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Abstract—This paper presents a sequential Distributed Model
Predictive Control (DMPC) solution for multi-robot navigation.
The method targets scenarios where multiple agents must reach
designated goals while avoiding collisions in a shared envi-
ronment. Unlike centralized Model Predictive Control (MPC),
which suffers from scalability and communication bottlenecks,
the proposed solution decomposes the problem into local opti-
mizations solved sequentially in a fixed cyclic order. Collision
avoidance is enforced through dynamically activated constraints,
which are introduced only when predicted inter-agent distances
fall below a threshold, thereby reducing conservatism while
ensuring safety. The solution is implemented in Robot Operating
System (ROS) using the ChoiRbot library [1] and extended to
support unicycle dynamics, two-dimensional motion, and soft
Manhattan distance constraints. Simulation results in Gazebo
with TurtleBot3 robots demonstrate collision-free convergence
in both sparse two-agent and dense four-agent intersection
scenarios. These findings highlight the potential of sequential
DMPC as a scalable and communication-efficient solution for
safe multi-robot coordination.

I. INTRODUCTION

Multi-robot systems are now becoming common in industry

and research [2], [3], [4]. However, when robots differ in capa-

bilities, sensing, or tasks, coordinating their motion in a shared

environment becomes non-trivial [5]. This creates the need

for control strategies that ensure both safety and efficiency.

Addressing this challenge is critical for deploying robust and

scalable autonomous systems in real-world conditions.

Multi-agent coordination strategies range from classical for-

mation control to predictive optimization methods. Although

formation control has been widely applied in swarms, con-

voys, and underwater exploration, it faces critical limitations

in heterogeneous and obstacle-rich environments [6]. MPC

and its distributed variant (DMPC) address these challenges

by jointly planning trajectories, handling constraints, and

integrating path planning with path following in a unified

optimization framework [7], [8]. These properties make MPC-

based methods particularly promising for scalable, resilient

multi-robot coordination under real-world conditions [9].

This work addresses decentralized multi-robot navigation

using a sequential DMPC approach for ground robots with

unicycle dynamics. Each agent solves a local MPC problem

at every control cycle, accounting for its kinematic constraints

and collision avoidance, while exchanging trajectory informa-

tion with neighboring robots in a ring communication topol-

ogy. The system is implemented and validated in ROS2 and

Gazebo, with TurtleBot3 Burger robots as test agents. Inter-

agent communication and distributed control are handled using

ChoiRbot, extended here to support two-dimensional motion,

trajectory coordination, and collision-avoidance constraints.

The primary contribution of this work is a practical and scal-

able DMPC architecture that enables decentralized collision

avoidance with minimal communication overhead. We vali-

dated the solution’s effectiveness through a realistic simulation

testbed built with ROS 2 and Gazebo. In this setup, TurtleBot3

robots coordinate their planned paths by exchanging trajectory

information with their neighbors over a predefined ring com-

munication topology. This system demonstrates the feasibility

of the sequential DMPC approach for robust, decentralized

trajectory planning and serves as a testbed for scalable multi-

robot coordination algorithms.

The remainder of this paper is organized as follows. Section

II provides the necessary background, reviewing the princi-

ples of Model Predictive Control and the relevant literature

on multi-robot coordination. Section III details the proposed

methodology, including the unicycle robot model, the specific

formulation of the sequential DMPC controller, and the com-

munication architecture. Section IV presents the experimental

setup and discusses the simulation results, and finally, Section

V concludes the paper with an outline of future work.

II. BACKGROUND

A. Model Predictive Control

MPC is a receding-horizon strategy that predicts the sys-

tem’s evolution over a finite horizon, computes the optimal

control sequence, and applies only the first input before

repeating the process at the next step [10]. This predictive

mechanism enables MPC to adapt continuously to disturbances

and interactions. A key advantage is its ability to explicitly

handle constraints on inputs, states, and inter-agent distances,

making it highly suitable for robotic navigation tasks [11],

[12]. In multi-robot systems, these features allow MPC to
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unify path planning and path following in a single optimization

framework, ensuring both convergence to goals and collision-

free coordination.

At each control step, the MPC problem is formulated as

minimizing a cost function that penalizes deviations from the

reference trajectory and the use of control effort [13]:

min
U(k)

J =

T−1∑
t=0

(‖x(k + t)− xref(k + t)‖2Q + ‖u(k + t)‖2R
)
,

(1)

subject to the system dynamics and constraints

State constraints: xmin ≤ x(k + t) ≤ xmax, (2)

Input constraints: umin ≤ u(k + t) ≤ umax, (3)

System dynamics: x(k + 1) = f(x(k), u(k)), (4)

Here, x(k + t) ∈ R
n represents the predicted system state,

xref(k + t) is the reference trajectory, u(k + t) ∈ R
m is the

control input, and Q � 0, R � 0 are weighting matrices that

prioritize tracking accuracy and control effort, respectively.

