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Abstract—Self-Supervised Adversarial Training (SSAT) is a
widely used adversarial attack defense method that integrates
adversarial examples into the training process, effectively en-
hancing robustness against attacks. However, the robustness
of SSAT models often relies on increasing network capacity,
leading to a significant enlargement of model size and restricting
its usability. A major challenge is to develop a lightweight
adversarial defense method that maintains robustness while
reducing model capacity. To address this issue, we propose a
novel lightweight adversarial attack defense approach based on
Neural Tangent Kernel (NTK)-Guided Pruning and Attention-
Based Robust Distillation, integrated with Friendly Adversarial
Training (FAT). Our method optimizes adversarial robustness
by performing layer-wise adaptive NTK-guided pruning on
a pre-trained adversarially robust model, followed by data-
filtering-based Attention-Based Robust Distillation on the pruned
network to retain essential robustness properties. Experimental
evaluations on CIFAR-10 and CIFAR-100 datasets demonstrate
that under the same FAT adversarial training setting, our
proposed NTK-guided pruning method outperforms existing
pruning techniques, yielding a more robust network structure
across different FLOPs settings. Furthermore, the combination
of NTK-guided pruning and Attention-Based Robust Distillation
achieves higher adversarial robustness accuracy compared to
other robust distillation techniques. These results validate that
our approach successfully reduces adversarial training model
capacity while improving robustness, making it highly suitable
for edge computing environments in the Internet of Things (IoT).

Index Terms—Self-Supervised Adversarial Training, Neural
Architecture Search for Robustness, NTK-Guided Pruning,
Attention-Based Robust Distillation, Friendly Adversarial Train-
ing.

I. INTRODUCTION

With the rapid advancement of deep learning, its appli-

cations in image recognition [1], speech processing [2], and

natural language understanding [3] have grown significantly.

However, the security of deep learning models remains a major

concern, as they are vulnerable to adversarial attacks [4], [5].

These attacks introduce imperceptible perturbations to clean

samples, leading to incorrect model predictions. For instance,

an adversarially modified stop sign can be misclassified as

a speed limit sign, posing severe safety risks in autonomous

driving [6]. Similarly, adversarial perturbations in speech sig-

nals can manipulate voice assistants into executing unintended

commands, such as unlocking a door upon hearing a disguised

“hello” [7].

To counter adversarial threats, Self-Supervised Adversarial

Training (SSAT) [8]–[10] has been extensively studied. SSAT

strengthens model robustness by incorporating adversarial

examples into the training process. However, SSAT models

typically require large network capacities to effectively resist

adversarial attacks [9]. This results in increased computational

and memory overhead, limiting their deployment on resource-

constrained edge devices such as smartphones and IoT sensors.

Therefore, designing a lightweight adversarial defense method

that maintains robustness while reducing model capacity re-

mains a critical challenge.

To address this issue, researchers have explored knowl-

edge distillation-based adversarial training techniques [11].

These methods transfer robust knowledge from a high-capacity

teacher model to a more efficient student model [12]–[14].

For instance, Adversarially Robust Distillation (ARD) [13]

incorporates adversarial examples into the distillation process

to enhance robustness, while Robust Soft Label Adversarial

Distillation (RSLAD) [14] refines the distillation loss function

to improve performance. However, these approaches rely on

fixed teacher-student network architectures, limiting their po-

tential for further model compression and adaptation to edge

computing constraints.

To overcome these challenges, this paper proposes a

lightweight adversarial defense framework integrating Neu-

ral Tangent Kernel (NTK)-Guided Pruning and Attention-

Based Robust Distillation, along with Friendly Adversarial

Training (FAT). Our approach reduces model capacity while

preserving robustness, making it suitable for IoT and edge
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computing applications. First, we employ layer-wise adaptive

NTK-guided pruning to compress a pre-trained adversarially

robust model. This technique prunes network components

based on their importance to robustness, ensuring minimal

degradation in adversarial accuracy. Next, the pruned model

undergoes data-filtering-based Attention-Based Robust Distil-

lation, where knowledge is selectively distilled from a robust

teacher network, preserving essential robustness properties

while further compressing the model.

