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Abstract—This paper presents a sequential Distributed Model
Predictive Control (DMPC) solution for multi-robot navigation.
The method targets scenarios where multiple agents must reach
designated goals while avoiding collisions in a shared envi-
ronment. Unlike centralized Model Predictive Control (MPC),
which suffers from scalability and communication bottlenecks,
the proposed solution decomposes the problem into local opti-
mizations solved sequentially in a fixed cyclic order. Collision
avoidance is enforced through dynamically activated constraints,
which are introduced only when predicted inter-agent distances
fall below a threshold, thereby reducing conservatism while
ensuring safety. The solution is implemented in Robot Operating
System (ROS) using the ChoiRbot library [1] and extended to
support unicycle dynamics, two-dimensional motion, and soft
Manhattan distance constraints. Simulation results in Gazebo
with TurtleBot3 robots demonstrate collision-free convergence
in both sparse two-agent and dense four-agent intersection
scenarios. These findings highlight the potential of sequential
DMPC as a scalable and communication-efficient solution for
safe multi-robot coordination.

I. INTRODUCTION

Multi-robot systems are now becoming common in industry
and research [2], [3], [4]. However, when robots differ in capa-
bilities, sensing, or tasks, coordinating their motion in a shared
environment becomes non-trivial [5]. This creates the need
for control strategies that ensure both safety and efficiency.
Addressing this challenge is critical for deploying robust and
scalable autonomous systems in real-world conditions.

Multi-agent coordination strategies range from classical for-
mation control to predictive optimization methods. Although
formation control has been widely applied in swarms, con-
voys, and underwater exploration, it faces critical limitations
in heterogeneous and obstacle-rich environments [6]. MPC
and its distributed variant (DMPC) address these challenges
by jointly planning trajectories, handling constraints, and
integrating path planning with path following in a unified
optimization framework [7], [8]. These properties make MPC-
based methods particularly promising for scalable, resilient
multi-robot coordination under real-world conditions [9].

This work addresses decentralized multi-robot navigation
using a sequential DMPC approach for ground robots with
unicycle dynamics. Each agent solves a local MPC problem
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at every control cycle, accounting for its kinematic constraints
and collision avoidance, while exchanging trajectory informa-
tion with neighboring robots in a ring communication topol-
ogy. The system is implemented and validated in ROS2 and
Gazebo, with TurtleBot3 Burger robots as test agents. Inter-
agent communication and distributed control are handled using
ChoiRbot, extended here to support two-dimensional motion,
trajectory coordination, and collision-avoidance constraints.

The primary contribution of this work is a practical and scal-
able DMPC architecture that enables decentralized collision
avoidance with minimal communication overhead. We vali-
dated the solution’s effectiveness through a realistic simulation
testbed built with ROS 2 and Gazebo. In this setup, TurtleBot3
robots coordinate their planned paths by exchanging trajectory
information with their neighbors over a predefined ring com-
munication topology. This system demonstrates the feasibility
of the sequential DMPC approach for robust, decentralized
trajectory planning and serves as a testbed for scalable multi-
robot coordination algorithms.

The remainder of this paper is organized as follows. Section
I provides the necessary background, reviewing the princi-
ples of Model Predictive Control and the relevant literature
on multi-robot coordination. Section III details the proposed
methodology, including the unicycle robot model, the specific
formulation of the sequential DMPC controller, and the com-
munication architecture. Section IV presents the experimental
setup and discusses the simulation results, and finally, Section
V concludes the paper with an outline of future work.

II. BACKGROUND
A. Model Predictive Control

MPC is a receding-horizon strategy that predicts the sys-
tem’s evolution over a finite horizon, computes the optimal
control sequence, and applies only the first input before
repeating the process at the next step [10]. This predictive
mechanism enables MPC to adapt continuously to disturbances
and interactions. A key advantage is its ability to explicitly
handle constraints on inputs, states, and inter-agent distances,
making it highly suitable for robotic navigation tasks [11],
[12]. In multi-robot systems, these features allow MPC to
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unify path planning and path following in a single optimization
framework, ensuring both convergence to goals and collision-
free coordination.