The optimization is subject to the system dynamics and

constraints summarized in Eqs. (3)–(4). The dynamics in

Eq. (4) ensure that the predicted trajectory respects the system

model. The state constraints in Eq. (2) limit the predicted states

to admissible ranges, while the input constraints in Eq. (3)

restrict control inputs to feasible values.

By solving this optimization at every control step and

applying only the first input u(k), MPC implements a reced-

ing horizon strategy that adapts to disturbances and model

uncertainties, ensuring feasible and smooth trajectories while

respecting constraints.

While MPC is effective for controlling a single robot,

scaling to multi-robot systems requires coordination across

agents. A centralized MPC approach can jointly optimize

all trajectories, but this quickly becomes computationally

demanding as the number of robots increases and requires

global state information.

Distributed MPC (DMPC) addresses these limitations by

allowing each agent to solve its own local problem while

sharing predictions with neighbors, improving scalability and

modularity [12]. However, many distributed schemes rely

on iterative exchanges per control cycle, which may not be

feasible in real time [14].

B. Related Work

Early research in multi-robot coordination focused on for-
mation control, where agents maintain fixed spatial relation-

ships to move as a group. While effective for synchronized

motion in UAV swarms and convoys, these methods rely on

strong assumptions of homogeneity and static environments.

As noted by Liu et al. [6], formation control struggles with

heterogeneous agents and obstacle-rich environments, where

rigid formations must reconfigure or break, limiting flexibility

and scalability.

To overcome these limitations, predictive approaches based

on Model Predictive Control (MPC) have gained prominence

[15], [16]. MPC predicts the system’s evolution over a fi-

nite horizon, computes the optimal control sequence, and

applies only the first input before repeating the process [10],

[17]. Its ability to explicitly handle input, state, and distance

constraints makes it well suited for robotic navigation and

coordination [11], [12]. By combining short-horizon planning

and feedback control, MPC can unify path planning and

path following, ensuring both goal convergence and collision

avoidance [18], [19].

However, centralized MPC architectures scale poorly with

the number of robots and depend on global communication [9].

Distributed MPC (DMPC) addresses these issues by allow-

ing each agent to solve a local optimization problem while

exchanging predicted trajectories with neighbors [12], [20].

Sequential and iterative DMPC variants improve scalability

and coordination: sequential approaches reduce communi-

cation by optimizing agents in order [21], while iterative

schemes enhance performance through repeated exchanges at

higher computational cost [22]–[24]. Hierarchical MPC further

improves scalability by separating high-level planning from

low-level control [25], [26], though at the cost of greater

system complexity.

A critical design aspect in MPC-based navigation is model

selection. Kinematic models, which capture geometric motion

while ignoring dynamics, are computationally efficient and

enable convex formulations [27]–[29]. Dynamic models offer

higher fidelity but introduce nonlinearities that hinder real-time

performance [17]. Comparative studies confirm that linearized

kinematic MPC provides an excellent trade-off between effi-

ciency and accuracy for moderate-speed mobile robots [27],

[28].

In navigation, MPC bridges the gap between global path

planning and local control. Classical planners such as A*

and RRT generate feasible global paths [30], [31], while

local controllers like Pure Pursuit or Stanley ensure path

following [32]. MPC integrates both roles, continuously opti-

mizing trajectories with built-in obstacle avoidance and goal-

tracking [18], [19]. Convex relaxations such as Manhattan-

distance surrogates [23] are commonly used to retain feasibil-

ity with solvers like CVXOPT under tight constraints.

Overall, the literature reflects a progression from rigid for-

mation control toward predictive, distributed methods such as

DMPC. Among these, sequential DMPC achieves a practical

balance between coordination quality, real-time feasibility, and

scalability, making it an effective approach for multi-robot

navigation in dynamic environments.

III. METHODOLOGY

To balance tractability and coordination, we adopt a se-
quential DMPC strategy. In this scheme, agents update their

trajectories one after another in a fixed cyclic order, each

incorporating the most recent predictions of its predecessors.

