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Abstract—In recent years, cybersecurity threats have been
increasing, making data-driven security intelligence analysis a
key research focus. Artificial intelligence techniques, particularly
knowledge graph-based methods, offer support for detecting com-
plex and unknown network attacks in multi-source heterogeneous
threat intelligence data. Cybersecurity entity recognition serves
as the foundation for constructing threat intelligence knowledge
graphs. However, the complexity of security entities in open
network text data makes traditional deep learning methods less
effective in accurate identification. To address this challenge,
we propose a cybersecurity entity recognition model based on
DeBERTa, Transformer-CNN hybrids, and BiLSTM-Softmax.
The DeBERTa model is leveraged to generate character-level
feature representations, enhancing contextual understanding. A
Transformer-CNN hybrid is employed to effectively extract cru-
cial security entity features by combining convolutional feature
extraction with self-attention mechanisms. Finally, BiLSTM-
Softmax is used to generate BIO labels for each character in
the sequence. Experimental results on a large-scale annotated
cybersecurity entity dataset demonstrate that the proposed ap-
proach achieves superior performance compared to LSTM-CRF,
BiLSTM-CRF, and traditional entity recognition models.

Index Terms—Cybersecurity, Entity Recognition, Transformer-
CNN Hybrid, DeBERTa, BiLSTM-Softmax.

I. INTRODUCTION

With the increasing complexity of cybersecurity threats,

intelligence-driven network security defense has become a key

focus for the industry. Extracting threat intelligence from vast

and fragmented network data, organizing it using knowledge

graph models, and supporting attack path prediction and attack

tracing enable intelligent analysis of threat intelligence in

a data-driven manner. Cybersecurity entity recognition is a

fundamental task in constructing threat intelligence knowledge

graphs. The goal is to extract security-related entities from cy-

bersecurity domain text, such as attack groups, organizations,

vulnerabilities, and software. Cybersecurity entity recognition

falls under the category of domain-specific Named Entity

Recognition (NER), which is an important research area in

Natural Language Processing (NLP). There are three main

approaches to NER: rule-based methods, machine learning-

based methods, and deep learning-based methods. Deep learn-

ing approaches are widely used in NER tasks because they can

automatically extract text features without relying on extensive

feature engineering or additional linguistic knowledge.

Several researchers have explored different NER techniques.

Georgescu et al. proposed an NER-based solution to enhance

and detect vulnerabilities in IoT systems. Wang et al. applied

Deep Belief Networks (DBN) to effectively recognize security

entities in threat intelligence knowledge graphs. Hammerton

introduced Long Short-Term Memory (LSTM) models for

sequence information extraction and used Conditional Random

Fields (CRF) for entity classification. Later, many NER ap-

proaches integrated implicit sentence features into LSTM-CRF

architectures. Collobert et al. explored window-based neural

networks and sentence-based convolutional neural networks

(CNNs) for NER. Santos et al. enhanced CNN-CRF models

using character-level feature vectors as inputs. Chiu et al.

further improved NER by combining bidirectional LSTMs

(BiLSTM) with CNNs, overcoming the fixed window size

limitation in previous models. Traditional CNNs often lose

contextual information when extracting large-scale features.

To address this, Strubell et al. introduced dilated CNNs for

NER, improving both feature extraction and training efficiency.

Additionally, studies by He, Liu, and Li have shown that

character-based NER methods generally outperform word-

based methods. Qin et al. proposed a character-level CNN-

BiLSTM-CRF model for cybersecurity entity recognition to

overcome the limitations of traditional NER approaches.

Besides character-based approaches, word-based and hybrid

character-word NER methods also exist. Xu et al. integrated

character and word features for training, while Zhang et

al. developed Lattice LSTMs for Indian NER, incorporating

dictionary-based word information to reduce segmentation

errors.

The attention mechanism has been widely applied in NLP

tasks. Bahdanau et al. combined attention mechanisms with

Recurrent Neural Networks (RNNs) for machine translation,

enabling their successful integration into NLP. Yin et al.

introduced an attention-based CNN for sentence modeling,

and Wang et al. demonstrated the effectiveness of combining

attention mechanisms with CNNs for relation extraction.
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Fig. 1. Network Security Entity Recognition Model Based on DeBERTa-
TransformerCNN-BiLSTM

Compared to general-domain NER, cybersecurity entity

recognition faces several unique challenges:

• Data Scarcity – Deep learning requires large-scale la-

beled data, yet cybersecurity lacks high-quality annotated

datasets.