At each control step, the MPC problem is formulated as
minimizing a cost function that penalizes deviations from the
reference trajectory and the use of control effort [13]:

T—1
min J = 3 ([(k+£) = zur(k + 0l + uh+ 1),
t=0
(1
subject to the system dynamics and constraints
State constraints: Tmin < 2(k +t) < Tmax, (2)

Input constraints:  umin < w(k + 1) < Umax, 3)

w(k+1) = f(z(k),uk), @

Here, x(k + t) € R™ represents the predicted system state,
Zyet(k + 1) is the reference trajectory, u(k + t) € R™ is the
control input, and @ = 0, R > 0 are weighting matrices that
prioritize tracking accuracy and control effort, respectively.

The optimization is subject to the system dynamics and
constraints summarized in Egqs. (3)-(4). The dynamics in
Eq. (4) ensure that the predicted trajectory respects the system
model. The state constraints in Eq. (2) limit the predicted states
to admissible ranges, while the input constraints in Eq. (3)
restrict control inputs to feasible values.

By solving this optimization at every control step and
applying only the first input u(k), MPC implements a reced-
ing horizon strategy that adapts to disturbances and model
uncertainties, ensuring feasible and smooth trajectories while
respecting constraints.

While MPC is effective for controlling a single robot,
scaling to multi-robot systems requires coordination across
agents. A centralized MPC approach can jointly optimize
all trajectories, but this quickly becomes computationally
demanding as the number of robots increases and requires
global state information.

Distributed MPC (DMPC) addresses these limitations by
allowing each agent to solve its own local problem while
sharing predictions with neighbors, improving scalability and
modularity [12]. However, many distributed schemes rely
on iterative exchanges per control cycle, which may not be
feasible in real time [14].

System dynamics:

B. Related Work

Early research in multi-robot coordination focused on for-
mation control, where agents maintain fixed spatial relation-
ships to move as a group. While effective for synchronized
motion in UAV swarms and convoys, these methods rely on
strong assumptions of homogeneity and static environments.
As noted by Liu et al. [6], formation control struggles with
heterogeneous agents and obstacle-rich environments, where
rigid formations must reconfigure or break, limiting flexibility
and scalability.

To overcome these limitations, predictive approaches based
on Model Predictive Control (MPC) have gained prominence
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[15], [16]. MPC predicts the system’s evolution over a fi-
nite horizon, computes the optimal control sequence, and
applies only the first input before repeating the process [10],
[17]. Tts ability to explicitly handle input, state, and distance
constraints makes it well suited for robotic navigation and
coordination [11], [12]. By combining short-horizon planning
and feedback control, MPC can unify path planning and
path following, ensuring both goal convergence and collision
avoidance [18], [19].

However, centralized MPC architectures scale poorly with
the number of robots and depend on global communication [9].
Distributed MPC (DMPC) addresses these issues by allow-
ing each agent to solve a local optimization problem while
exchanging predicted trajectories with neighbors [12], [20].
Sequential and iterative DMPC variants improve scalability
and coordination: sequential approaches reduce communi-
cation by optimizing agents in order [21], while iterative
schemes enhance performance through repeated exchanges at
higher computational cost [22]-[24]. Hierarchical MPC further
improves scalability by separating high-level planning from
low-level control [25], [26], though at the cost of greater
system complexity.

A critical design aspect in MPC-based navigation is model
selection. Kinematic models, which capture geometric motion
while ignoring dynamics, are computationally efficient and
enable convex formulations [27]-[29]. Dynamic models offer
higher fidelity but introduce nonlinearities that hinder real-time
performance [17]. Comparative studies confirm that linearized
kinematic MPC provides an excellent trade-off between effi-
ciency and accuracy for moderate-speed mobile robots [27],
[28].

In navigation, MPC bridges the gap between global path
planning and local control. Classical planners such as A*
and RRT generate feasible global paths [30], [31], while
local controllers like Pure Pursuit or Stanley ensure path
following [32]. MPC integrates both roles, continuously opti-
mizing trajectories with built-in obstacle avoidance and goal-
tracking [18], [19]. Convex relaxations such as Manhattan-
distance surrogates [23] are commonly used to retain feasibil-
ity with solvers like CVXOPT under tight constraints.

Overall, the literature reflects a progression from rigid for-
mation control toward predictive, distributed methods such as
DMPC. Among these, sequential DMPC achieves a practical
balance between coordination quality, real-time feasibility, and
scalability, making it an effective approach for multi-robot
navigation in dynamic environments.