This reduces communication overhead compared to iterative

schemes, while still ensuring that coupling constraints such

as collision avoidance are respected [21]. The approach is

implemented using the ROS 2-based ChoiRbot framework [1],
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extended here to support unicycle dynamics and on-demand

collision-avoidance constraints.

ChoiRbot Framework

The proposed approach is implemented using the ChoiRbot

framework [1], a ROS 2-compatible library for distributed

optimization and cooperative control. ChoiRbot provides a

lightweight infrastructure for defining local MPC problems

and exchanging trajectories among agents, making it well

suited for testing DMPC strategies. In this work, we extend the

framework from its original single-integrator model to support

unicycle dynamics, two-dimensional motion, and dynamic

collision-avoidance constraints, enabling realistic multi-robot

navigation experiments with TurtleBot3 robots in Gazebo.

A. Robot Model and Dynamics

Each agent is modeled as a unicycle robot with state

x(k) = [px(k), py(k), θ(k)]
�, where px(k) and py(k) denote

the planar position, and θ(k) is the heading angle. The input

is defined as u(k) = [v(k), ω(k)]�, with v(k) being the

linear velocity along the robot’s heading and ω(k) the angular

velocity. The discrete-time dynamics are expressed as

x(k + 1) = A(θ(k))x(k) +B(θ(k))u(k),

with

A(θ(k)) =

⎡
⎣1 0 −dt v(k) sin(θ(k))
0 1 dt v(k) cos(θ(k))
0 0 1

⎤
⎦ , (5)

B(θ(k)) =

⎡
⎣dt cos(θ(k)) 0
dt sin(θ(k)) 0

0 dt

⎤
⎦ , (6)

where dt is the sampling time.

The matrix A(θ(k)) in Eq. (5) captures the heading-

dependent state evolution, while B(θ(k)) in Eq. (6) maps the

control inputs to state changes. This linearized form retains

the nonlinearity of the unicycle model while maintaining

convexity for efficient MPC optimization.

B. Controller Formulation

At each control cycle k, agent i solves a finite-horizon

quadratic program (QP) based on the general MPC formu-

lation in Eqs. (3)–(4), with linearized dynamics to track its

reference while enforcing safety through dynamically acti-
vated collision-avoidance constraints and a terminal guiding
constraint. Let t ∈ {0, . . . , T−1} denote prediction steps and

use the shorthand x
(i)
t =x(i)(k+t), u

(i)
t =u(i)(k+t).

Objective: The agent-specific cost function extends the

general cost in Eq. (1) by including collision-avoidance and

slack penalties:

J (i)(k) =

T−1∑
t=0

(
‖x(i)

t − x
(i)
ref,t‖2Q︸ ︷︷ ︸

state tracking

+ ‖u(i)
t ‖2R︸ ︷︷ ︸

control effort

+λs

∑
j∈Ni

s
(i,j)
t + λa

∑
j∈Ni

(
a
(i,j)
x,t + a

(i,j)
y,t

))
, (7)

Subject to constraints (all t = 0, . . . , T−1 unless stated):
These constraints correspond to the general bounds and dy-

namics in Eqs. (3)–(4), specialized for agent i:

Dynamics: x
(i)
t+1 = Ax

(i)
t +B(θ

(i)
t )u

(i)
t , (8)

Input bounds: umin ≤ u
(i)
t ≤ umax, (9)

State bounds: xmin ≤ x
(i)
t ≤ xmax, (10)

Initial condition: x
(i)
0 = x

(i)
current. (11)

Here, s
(i,j)
t ≥ 0 is a slack variable acting as a soft safety

margin, and a
(i,j)
x,t , a

(i,j)
y,t ≥ 0 are Manhattan auxiliaries for

collision avoidance. The matrices Q and R weight deviations

from the reference state and control effort, while λs and λa

penalize reliance on slack or auxiliary variables. The heading

reference θref is computed from the goal direction and de-

weighted when the agent is within 0.5 m of the target to reduce

oscillations.

In summary, this agent-specific QP can be seen as a direct

specialization of the generic MPC problem in Eqs. (1)–(4),

enriched with safety and coordination terms for the multi-agent

scenario.

Terminal guiding constraint: To encourage steady

progress toward the goal, a terminal guiding constraint is

imposed at the end of the prediction horizon. At time step k,

an advancing subgoal is defined via linear interpolation with

parameter α ∈ (0, 1):

x
(i)
term(k) = x(i)(k) + α

(
x
(i)
goal − x(i)(k)

)
,

y
(i)
term(k) = y(i)(k) + α

(
y
(i)
goal − y(i)(k)

)
.