• Complex Entity Structures – Cybersecurity entities

include a mix of structured and unstructured terms, such

as “SQL Injection” or “Port 80.”

• Inconsistent Annotations – The same entity may be

labeled differently in different parts of a document. Addi-

tionally, entities often appear in both full and abbreviated

forms, complicating recognition.

To address these challenges, we propose a novel cy-

bersecurity entity recognition method based on DeBERTa,

Transformer-CNN hybrids, and BiLSTM-Softmax. Our key

contributions include:

• Development of a cybersecurity entity recognition
corpus – We construct and release a dataset with six

categories of labeled cybersecurity entities.

• Proposal of a novel Transformer-CNN hybrid model –

Unlike BiLSTM-CRF architectures that rely on attention

mechanisms, our model supports parallelized sentence

input, reducing training time.

• Integration of residual connections with Transformer-
CNN hybrids – Our approach improves entity recogni-

tion without requiring additional features such as part-

of-speech or syntactic dependencies. By using character-

level feature vectors as inputs, we minimize segmentation

errors and enhance recognition accuracy.

Experiments demonstrate that our model outperforms ex-

isting BiLSTM-CRF-based approaches in cybersecurity entity

recognition.

II. NETWORK SECURITY ENTITY RECOGNITION MODEL

BASED ON TRANSFORMER-CNN HYBRIDS

To address the challenge of network security entity recog-

nition, this paper proposes a model based on the De-

BERTa pre-trained language model, Transformer-CNN hy-

brids, and a BiLSTM-Softmax classification layer. The pro-

posed DeBERTa-TransformerCNN-BiLSTM model, as shown

in Fig. 1, leverages the contextualized embeddings from

DeBERTa, extracts local and global features using a hybrid

Transformer-CNN architecture, and finally classifies entity

labels through a BiLSTM-Softmax layer.

A. DeBERTa Pre-trained Language Model

DeBERTa (Decoding-enhanced BERT with Disentangled

Attention) is a pre-trained language model that improves

upon BERT by introducing disentangled attention mechanisms

and an enhanced positional encoding scheme. Unlike tra-

ditional transformers, DeBERTa explicitly separates content

and positional representations, allowing for better contextual

understanding. The model framework is shown in Fig. 2 and

consists of an input layer, a multi-layer Transformer encoding

layer, and an output layer.

1) Input Representation: Given a sentence of length n,

DeBERTa encodes each character as:

e1:n = e1 ⊕ e2 ⊕ ...⊕ en (1)

where ei represents the embedding of the i-th character and

⊕ denotes the concatenation operation.

2) Segment and Positional Embeddings: Since our task

focuses on network security entities, segment embeddings are

set to zero:

ŝ = [0, 0, ..., 0]n (2)

DeBERTa uses an enhanced positional encoding mechanism:

PE(pos, 2i) = sin

(
pos

10, 0002i/d

)
(3)

PE(pos, 2i+ 1) = cos

(
pos

10, 0002i/d

)
(4)

where pos is the token position, i is the embedding dimension,

and d is the model’s hidden size.

3) Multi-head Disentangled Attention: Unlike standard

self-attention, DeBERTa separates content and positional at-

tention:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (5)

where Q,K, V are query, key, and value matrices.

B. Transformer-CNN Hybrid for Feature Extraction

To enhance the model’s ability to capture local and long-

range dependencies, we integrate CNNs with Transformer lay-

ers. CNNs are effective for extracting local structural patterns,

while Transformers capture global contextual dependencies.

1) Hybrid Feature Representation: The feature representa-

tion from DeBERTa is fed into a Transformer-CNN hybrid

module:

Htrans = TransformerLayer(X) (6)

Hcnn = Conv1D(Htrans) (7)

Hhybrid = Htrans ⊕Hcnn (8)

where X is the token representation from DeBERTa.

2) Residual Connections & Batch Normalization: To pre-

vent gradient vanishing and overfitting, we introduce residual

connections:

Hres = Hhybrid +X (9)

and apply batch normalization for stable training.

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 324 ----------------------------------------------------------------------------



Fig. 2. DeBERTa-TransformerCNN-BiLSTM Model Framework

C. BiLSTM-Softmax for Named Entity Classification

Instead of using CRF for sequence labeling, we employ

a BiLSTM-Softmax classifier for token classification. BiL-

STM captures bidirectional dependencies in security entity

sequences, while Softmax assigns probabilities to entity labels.
1) BiLSTM Layer: The processed feature representation is

fed into a BiLSTM network:

Hbilstm = BiLSTM(Hres) (10)

2) Softmax Classification: The final entity labels are as-

signed using a Softmax layer:

P (yt|X) =
eWyHt+by∑
j e

WjHt+bj
(11)

where Wy and by are learnable parameters.