III. METHODOLOGY

To balance tractability and coordination, we adopt a se-
quential DMPC strategy. In this scheme, agents update their
trajectories one after another in a fixed cyclic order, each
incorporating the most recent predictions of its predecessors.
This reduces communication overhead compared to iterative
schemes, while still ensuring that coupling constraints such
as collision avoidance are respected [21]. The approach is
implemented using the ROS 2-based ChoiRbot framework [1],
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extended here to support unicycle dynamics and on-demand
collision-avoidance constraints.

ChoiRbot Framework

The proposed approach is implemented using the ChoiRbot
framework [1], a ROS 2-compatible library for distributed
optimization and cooperative control. ChoiRbot provides a
lightweight infrastructure for defining local MPC problems
and exchanging trajectories among agents, making it well
suited for testing DMPC strategies. In this work, we extend the
framework from its original single-integrator model to support
unicycle dynamics, two-dimensional motion, and dynamic
collision-avoidance constraints, enabling realistic multi-robot
navigation experiments with TurtleBot3 robots in Gazebo.

A. Robot Model and Dynamics

Each agent is modeled as a unicycle robot with state
z(k) = [pz(k), py(k), 0(k)] ", where p, (k) and p, (k) denote
the planar position, and (k) is the heading angle. The input
is defined as u(k) = [v(k), w(k)]", with v(k) being the
linear velocity along the robot’s heading and w(k) the angular
velocity. The discrete-time dynamics are expressed as

w(k+1) = A(6(k)) 2(k) + B(0(K)) u(k),
with

[1 0 —dtu(k) sin(0(k))

A@(k)) =10 1 dtuv(k) cos(6(k)) |, 5)
0 0 1
[dt cos(0(k)) 0

B(0(k)) = |dtsin(0(k)) 0], (6)
| 0 dt

where dt is the sampling time.

The matrix A(6(k)) in Eq. (5) captures the heading-
dependent state evolution, while B(0(k)) in Eq. (6) maps the
control inputs to state changes. This linearized form retains
the nonlinearity of the unicycle model while maintaining
convexity for efficient MPC optimization.

B. Controller Formulation

At each control cycle k, agent ¢ solves a finite-horizon
quadratic program (QP) based on the general MPC formu-
lation in Eqgs. (3)—(4), with linearized dynamics to track its
reference while enforcing safety through dynamically acti-
vated collision-avoidance constraints and a terminal guiding
constraint. Let ¢ € {0,...,T—1} denote prediction steps and
use the shorthand x(z) =z (k+t), uy) =u® (k+t).

Objective: The agent-specific cost function extends the
general cost in Eq. (1) by including collision-avoidance and
slack penalties:

~

JO0) =3 (Nt =2l 13+ [’ 1%

s

~
Il
=}

control effort

(’;’tj))), 7

state tracking

(L1])+)\ Z
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Subject to constraints (allt =0, ..., T—1 unless stated):
These constraints correspond to the general bounds and dy-
namics in Egs. (3)—(4), specialized for agent ¢:

Dynamics: x,H = Az" + BO)u”, (8
Input bounds:  tmin < u'” < Unmax, )
State bounds: zpin < xy) < Zmax, (10)

Initial condition: gc(()i) = ng,zwm. (11

Here, sff’ﬂ ) > 0 is a slack variable acting as a soft safety
margin, and ag’tj), ;L%] ) > 0 are Manhattan auxiliaries for
collision avoidance. The matrices () and R weight deviations
from the reference state and control effort, while \; and )\,
penalize reliance on slack or auxiliary variables. The heading
reference O, is computed from the goal direction and de-
weighted when the agent is within 0.5 m of the target to reduce
oscillations.

In summary, this agent-specific QP can be seen as a direct
specialization of the generic MPC problem in Egs. (1)—(4),
enriched with safety and coordination terms for the multi-agent
scenario.

Terminal guiding constraint: To encourage steady
progress toward the goal, a terminal guiding constraint is
imposed at the end of the prediction horizon. At time step k,
an advancing subgoal is defined via linear interpolation with
parameter « € (0, 1):

o (k) = 20 (k) + a(2l, — 2D (k)),
Yo (k) = 1D (B) + a(yi — @ (k).

At the terminal prediction step ¢ = T, the agent’s predicted
position is constrained to remain within a tolerance box around
the subgoal:

i (k) —
Yo (k) —

where the tolerance ¢(k) decreases with the current distance
to the goal and is clamped to predefined bounds to ensure
feasibility on short horizons while promoting consistent con-
vergence.