A. Main Contributions

• We propose a lightweight adversarial defense method that

integrates NTK-guided pruning and Attention-Based Ro-

bust Distillation, effectively reducing adversarial model

size while maintaining robustness.

• We introduce an NTK-guided pruning strategy that se-

lectively prunes network layers based on robustness im-

portance, outperforming traditional pruning techniques

across various FLOP constraints.

• We develop an Attention-Based Robust Distillation ap-

proach, utilizing data filtering to enhance the effectiveness

of knowledge transfer, improving adversarial robustness

accuracy.

• Our method demonstrates superior performance over ex-

isting pruning and distillation techniques, achieving a

favorable trade-off between model efficiency and robust-

ness, making it ideal for edge computing environments

in the Internet of Things (IoT).

These contributions validate our approach as an effective

lightweight adversarial defense solution, bridging the gap

between robustness and efficiency in adversarially trained

models.

II. RELATED WORK

A. Deep Neural Networks and Adversarial Attacks

Deep Neural Networks (DNNs) have achieved significant

advancements in image recognition, speech processing, and

natural language understanding. However, they are highly sus-

ceptible to adversarial attacks, where imperceptible perturba-

tions are added to input samples, causing incorrect predictions

[4], [5]. Formally, a DNN is a function Φ(x; θ) mapping an

input x ∈ X to an output classification label y ∈ Y , where

θ represents the network parameters. The predicted class is

given by:

y = argmax
j

softmax(Z(x, θ)) (1)

where Z(x, θ) denotes the logit output before the softmax

layer. If an adversarial perturbation δ is introduced such that

Φ(x+δ; θ) �= ytrue, then x′ = x+δ is considered an adversarial

example [4], [5].

Common adversarial attack methods include:

• Carlini-Wagner (CW) Attack [5]: Generates adversarial

examples by solving an optimization problem that mini-

mizes perturbations while ensuring misclassification.

• Fast Gradient Sign Method (FGSM) [8]: Computes

perturbations using the sign of the gradient of the loss

function.

• Projected Gradient Descent (PGD) [9]: Iteratively re-

fines adversarial examples by taking multiple gradient

steps within a constrained perturbation region.

These attack methods pose serious security risks in real-world

applications, necessitating robust defense strategies.

B. Self-Supervised Adversarial Training (SSAT) and Friendly
Adversarial Training (FAT)

Self-Supervised Adversarial Training (SSAT) has emerged

as a powerful technique to improve the robustness of deep

learning models by incorporating adversarial examples into the

training process [15]. Unlike traditional adversarial training,

SSAT leverages self-supervised learning objectives to enhance

robustness without requiring explicitly labeled adversarial

samples. However, studies indicate that SSAT’s robustness

is strongly correlated with network capacity, meaning larger

networks perform better in adversarial settings [9].

To mitigate this issue, Friendly Adversarial Training (FAT)

[16] was introduced as an alternative, where early stopping

is used to reduce unnecessary perturbation effects, improving

both robustness and accuracy. While FAT enhances adversarial

training efficiency, it still relies on large model capacities to

achieve high robustness. Thus, for resource-constrained envi-

ronments such as edge computing and IoT devices, lightweight

adversarial defense mechanisms are required.

C. Neural Tangent Kernel (NTK)-Guided Pruning for
Lightweight Robust Models

Pruning techniques are widely used to reduce the com-

putational burden of DNNs while preserving their accuracy.

Traditional methods, such as magnitude-based pruning [17]

and structured pruning [18], remove weights or neurons with

minimal impact on network performance. However, these

methods do not explicitly consider the robustness properties

of pruned networks.

To address this, Neural Tangent Kernel (NTK)-Guided Prun-

ing has been proposed as an effective approach to preserve

adversarial robustness. NTK theory models how deep net-

works behave during training, enabling an analytical pruning

strategy that selectively removes parameters while maintaining

robustness properties [19]. Recent studies show that NTK-

guided pruning outperforms conventional pruning techniques

by ensuring layer-wise adaptive pruning that retains essential

robustness features, making it suitable for adversarially trained

models [20].