TABLE I STATISTICS OF

DATASETS

Entity Train Valid Test Total
PER(Person) 9,102 1,375 2,684 13,161
LOC(Location) 17,238 2,541 5,102 24,881
ORG(Organization) 13,024 1,920 3,780 18,724
SW(Software) 5,012 725 1,509 7,246
RT(Real-Time) 58,345 8,390 16,809 83,544
VUL ID(Vulnerability ID) 5,012 725 1,509 7,246
Total 107,733 15,676 31,393 154,802

D. Model Training Process

The proposed network security entity recognition model is

implemented using the TensorFlow deep learning framework.

The training process consists of initializing the DeBERTa,

Transformer-CNN hybrid, and BiLSTM-Softmax components,

encoding input sequences using DeBERTa, extracting hierar-

chical features via Transformer-CNN layers, and performing

sequence classification using BiLSTM-Softmax. The error is

backpropagated to update model parameters.

Algorithm 1 DeBERTa-TransformerCNN-BiLSTM Training

Procedure
Input:

• Training dataset: D = (X,Y ), where X ∈ R
|V |×n rep-

resents tokenized sentences and Y is the corresponding

entity label sequence.

• |V |: Vocabulary size, n: Maximum sentence length.

Output: Trained model for network security entity recogni-

tion.

1) Initialize DeBERTa, Transformer-CNN hybrid, and

BiLSTM-Softmax layers.

2) for each epoch do:

a) for each mini-batch do:

i) Encode input sentences using DeBERTa to ob-

tain contextual embeddings:

Hdeberta = DeBERTa(X) (12)

ii) Extract hybrid features using Transformer and

CNN layers:

Hhybrid = TransformerCNN(Hdeberta) (13)

iii) Pass extracted features through a BiLSTM net-

work to model bidirectional dependencies:

Hbilstm = BiLSTM(Hhybrid) (14)

iv) Compute entity label probabilities using the

Softmax function:

P (yt|X) =
eWyHt+by∑
j e

WjHt+bj
(15)

v) Compute the categorical cross-entropy loss:

L = −
n∑

t=1

yt logP (yt|X) (16)

vi) Perform backpropagation using Adam opti-

mizer.

3) Return trained model.

E. Inference and Decoding

During inference, the trained model predicts entity labels

using the Viterbi algorithm to determine the most probable

sequence of labels. The final label sequence Y ∗ is obtained

as:

Y ∗ = argmax
Y

P (Y |X; θ) (17)

where θ represents the trained model parameters.
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III. EXPERIMENTS AND RESULTS ANALYSIS

In this section, we evaluate the proposed DeBERTa-

TransformerCNN-BiLSTM model on a constructed network

security dataset. The experiments utilize Google’s pre-trained

DeBERTa Indian embeddings for character representations. A

fine-tuning strategy is applied, where the pre-trained param-

eters of DeBERTa are initialized using Google’s pre-trained

weights and adaptively updated during training.

A. Experimental Dataset
The dataset used for the experiments is primarily sourced

from publicly available network security platforms, including

the Wooyun Vulnerability Database, Freebuf website, and the

National Vulnerability Database. The dataset includes six types

of network security-related entities:

• PER (Person) – Names of individuals

• LOC (Location) – Geographical locations

• ORG (Organization) – Names of organizations

• SW (Software) – Software names

• RT (Relevant Term) – Network security-related techni-

cal terms

• VUL ID (Vulnerability ID) – Identifiers of security

vulnerabilities

The BIO annotation scheme is used for labeling the named

entities in the dataset. The dataset is split into training (70%),

validation (10%), and test (20%) sets. Detailed statistics of the

dataset are presented in Table I. The experimental results are

evaluated using four key metrics: Precision (P), Recall (R),

F1-score (F1), and Accuracy.

B. Comparative Experiments
To validate the effectiveness of the proposed DeBERTa-

TransformerCNN-BiLSTM model for network security entity

recognition, we conduct comparative experiments against 12

baseline models:

• The first 6 models use word embeddings trained with the

word2vec language model.

• The last 6 models use character embeddings derived from

the BERT pre-trained language model.

The experimental code is available for download on GitHub.
Baseline Models for Comparison:
1) CRF – A conditional random fields model for sequence

labeling [1].