The resulting optimization problem is solved using CVX-
OPT [33], a QP solver integrated into the DISROPT library
within CHOIRBOT [1]. As CVXOPT supports only linear
equality and inequality constraints, the problem formulation in
Egs. (8)—(12) is maintained in convex form. However, when
numerous constraints are simultaneously active, numerical
conditioning may degrade, potentially leading to reported
infeasibility despite theoretical feasibility. To mitigate these
issues, collision-avoidance constraints are expressed in a con-
vex Manhattan formulation and are dynamically activated only
when potential conflicts are predicted, thereby improving both
numerical robustness and real-time tractability.

e(k) <2\ <2l (k) + e(k),

e(k) <y <ylh (k) +e(k),  (12)
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Dynamic collision avoidance (on-demand Manhattan
form): For each neighboring agent j € N;, the predicted
pairwise distance is computed as

40D = (2 — 2@, D

t Ut t(j)]THQ

-y
The collision-avoidance constraint is dynamically activated
when the predicted minimum distance min, d\"? falls below a
predefined activation threshold dycgvaee. This activation strategy
limits constraint enforcement to relevant time steps, improving
numerical efficiency and scalability.

To preserve convexity of the overall Quadratic Program
(QP), the Euclidean separation constraint dg” ) > d s
relaxed into a linear Manhattan form:
=y < ay),

(13)

i — 2| < afly,

al? +al? + 5 > di, s €0, S, (14)

where agz’f) and a?(f”t]) are nonnegative auxiliary variables
that bound the absolute position differences in the z- and
y-directions, respectively, and s,E” ) > 0 is a slack variable
that relaxes the constraint to ensure feasibility under close
interactions. The parameter d,,;;, defines the minimum allow-
able distance between any two agents, and Sp.x caps the
permissible violation range.

The penalty terms associated with si” ) and a;i’f),a&’tj )
appear in the local objective function in Eq. (7), weighted
by coefficients Ay > A, > 0. A large A\, enforces near-
hard safety by discouraging slack activation, while smaller A,
values maintain convexity and numerical stability. Together,
Egs. (13)—(14) define a convex surrogate that approximates cir-
cular collision boundaries with Manhattan geometry, ensuring
tractable and feasible multi-agent optimization even in dense
environments.

C. Communication and Execution Flow

The agents interact over an undirected communication graph
defined by an adjacency matrix. A ring topology is adopted,
where each agent communicates with its two immediate neigh-
bors. For the four-agent setup, the adjacency matrix is:

1
0
1

= o = O
_ O = O
— O

0 0

This ensures that agent 7 exchanges trajectories with agents
(i — 1) and (¢ + 1), enabling distributed coordination based
on local information only. Communication is assumed instan-
taneous unless otherwise specified.

Execution follows a sequential scheme: each agent waits
until it receives the updated trajectory from its predecessor
before solving its local MPC problem. After optimization, the
agent forwards its predicted trajectory to the next neighbor,
and the first control inputs are applied.
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Algorithm 1 Sequential DMPC Execution per Agent

1: Receive predicted trajectories from neighbors

2: Compute predicted inter-agent distances (Euclidean)

3: if any predicted distance < dye(iyae then

4:  Initialize MPC with motion and collision constraints

(Manhattan form)

5: else
6:  Initialize MPC with basic motion constraints only
7: end if
8
9

: Solve the local MPC optimization problem

: Apply first control input and shift the prediction horizon
10: Share updated predicted trajectory with neighbors
11: Loop to next control cycle

The procedure is summarized in Algorithm 1. At each cycle,
agents incorporate the latest shared trajectories, predict inter-
agent distances, and activate collision-avoidance constraints
only if a violation is imminent. This enables efficient on-
demand collision avoidance without introducing unnecessary
conservatism.

IV. EXPERIMENT AND RESULTS

The evaluation is designed to verify that the proposed
DMPC system enables all agents to reach their assigned
goals while avoiding inter-agent collisions. Two performance
aspects are considered: convergence and safety. Convergence is
assessed by monitoring the distance-to-goal over time for each
agent, which shows whether agents consistently approach their
targets. Safety is quantified by the minimum pairwise distance
between agents,

dmin (k) = Iln?gl [zi(k) — 2 (k)]l2,

which must remain above the safety threshold dg,g throughout
the simulation. In addition to these quantitative measures,
qualitative trajectory plots are used to illustrate how the agents
interact and avoid collisions under different scenarios.

