus on CDC.

Under this approach, insert/update/delete events are
streamed from the OLTP database to an intermediate transport
layer — typically Kafka — then consumed by a warehouse
application and persisted in long-term columnar formats
(Parquet or ORC) suitable for OLAP.

A. Experiment description with CDC—Kafka—Flink—Paimon
pipeline

Our experiment implements a representative CDC—Kafka—
Flink—Paimon pipeline (Fig. 7).

HDFS/S3
Checkpoints

j

uo,

Flink RocksDB
State storage

=

, \ ¥
Input data flow
T " (Kafka) | | Flinkdataread

Data Source

Fig. 7 Loading pipeline architecture using Flink and Paimon

We stress-test the system with a recency-biased temporal
distribution that is demanding for traditional data lakes: daily
partitioning with most modifications concentrated in the last
three days, and the remainder uniformly distributed across the
previous 360 days (Table VIII).

We additionally model long per-key CDC chains
(distribution by chain length omitted here for brevity). The
simulated workload updates 1 billion primary keys per day,
yielding 1.5 billion CDC events per day in total.

TABLE VIII. DAILY PARTITION CHANGE PROBABILITIES WITH RECENCY

SKEW
Date Data change probability
Today 51.79%
Yesterday 25.89%
Two days ago 12.95%
Other days ~0.03%
1 year ago ~0.03%

B. Alternative warehouse ingestion architecture: CDC—Kafka—
Spark (micro-batch)—Parquet

ISSN 2305-7254

To benchmark against the Flink—Paimon design (Fig. 7),
we also implemented a two-stage Spark pipeline (Fig. 9). The
architecture separates the generation of row-level diffs from
their application, thereby making the impact of micro-batch
sizing and file-rewrite behavior explicit.

To ensure comparability with the preceding experiment:

Workload: same recency-biased temporal distribution
(Table VIII), daily partitioning, and long per-key CDC chains;
1 billion primary keys/day yielding 1.5 billion CDC
events/day, identical cluster configuration (Table V), the same
Kafka CDC topics and schemas.

Concept and data flow:

e Diff producer. A Spark job in micro-batch mode
consumes CDC events from Kafka and materializes row-level
changes as Parquet “diff files” in a staging area. The job can
optionally consult a “previous state” source—either a prior
Parquet snapshot in the lake or a Key-Value store—to

compute precise deltas per primary key.

e Diff apply. A second Spark micro-batch job reads the
staged diffs and merges them with the previous state to
produce a “new state” Parquet. A maintenance phase
(compaction/file coalescing) follows to mitigate small-file

proliferation. Downstream engines then query the optimized

data.
Staging: New| [Compaction &
State file (Consumers
(parque() maintenance

(Spark)

Kafka: CDC topics
(custom format with
signed messages)

Diff producer
(Spark micro
batch)

Staging: Diff
files
(parquet)

Diff apply
(Spark micro
batch)

Partition
dt=YYYY-MM-DD
(optional)
Key-Value DB

N of parquet files:
f1.IN

[

Previous state Previous state
OR
(parquet)

Fig. 9. Alternative warehouse-ingestion architecture: CDC-Katka—Spark
(micro-batch)—Parquet

The “new state” dataset is partitioned by date same as in the
previous experiment (dt=YYYY-MM-DD), each partition
comprising N Parquet files. Let B denote the micro-batch size
(number of CDC messages processed per batch). Within an
updated partition, the probability of rewriting k files grows
with the “pressure” B/N. In particular, we observe:

pl(B): probability that exactly 1 of N files is
rewritten;

p2(B): probability that exactly 2 of N files are
rewritten;

e pl(B) + p2(B) increases with B/N because larger
batches are more likely to touch multiple file ranges in the

same partition.

Which files are rewritten is governed by the specific key
ranges/rows affected by the batch. Even single-row updates
can trigger whole-file rewrites, and compaction cannot
eliminate the write amplification inherent to file-granular
formats.

Micro-batch sizing induces a classical balance:

375

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

e Small batches: frequent MERGE operations cause
repeated full-file rewrites, metadata growth, and frequent

commits (high write amplification and coordinator overhead).

e Large batches: heavyweight MERGE operations
increase memory pressure (shuffle/join/state), cause disk

spills, and raise end-to-end batch latency.

VI. EXPERIMENTAL RESULTS AND ANALYSIS OF
WAREHOUSE DATA INGESTION

On a cluster with the configuration in Table V, the
proposed architecture (Fig. 7) processes this feed in 1 hour 34
minutes while producing 15-minute snapshots, comfortably
meeting single-source daily ingestion needs and enabling
accelerated catch-up after failures.

The Spark micro-batch pipeline (Data Source-Kafka-
Spark micro-batch-Parquet, including compaction, required 3
hours 14 minutes with its best-tuned micro-batch
configuration, resulting in a 2 times longer end-to-end
runtime.