2) LSTM – A named entity recognition model based on

Long Short-Term Memory (LSTM) [2].

3) LSTM-CRF – A hybrid LSTM model incorporating

CRF for sequence tagging [3].

4) BiLSTM-CRF – A Bidirectional LSTM combined with

CRF, capturing both forward and backward context [4].

5) CNN-BiLSTM-CRF – A model that first extracts

character-level features using CNNs, then concatenates

them with word embeddings before feeding them into

BiLSTM-CRF [5].

6) FT-CNN-BiLSTM-CRF – A feature template-based

CNN-BiLSTM-CRF model for network security entity

recognition [6].

7) BERT-CRF – A BERT-based entity recognition model

that combines CRF for sequence tagging [7].

8) BERT-LSTM-CRF – A BERT-based model replacing

the LSTM component [8].

9) BERT-BiLSTM-CRF – An enhanced version of BERT-

LSTM-CRF, replacing LSTM with Bidirectional LSTM

[9].

10) BERT-GRU-CRF – A BERT-based model using GRU

(Gated Recurrent Unit) instead of LSTM, combined with

CRF.

11) BERT-BiGRU-CRF – A BERT-based model using

Bidirectional GRU, combined with CRF.

Proposed Model: To address the limitations of CNN feature

extraction and improve contextual sequence modeling, we

propose the DeBERTa-TransformerCNN-BiLSTM model. The

key modifications include:

• DeBERTa for enhanced contextual representations.

• Using Transformer-CNN hybrids to improve hierarchical

feature extraction.

• BiLSTM-Softmax, allowing for better sequence depen-

dency modeling while reducing computational overhead.

C. Model Parameters and Training Setup

In the experiments, the output representations of DeBERTa

are passed through multiple convolutional filters of different

window sizes.

• Activation function: Leaky ReLU is used instead of

standard ReLU for better gradient flow.

• Optimizer: Adadelta, an adaptive learning rate method

proposed by Zeiler [10], is used for training.

• Other model hyperparameters are listed in Table II.

TABLE II HYPERPARAMETERS OF THE

EXPERIMENT

Parameter Description Value
p Dropout rate 0.3
nr Number of residual blocks 6
h Window size 5
δ Dilation rate in convolution 4
b Batch size 128
n Number of feature maps 256

IV. OVERALL COMPARISON AND ANALYSIS

In this study, we evaluated 12 different models on the

network security entity recognition dataset. The models were

analyzed based on their performance metrics, including ac-

curacy, precision, recall, and F1-score. Table III presents the

overall results for each model.

From Table III, it is evident that the proposed DeBERTa-

TransformerCNN-BiLSTM model achieves state-of-the-art

performance on network security entity recognition. Notably,

models incorporating BERT-based embeddings (e.g., BERT-

CRF, BERT-LSTM-CRF, BERT-BiLSTM-CRF, BERT-GRU-

CRF, and BERT-BiGRU-CRF) outperform traditional feature-

based models, such as CRF, LSTM, BiLSTM, CNN-BiLSTM,

and FT-CNN-BiLSTM.
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A comparison between the CNN-BiLSTM-CRF model [20]

and the FT-CNN-BiLSTM-CRF model [13] indicates that

the BERT-RDCNN-CRF model (before modification) achieves

superior accuracy. This improvement is attributed to the nature

of network security entities, which often contain a mixture

of letters, numbers, and Indian characters. Traditional word-

segmentation techniques introduce segmentation errors that

propagate during training, affecting entity classification per-

formance.

Furthermore, Table III highlights that while the BERT-

CRF model does not significantly improve the F1-score over

non-BERT models, integrating sequence modeling techniques

(LSTM, BiLSTM, GRU, BiGRU) substantially enhances per-

formance. This suggests that leveraging syntax and surface-

level textual features alongside rich semantic information

improves entity recognition accuracy in network security

datasets.

V. FURTHER ANALYSIS

To further compare the performance of BERT-based LSTM,

BiLSTM, GRU, and BiGRU models with the proposed

DeBERTa-TransformerCNN-BiLSTM model, additional ex-

periments were conducted. As observed in Table IV, in terms

of accuracy and precision, the proposed model outperforms

other BERT-based cybersecurity entity recognition models,

confirming its effectiveness for network security entity recog-

nition.

Interestingly, LSTM-based and GRU-based models outper-

form BiLSTM and BiGRU models in cybersecurity entity

recognition tasks. This may be due to the nature of network

security entities, where word segmentation errors propagate in

bidirectional models, affecting recognition performance.