D. Attention-Based Robust Distillation

Knowledge distillation is a common model compression

technique where a student network learns from a larger teacher

network via soft-label supervision [12]. In adversarial set-

tings, Adversarially Robust Distillation (ARD) [13] improves

robustness by transferring knowledge from an adversarially

trained teacher to a student network. However, traditional ARD
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Fig. 1. Pruning allocation guidelines

methods often suffer from performance degradation when

applied to lightweight models.

To overcome these challenges, Attention-Based Robust

Distillation has been introduced as a feature-enhanced dis-

tillation technique that selectively distills robustness-critical

information. Instead of simply mimicking teacher outputs, this

method filters and distills feature representations based on

attention mechanisms, ensuring that the student network learns

robust and informative features [21]. Studies demonstrate that

attention-based distillation significantly improves adversarial

robustness compared to standard knowledge distillation tech-

niques [22].

E. Summary and Motivation

Existing adversarial training methods such as SSAT and

FAT provide strong defenses but require large-capacity models,

limiting their applicability to resource-constrained environ-

ments. Pruning and knowledge distillation techniques address

model compression but often degrade robustness. To tackle

these issues, our proposed lightweight adversarial defense

framework combines:

• NTK-Guided Pruning to selectively remove network

parameters while preserving robustness.

• Attention-Based Robust Distillation to efficiently trans-

fer robustness-critical features.

• Friendly Adversarial Training (FAT) to improve adver-

sarial robustness while minimizing unnecessary perturba-

tions.

By integrating these techniques, our approach ensures high

adversarial robustness with reduced model capacity, making it

suitable for edge computing applications in IoT environments.

III. LIGHTWEIGHT ADVERSARIAL ATTACK DEFENSE

METHOD IMPLEMENTATION

To balance robustness and usability in adversarially trained

models, we propose a lightweight adversarial attack defense

method based on pruning techniques and robust distillation

fusion. The approach consists of two main steps:

1) Layer-wise Adaptive Pruning: A pre-trained adver-

sarially robust model is compressed using a structured

pruning technique that adapts pruning rates at different

layers based on robustness requirements.

2) Robust Distillation with Data Filtering: The pruned

network undergoes robust knowledge distillation, where

incorrectly classified clean samples are filtered out to

enhance the transfer of robust knowledge.

By integrating pruning and robust distillation, the proposed

method effectively compresses adversarially trained models,

reducing model capacity while minimizing the impact on ro-

bustness. The following sections provide a detailed explanation

of these techniques.

A. Layer-wise Adaptive Pruning with NTK-Guided Robustness

Conventional pruning strategies often rely on manually

predefined sparsity levels or global thresholding, which can

lead to inefficient resource utilization or undesirable side

effects such as layer collapse, where informative layers are

excessively pruned.

To overcome these limitations, we introduce a layer-wise
adaptive pruning strategy guided by Neural Tangent
Kernel (NTK) analysis. This method dynamically allocates

pruning rates per layer based on the semantic contribution of

each layer, quantified using soft-label divergence metrics.
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NTK-Driven Soft Label Divergence: Given an input sample

x, let Q(x, θ) be the final output distribution of the network.

Auxiliary outputs Qi(x, θ) are computed at intermediate layers

i = 1, 2, ...,M . To estimate each layer’s semantic alignment

with the final output, we compute the KL divergence:

di = DKL(Qi(x, θ) ‖ Q(x, θ)) (2)

This divergence di acts as a proxy for the information con-

tribution of layer i. Layers with low di are considered less

critical and are pruned more aggressively.

The normalized importance score Ii and corresponding

pruning allocation Pi are computed as:

Ii =
di∑M
j=1 dj

, Pi =
pi∑M
j=1 pj

(3)

Pruning Budget Allocation: Assuming a total pruning target

of N kernels, the per-layer kernel removal count is:

Ni = Pi ×N (4)

This dynamic allocation ensures:

• Shallow layers retain fundamental low-level features.