At the terminal prediction step t = T , the agent’s predicted

position is constrained to remain within a tolerance box around

the subgoal:

x
(i)
term(k)− ε(k) ≤ x

(i)
T ≤ x

(i)
term(k) + ε(k),

y
(i)
term(k)− ε(k) ≤ y

(i)
T ≤ y

(i)
term(k) + ε(k), (12)

where the tolerance ε(k) decreases with the current distance

to the goal and is clamped to predefined bounds to ensure

feasibility on short horizons while promoting consistent con-

vergence.

The resulting optimization problem is solved using CVX-

OPT [33], a QP solver integrated into the DISROPT library

within CHOIRBOT [1]. As CVXOPT supports only linear

equality and inequality constraints, the problem formulation in

Eqs. (8)–(12) is maintained in convex form. However, when

numerous constraints are simultaneously active, numerical

conditioning may degrade, potentially leading to reported

infeasibility despite theoretical feasibility. To mitigate these

issues, collision-avoidance constraints are expressed in a con-

vex Manhattan formulation and are dynamically activated only

when potential conflicts are predicted, thereby improving both

numerical robustness and real-time tractability.
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Dynamic collision avoidance (on-demand Manhattan
form): For each neighboring agent j ∈ Ni, the predicted

pairwise distance is computed as

d
(i,j)
t =

∥∥[x(i)
t − x

(j)
t , y

(i)
t − y

(j)
t ]�

∥∥
2
.

The collision-avoidance constraint is dynamically activated
when the predicted minimum distance mint d

(i,j)
t falls below a

predefined activation threshold dactivate. This activation strategy

limits constraint enforcement to relevant time steps, improving

numerical efficiency and scalability.

To preserve convexity of the overall Quadratic Program

(QP), the Euclidean separation constraint d
(i,j)
t ≥ dmin is

relaxed into a linear Manhattan form:

|x(i)
t − x

(j)
t | ≤ a

(i,j)
x,t , |y(i)t − y

(j)
t | ≤ a

(i,j)
y,t ,

(13)

a
(i,j)
x,t + a

(i,j)
y,t + s

(i,j)
t ≥ dmin, s

(i,j)
t ∈ [0, smax], (14)

where a
(i,j)
x,t and a

(i,j)
y,t are nonnegative auxiliary variables

that bound the absolute position differences in the x- and

y-directions, respectively, and s
(i,j)
t ≥ 0 is a slack variable

that relaxes the constraint to ensure feasibility under close

interactions. The parameter dmin defines the minimum allow-

able distance between any two agents, and smax caps the

permissible violation range.

The penalty terms associated with s
(i,j)
t and a

(i,j)
x,t , a

(i,j)
y,t

appear in the local objective function in Eq. (7), weighted

by coefficients λs � λa ≥ 0. A large λs enforces near-

hard safety by discouraging slack activation, while smaller λa

values maintain convexity and numerical stability. Together,

Eqs. (13)–(14) define a convex surrogate that approximates cir-

cular collision boundaries with Manhattan geometry, ensuring

tractable and feasible multi-agent optimization even in dense

environments.

C. Communication and Execution Flow

The agents interact over an undirected communication graph

defined by an adjacency matrix. A ring topology is adopted,

where each agent communicates with its two immediate neigh-

bors. For the four-agent setup, the adjacency matrix is:

A =

⎡
⎢⎢⎣
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤
⎥⎥⎦

This ensures that agent i exchanges trajectories with agents

(i − 1) and (i + 1), enabling distributed coordination based

on local information only. Communication is assumed instan-

taneous unless otherwise specified.

Execution follows a sequential scheme: each agent waits

until it receives the updated trajectory from its predecessor

before solving its local MPC problem. After optimization, the

agent forwards its predicted trajectory to the next neighbor,

and the first control inputs are applied.

Algorithm 1 Sequential DMPC Execution per Agent

1: Receive predicted trajectories from neighbors

2: Compute predicted inter-agent distances (Euclidean)

3: if any predicted distance < dactivate then
4: Initialize MPC with motion and collision constraints

(Manhattan form)

5: else
6: Initialize MPC with basic motion constraints only

7: end if
8: Solve the local MPC optimization problem

9: Apply first control input and shift the prediction horizon

10: Share updated predicted trajectory with neighbors

11: Loop to next control cycle

The procedure is summarized in Algorithm 1. At each cycle,

agents incorporate the latest shared trajectories, predict inter-

agent distances, and activate collision-avoidance constraints

only if a violation is imminent. This enables efficient on-

demand collision avoidance without introducing unnecessary

conservatism.