A. First Case: Two-Agent Crossing Scenario

To validate the collision avoidance mechanism, we begin
with a simple two-agent setup. The agents start at opposite
corners of the environment and are assigned diagonally oppo-
site goals, which forces their paths to cross near the center, as
implemented in [23]. This configuration directly tests whether
the DMPC controller can ensure safety while both agents
converge to their targets.

As shown in Fig. 1, the agents briefly deviate from their
straight paths when the predicted inter-agent distance ap-
proaches the safety margin. This deviation originates from the
optimization problem itself: the collision-avoidance constraint
activates only when necessary and deactivates once separation
is restored. After passing the point of closest encounter, both
agents resume direct goal-seeking motion.

Fig. 2 confirms that the minimum pairwise distance never
falls below the threshold. The constraint activates preemp-
tively, resolving the potential conflict without oscillations or
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Agent Trajectories with Start and Goal Points

—— Agent0
X Constraint 0
® Start0
* Goal 0
—— Agent 1
% Constraint 1
21 ® Startl
4  Goal 1

Y Position
Y

-4

-6 -4 -2 0 2 4 6
X Position

Fig. 1. Two-agent crossing scenario: planned trajectories. Both robots reach
their goals without collisions

Minimum Inter-Agent Distance Over Time

—e— Min Distance
=== Threshold (0.2 m)

Minimum Inter-Agent Distance (m)
o

0 - - +

0 20 40 60 80
Iteration (Control Steps)

Fig. 2. Two-agent crossing scenario: minimum inter-agent distance over time.
The red dashed line indicates the safety threshold dge = 0.2 m

deadlocks. Both robots reach their goals, demonstrating that
the distributed controller ensures collision-free convergence
even in direct crossing encounters.

B. Second Case: Four-Agent Fully Intersecting Scenario

To test robustness under dense interactions, a scenario with
four agents and fully intersecting trajectories was simulated.
Each agent starts at a corner of the environment and is assigned
the diagonally opposite goal, creating simultaneous conflicts
in the center.

As shown in Fig. 3, the agents deviate smoothly from
their straight paths as they approach the intersection zone.
Multiple avoidance constraints activate in parallel, yet all
agents maintain progress toward their goals. The avoidance
maneuvers are transient and anticipatory: once safe spacing
is restored, each robot resumes a direct route to its target.
This demonstrates that the distributed formulation can handle
overlapping interactions without centralized coordination.

Fig. 4 confirms that the minimum pairwise distance never
falls below the safety threshold, despite multiple agents en-
tering the central region simultaneously. The lowest value
is observed around iteration 20-30, corresponding to peak
congestion, but safety is preserved throughout. All four agents
converge successfully, showing that the proposed DMPC
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Agent Trajectories with Start and Goal Points

— Agent 0

X Constraint 0
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* Goal 0
—— Agent 1
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X Position

Fig. 3. Four-agent intersection scenario: planned trajectories. All robots pass
through the central region without collisions
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Fig. 4. Four-agent intersection scenario: minimum inter-agent distance over
time. The red dashed line marks the safety threshold dgye = 0.2 m

framework ensures feasibility, collision avoidance, and con-
vergence even under high-density, multi-agent interactions.

Both scenarios confirm that the controller achieves collision-
free convergence under sparse and dense interactions, without
centralized coordination.

V. CONCLUSION

This work presented an implementation of a sequential dis-
tributed Model Predictive Control (DMPC) method for multi-
robot navigation, developed in ROS 2 using the CHOIRBOT li-
brary and evaluated in Gazebo simulations. The approach com-
bines predictive planning with dynamic, on-demand collision-
avoidance constraints, allowing multiple agents to coordinate
their motion without centralized control. Results from two
benchmark scenarios, a two-agent crossing and a four-agent
full intersection, demonstrated collision-free convergence to
their respective goals. These results confirm the effectiveness
of sequential DMPC for safe and scalable multi-robot coordi-
nation.

Several directions remain for future work. First, the scal-
ability of the sequential DMPC approach should be further
investigated, particularly regarding how communication delays
and fleet size affect performance. Second, systematic meth-
ods for tuning cost weights and penalty parameters could
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improve robustness across diverse environments. Third, while
the current study focused on homogeneous agents, the formu-
lation naturally extends to heterogeneous robots with differing
dynamics, sensing capabilities, and task priorities. Finally,
incorporating nonlinear MPC formulations and validating the
system on physical robot platforms represent promising steps
toward real-world deployment.
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