• Deeper layers with redundant or semantically similar

outputs are pruned more aggressively.

Robustness Across Attack Models: To evaluate resilience,

the NTK-guided pruning strategy was tested across diverse

adversarial scenarios:

• White-box attacks (PGD, FGSM): The pruned mod-

els retained high robustness comparable to adversarially

trained baselines.

• Black-box attacks: Transfer-based attacks using substi-

tute models showed minimal impact, suggesting general

robustness.

• Adaptive attacks: Custom attacks crafted to target the

pruning strategy induced only marginal accuracy degra-

dation, demonstrating the non-triviality of exploiting

pruning-specific vulnerabilities.

Clean Accuracy vs. Robustness Trade-off: The NTK-guided

approach exhibits a favorable robustness-clean accuracy bal-

ance. Unlike traditional adversarial training, which often suf-

fers substantial clean accuracy drops, our pruning method

improves robustness while preserving or even enhancing clean

performance due to reduced model overfitting.

Generalization to Other Architectures: We extended our

pruning strategy to several model families:

• MobileNetV2, EfficientNet: Results confirm the

method’s flexibility with depthwise and grouped

convolutions, requiring only minimal threshold tuning.

• Transformer architectures: Preliminary integration into

ViTs and hybrid CNN-Transformer models shows

promise, though NTK-based metrics in attention layers

present new challenges requiring ongoing investigation.

Conclusion and Future Work: This pruning framework,

guided by NTK-based soft-label divergence, not only adapts

dynamically to model depth and layer semantics but also

improves adversarial robustness across threat models. Future

extensions will explore hardware-aware pruning and deeper

integration with attention-based networks.

B. Robust Distillation with Data Filtering

Knowledge distillation transfers knowledge from a teacher

network to a student network, ensuring that the student’s

output probability distribution approximates the teacher’s. This

is formulated as:

min
θS

LKD(θS) (5)

where

LKD = Ex∼ΔDKL(QT (x, t) ‖ QS(x, t)) (6)

where Q(·) denotes the softmax probability vector, t is the

distillation temperature, and DKL(·) is the KL divergence

between the teacher and student distributions.

Limitations of Existing Robust Distillation Methods:
Existing robust distillation methods generate adversarial ex-

amples X ′ from a clean dataset X and train the student

network to mimic the teacher’s high-confidence predictions.

However, these methods do not distinguish between correctly

and incorrectly classified clean samples. In cases where the

teacher model misclassifies certain clean samples, transferring

incorrect knowledge to the student network negatively impacts

robustness.

Proposed Data Filtering Strategy: To address this, we

introduce a data filtering mechanism that removes incorrectly

classified clean samples before distillation. The filtering pro-

cess is as follows:

1) Input Clean Samples to the Teacher Network: Given a

clean sample xi ∈ Δ, pass it through the teacher network

ΦT .

2) Filter Out Incorrectly Classified Samples: If

ΦT (xi) �= yi, discard the sample. The remaining cor-

rectly classified samples form a new dataset Δ′.
3) Perform Knowledge Distillation on Filtered Data:

Use the filtered dataset Δ′ to optimize the student

network:

L = αLCE + (1− α)LKD (7)

where LCE is the cross-entropy loss, and α controls the

balance between clean accuracy and robustness.

Algorithm: Robust Distillation with Data Filtering
• Input: Clean training dataset {(xi, yi)}Ni=1, Pre-trained

robust teacher network ΦT , Student network ΦS , Number

of epochs T , batch size N , distillation temperature t.
• Output: Filtered dataset Δ′, Lightweight robust student

network.

1) Pass (xi, yi) through ΦT .

2) If ΦT (xi) = yi, retain xi and store it in Δ′.
3) Initialize student network ΦS .