The gap is explained by:

File-level write amplification during MERGE, which
grows with B/N and produces metadata overhead and frequent
small commits for smaller batches.

e Resource pressure for larger batches

(shuffle/join/state), which increases spill and latency without
fully offsetting rewrite costs.

VII. CONCLUSION

e Across our experiments, both OTFs outperformed the

partitioned Parquet baseline for updates and reads. Read-side
gains arise from metadata-driven statistics pruning in Iceberg
and Paimon, whereas Parquet must scan the footers of all files
to enforce the id_str < 10% filter.

e Iceberg in MOR exhibits higher latency for reads (as
expected) and also for writes; the latter warrants further
investigation. A plausible cause is the overhead of producing
and handling delete files. In both cases, the penalty scales with
the fraction of modified data.

e Paimon is slower than Iceberg COW on writes
(substantially) and on reads (approximately proportional to the
amount of modified data), yet it reads faster than Iceberg
MOR. The write-side penalty is attributable to the additional
shuffle for sorting and bucketing. Notably, we used UPDATE
for interpretability, which avoids shuffle; in production,
MERGE INTO is more representative. Under MERGE INTO,
Iceberg’s advantage over Paimon is expected to narrow, and
with Paimon CDC Injection the advantage may shift to
Paimon.

e The CDC-Kafka—Flink—Paimon pipeline processed
1.5 billion CDC events in 1.5 hours, corresponding to an
average rate of ~2.78x10"5 events/s. The daily workload is
ingested about 16 times faster than real time (24 h / 1.5 h),
enabling rapid catch-up after outages.

ISSN 2305-7254

e Producing snapshots every 15 minutes with CDC—
Kafka—Flink—Paimon pipeline demonstrated manageable
commit overheads and consistency preservation without
intermediate databases.

e The Flink—Paimon pipeline design remains more
efficient for high-volume CDC ingestion into day-partitioned
lakes compared with the Spark pipeline. In our setting, it
achieves the same ingestion objective in half the time,
primarily by reducing write amplification and avoiding the
micro-batch trade-off that forces a choice between frequent
small rewrites and infrequent large, memory-intensive merges.

ACKNOWLEDGMENT

The authors thank Moscow Technical University of
Communications and Informatics (MTUCI) for providing the
facilities to conduct this research.

REFERENCES

[1] J. Schneider, C. Groger, A. Lutsch, H. Schwarz, and B. Mitschang,
“The lakehouse: State of the art on concepts and technologies,” SN
Computer Science, vol. 5, 2024, pp. 1-39.

[2] R. Cao and M. Iansiti, “Digital transformation, data architecture, and
legacy systems,” Journal of Digital Economy, vol. 1, 2022, pp. 1-19.

[3] M. Armbrust, A. Ghodsi, R. Xin, and M. Zaharia, “Lakehouse: A

376

PROCEEDING OF THE 38TH CONFERENCE OF FRUCT ASSOCIATION

new generation of open platforms that unify data warehousing and
advanced analytics,” 11th Annual Conference on Innovative Data
Systems Research (CIDR "21), 2021, pp. 1-8.

[4] A. R. Alleni, “AI/ML optimized lakehouse architecture: A
Comprehensive framework for modern data science”, World Journal
of Advanced Engineering Technology and Sciences, 2025, pp. 2099-
2104.

[5] The Apache Software Foundation Blog, Apache Software Foundation

Announces New Top-Level Project Apache® Paimon, Web:
https://news.apache.org/foundation/entry/apache-software-
foundation-announces-new-top-level-project-apache-paimon.

[6] Apache Paimon Documentation, Apache Paimon, Web:
https://paimon.apache.org/docs/1.1.

[71 Apache Paimon Documentation, Understand Files, Web:
https://paimon.apache.org/docs/1.1/learn-paimon/understand-files.

[8] S. Mishra, “A survey of LSM-Tree based Indexes, Data Systems and
KV-stores", IEEE International Students' Conference on Electrical,
Electronics and Computer Science (SCEECS), vol. 1, 2024, pp. 1-6.

[91 Apache Paimon Documentation, Configurations Web:
https://paimon.apache.org/docs/master/maintenance/configurations

[10] T. T. Shiran, J. Hughes, and A. Merced, Apache Iceberg: The
Definitive Guide. O'Reilly, 2024.

[11] A. V. Chaudhar, P. A. Charate, “Optimizing Data Lakehouse
Architectures for Scalable Real-Time Analytics”, International
Journal of Scientific Research in Science Engineering and
Technology, vol. 12,2025, pp. 809-822.

[12] Apache Paimon Documentation, Bucketed | Apache Paimon, Web:
https://paimon.apache.org/docs/master/append-table/bucketed.

[13] R. Sahu “Real-time Data Integration: The Evolution of CDC
Architecture”, Journal of Information Systems Engineering &
Management, 2025, pp. 605-615.