IV. EXPERIMENT AND RESULTS

The evaluation is designed to verify that the proposed

DMPC system enables all agents to reach their assigned

goals while avoiding inter-agent collisions. Two performance

aspects are considered: convergence and safety. Convergence is

assessed by monitoring the distance-to-goal over time for each

agent, which shows whether agents consistently approach their

targets. Safety is quantified by the minimum pairwise distance

between agents,

dmin(k) = min
i�=j

‖xi(k)− xj(k)‖2,

which must remain above the safety threshold dsafe throughout

the simulation. In addition to these quantitative measures,

qualitative trajectory plots are used to illustrate how the agents

interact and avoid collisions under different scenarios.

A. First Case: Two-Agent Crossing Scenario

To validate the collision avoidance mechanism, we begin

with a simple two-agent setup. The agents start at opposite

corners of the environment and are assigned diagonally oppo-

site goals, which forces their paths to cross near the center, as

implemented in [23]. This configuration directly tests whether

the DMPC controller can ensure safety while both agents

converge to their targets.

As shown in Fig. 1, the agents briefly deviate from their

straight paths when the predicted inter-agent distance ap-

proaches the safety margin. This deviation originates from the

optimization problem itself: the collision-avoidance constraint

activates only when necessary and deactivates once separation

is restored. After passing the point of closest encounter, both

agents resume direct goal-seeking motion.

Fig. 2 confirms that the minimum pairwise distance never

falls below the threshold. The constraint activates preemp-

tively, resolving the potential conflict without oscillations or
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Fig. 1. Two-agent crossing scenario: planned trajectories. Both robots reach
their goals without collisions

Fig. 2. Two-agent crossing scenario: minimum inter-agent distance over time.
The red dashed line indicates the safety threshold dsafe = 0.2 m

deadlocks. Both robots reach their goals, demonstrating that

the distributed controller ensures collision-free convergence

even in direct crossing encounters.

B. Second Case: Four-Agent Fully Intersecting Scenario

To test robustness under dense interactions, a scenario with

four agents and fully intersecting trajectories was simulated.

Each agent starts at a corner of the environment and is assigned

the diagonally opposite goal, creating simultaneous conflicts

in the center.

As shown in Fig. 3, the agents deviate smoothly from

their straight paths as they approach the intersection zone.

Multiple avoidance constraints activate in parallel, yet all

agents maintain progress toward their goals. The avoidance

maneuvers are transient and anticipatory: once safe spacing

is restored, each robot resumes a direct route to its target.

This demonstrates that the distributed formulation can handle

overlapping interactions without centralized coordination.

Fig. 4 confirms that the minimum pairwise distance never

falls below the safety threshold, despite multiple agents en-

tering the central region simultaneously. The lowest value

is observed around iteration 20–30, corresponding to peak

congestion, but safety is preserved throughout. All four agents

converge successfully, showing that the proposed DMPC

Fig. 3. Four-agent intersection scenario: planned trajectories. All robots pass
through the central region without collisions

Fig. 4. Four-agent intersection scenario: minimum inter-agent distance over
time. The red dashed line marks the safety threshold dsafe = 0.2 m

framework ensures feasibility, collision avoidance, and con-

vergence even under high-density, multi-agent interactions.

Both scenarios confirm that the controller achieves collision-

free convergence under sparse and dense interactions, without

centralized coordination.

V. CONCLUSION

This work presented an implementation of a sequential dis-

tributed Model Predictive Control (DMPC) method for multi-

robot navigation, developed in ROS 2 using the CHOIRBOT li-

brary and evaluated in Gazebo simulations. The approach com-

bines predictive planning with dynamic, on-demand collision-

avoidance constraints, allowing multiple agents to coordinate

their motion without centralized control. Results from two

benchmark scenarios, a two-agent crossing and a four-agent

full intersection, demonstrated collision-free convergence to

their respective goals. These results confirm the effectiveness

of sequential DMPC for safe and scalable multi-robot coordi-

nation.

Several directions remain for future work. First, the scal-

ability of the sequential DMPC approach should be further

investigated, particularly regarding how communication delays

and fleet size affect performance. Second, systematic meth-

ods for tuning cost weights and penalty parameters could
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improve robustness across diverse environments. Third, while

the current study focused on homogeneous agents, the formu-

lation naturally extends to heterogeneous robots with differing

dynamics, sensing capabilities, and task priorities. Finally,

incorporating nonlinear MPC formulations and validating the

system on physical robot platforms represent promising steps

toward real-world deployment.
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