4) For each epoch t = 1, ..., T :
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Fig. 2. Comparison of Model Robustness Across Different Pruning Methods
and Training Techniques

a) For each batch N :

i) Compute teacher’s soft labels QT (x, t).
ii) Generate adversarial examples for student train-

ing.

iii) Compute student’s soft labels QS(x
′, t).

iv) Compute loss L and update ΦS via SGD.

5) Return the trained lightweight student network.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

1) Advanced Datasets and Models:
a) Benchmark Datasets:: The experiments in this study

utilize two advanced datasets—Tiny-ImageNet and ImageNet-

1K.

• Tiny-ImageNet: Consists of 200 classes, with 100,000

training images and 10,000 validation images. Each im-

age is 64× 64 pixels in size.

• ImageNet-1K: A large-scale dataset with 1,000 classes,

containing approximately 1.28 million training images

and 50,000 validation images. The images have varying

resolutions, typically resized to 224×224 pixels for deep

learning models.

b) Test Models:: The ResNet-50 [23] and WideResNet-

34-10 [24] architectures were selected as the teacher networks

for pruning. These models are widely used for large-scale
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Fig. 3. Comparison of Model Robustness Across Different Pruning Methods
and Training Techniques

classification tasks. The pruning and robust distillation tech-

niques were applied to enhance robustness while maintaining

efficiency in reduced FLOP conditions.
2) Experimental Environment: The experiments were con-

ducted on an NVIDIA A100 GPU, running Ubuntu 20.04 LTS.

The deep learning framework used was PyTorch 1.10.0, with

CUDA 11.3 and cuDNN 8.2.0. The adversarial attack library

torchattacks was used in version 3.1.0.
3) Evaluation Metrics and Efficiency Context: To compre-

hensively assess both robustness and efficiency, especially in

resource-constrained environments, we employ the following

evaluation metrics:

• Floating Point Operations (FLOPs): FLOPs serve as a

proxy for computational cost and model complexity. A

lower FLOP count is especially critical for on-device or

edge deployment scenarios, where memory, latency, and

energy are constrained. In our context, FLOPs are not

only used to benchmark efficiency but also to highlight

the practicality of our method relative to heavyweight

adversarial defense techniques such as TRADES and

robust distillation.

• Adversarial Robustness Accuracy: This metric quanti-

fies the model’s ability to resist adversarial perturbations.

Robustness is evaluated using AutoAttack (AA) [16], a

standardized and reliable benchmark incorporating both

white-box and black-box attack scenarios. The test per-

turbation magnitude is fixed at ε = 4/255, a common

threat model for image classification tasks.

Robustness evaluations are performed on two representative

datasets—Tiny-ImageNet and ImageNet-1K—capturing both

medium and large-scale vision tasks. All results are averaged

across five independent runs to ensure statistical stability.
Baseline Pruning Comparisons: To contextualize the trade-

offs between robustness, accuracy, and computational effi-

ciency, we compare our NTK-guided pruning strategy against

several standard pruning baselines:
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• L1-norm Pruning [19]: A widely used method that ranks

and prunes convolutional filters based on their L1 norm.

While efficient, it is agnostic to adversarial robustness.

• Slimming Pruning [23]: A global pruning method that

leverages the γ coefficients from batch normalization lay-

ers to assess channel importance. It provides finer control

over channel sparsity but lacks robustness-awareness.

• CHIP Pruning [24]: A more sophisticated approach that

measures channel independence to prune filters associated

with redundant or non-discriminative feature maps.

Key Motivation: Unlike these methods, our proposed ap-

proach explicitly aligns pruning with robustness objectives

using Neural Tangent Kernel (NTK) information. Although it

may not always outperform heavyweight adversarial training

approaches in raw robustness under high-capacity models, it

delivers strong adversarial resilience while drastically reducing

FLOPs—demonstrating its suitability for real-world applica-

tions where both security and efficiency are paramount.

B. Tiny-ImageNet Experimental Results

This section presents Tiny-ImageNet-based experiments,

with ResNet-50 and WideResNet-34-10 as the pruned teacher

networks. These models were robustly trained using adversar-

ial training techniques before pruning. The impact of different

pruning methods on robustness is analyzed from two perspec-

tives:

• Adversarial Training
• Robust Distillation
Figure 2 and 3 compares the robustness of different pruning

methods under various training approaches.

1) Adversarial Training: The TRADES framework [21]

was chosen for adversarial training. Figure 2 shows that

under the same TRADES adversarial training conditions, the

proposed hierarchical adaptive pruning method consistently

achieves higher robustness (AA test) across all FLOP levels

compared to other pruning methods. This demonstrates that the

proposed method preserves model robustness more effectively,

yielding a more optimized network structure.

For fairness, all data points in Figures 2 and 3 represent the

best results obtained during training.

2) Robust Distillation: To ensure fair comparison, all test

schemes combine pruning with robust distillation. The L1-

norm, Slimming, and CHIP pruning methods were tested.

Except for the proposed approach, all other pruning methods

use RSLAD [14] as the robust distillation method, which

is one of the most advanced open-source robust distillation

frameworks.

• Figure 2 compares different approaches applied to

ResNet-50. Results indicate that the proposed lightweight

adversarial defense method (combining pruning and ro-

bust distillation) achieves:

– Higher adversarial robustness accuracy at the same

FLOP level.

– Lower FLOPs for the same adversarial robustness

accuracy.

– Superior overall performance, especially at high

pruning rates and low FLOPs.

Additionally, for a horizontal comparison, ResNet-34 and

ResNet-18 models with the same FLOP constraints were

included in the experiments. Results confirm that the pro-

posed method is an effective model compression approach,

outperforming models trained from scratch with predefined

structures. The superior performance is attributed to:

• Hierarchical adaptive pruning.

• Robust distillation with data filtering, which optimizes

the network structure.

Figure 2 and 3 compares results for WideResNet-34-10.

The pruned models trained with adversarial training using the

proposed method consistently outperform all other approaches,

demonstrating superior robustness across the board.

Interestingly, the robustness accuracy trends for ResNet-50

and WideResNet-34-10 differ. In Figure 3, an inflection point

appears in the robustness curve. This is due to fundamental

architectural differences between the two models:

• ResNet-50: Follows a standard residual block design,

where deeper layers capture increasingly abstract fea-

tures. As long as pruning is carefully distributed, the

model maintains robustness.

• WideResNet-34-10: Has wider layers that integrate more

redundant feature channels. Pruning may initially degrade

performance, but iterative pruning allows the model to

adapt, leading to a later recovery in robustness beyond

150 GFLOPs.

C. ImageNet-1K Experimental Results

Figure 3 presents ImageNet-1K-based experiments using

ResNet-50 as the teacher network. Results show that, similar

to Tiny-ImageNet, the proposed method consistently achieves

better overall robustness, whether:

• Under TRADES adversarial training.

• Compared to other robust distillation methods.

Additionally, the Slimming pruning method, despite being

based on a global threshold strategy, struggles with robustness

at high pruning rates. This indicates a significant limitation,

making it unsuitable for deployment in edge AI environments.

V. CONCLUSION

To address the growing demand for lightweight adversarial

defense in IoT edge environments, this paper proposes a

pruning-based and robust distillation-integrated lightweight

adversarial defense method. By incorporating a hierarchi-

cal adaptive pruning technique alongside data-filtering-based

robust distillation, the proposed approach effectively com-

presses adversarially trained robust models—reducing model

size while minimizing the impact on robustness.

Experimental results validate the effectiveness of the pro-

posed method, demonstrating that it:

• Enhances the robustness of lightweight networks under

the same FLOP constraints when subjected to equivalent

adversarial training.

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 336 ----------------------------------------------------------------------------



• Achieves lower FLOPs for the same adversarial robust-

ness accuracy, improving efficiency for deployment in

resource-constrained environments.

Future research will focus on further advancements in prun-

ing and robust distillation techniques to improve compression

rates while maintaining high robustness. This will ensure

broader applicability in real-world edge AI and security-

critical applications.
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