However, in terms of recall and F1-score, the BERT-LSTM-

CRF model achieves the best performance, with a recall of

91.07% and an F1-score of 89.88%. Compared to the proposed

DeBERTa-TransformerCNN-BiLSTM model (recall: 89.43%,

F1-score: 87.21%), it improves recall by 0.89% and F1-score

by 0.22%. This suggests that the proposed model achieves

competitive performance, with minimal differences in recall

and F1-score compared to sequence-based models.

A. Comparative Analysis of Security Entity Recognition
Across Six Categories

To comprehensively evaluate the effectiveness of BERT-

based security entity recognition models across different secu-

rity entity categories, the precision, recall, and F1-score for six

entity types were computed. The precision results are depicted

in Figure 3.

As observed in Figure 3, the BERT-CRF model exhibits sub-

optimal performance in identifying SW and VUL ID entities.

The precision scores for all models in the SW category re-

main relatively low, with the highest recorded precision being

50.26%. Furthermore, BERT-LSTM-CRF, BERT-GRU-CRF,

and BERT-RDCNN-CRF models demonstrate comparable pre-

cision values, suggesting that these architectures struggle to

accurately classify SW entities. This can be attributed to:

Fig. 3. Precision Comparison Across Security Entities

1) The limited representation of SW entities within the

dataset, leading to insufficient learning during training.

2) The complex structural composition of SW entities,

which include alphanumeric characters and Indian char-

acters, complicating effective feature extraction.

In contrast, for LOC, ORG, and PER entities, all six models

achieve comparable and high precision, indicating their robust

ability to extract distinguishable features for these entity types.

As shown in Fig. 4, the precision of the bidirectional

BiLSTM and BiGRU models is lower than that of the unidirec-

tional LSTM and GRU models. This is because the increased

model complexity can lead to overfitting, making it difficult

for the loss function to decrease during the training process.

To further compare the security entity recognition performance

of the six models, the recall rates of different models across

various security entities are compared, as illustrated in Figure

4.

B. Parameter Optimization Analysis

Similar to other neural network-based approaches, the pro-

posed DeBERTa-TransformerCNN-BiLSTM model optimizes

parameters by minimizing a loss function. The trajectory of

the loss function during training serves as an indicator of

the model’s learning progress and training stability. Figure 5

illustrates the variation in loss values throughout the training

process.

The following observations can be drawn from Figure 5:

1) The consistent decline in loss values confirms that the

model effectively learns cybersecurity entity features.

2) The overall decreasing trend in loss values, despite the

large number of trainable parameters, underscores the

stability and robustness of the proposed model.

3) The loss function curve exhibits fluctuations, which can

be attributed to optimization algorithm selection and

learning rate adjustments. However, the overall trend

remains stable, further validating the robustness of the

proposed methodology.
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TABLE III COMPARISON OF CYBERSECURITY ENTITY RECOGNITION PERFORMANCE ACROSS DIFFERENT

MODELS

Model Accuracy Precision Recall F1-score
BERT-GRU-CRF 97.80% 89.25% 91.50% 90.36%
CNN-BiLSTM-CRF 93.45% 87.20% 85.10% 86.14%
BERT-BiLSTM-CRF 97.50% 86.30% 91.20% 88.68%
LSTM 92.36% 83.75% 80.62% 82.16%
CRF 91.50% 84.26% 73.34% 78.42%
BiLSTM-CRF 93.12% 85.70% 86.20% 85.95%
FT-CNN-BiLSTM-CRF 93.76% 89.05% 84.95% 86.94%
BERT-CRF 96.02% 83.50% 81.80% 82.64%
BERT-LSTM-CRF 97.68% 89.10% 92.15% 90.60%
BERT-RDCNN-CRF 97.85% 89.55% 91.30% 90.41%
BERT-BiGRU-CRF 97.60% 84.10% 90.80% 87.33%
LSTM-CRF 92.95% 86.17% 82.07% 84.07%
DeBERTa-TransformerCNN-BiLSTM 98.17% 88.98% 89.43% 87.21%

TABLE IV COMPARATIVE ANALYSIS OF TYPICAL SENTENCE

EXAMPLES

No. Example Sentence BERT-RDCNN-Attn-CRF DeBERTa-TCNN-BiLSTM Ground Truth
1 According to Wardle’s blog post, the

RansomWhere tool can detect and halt
encryption before multiple files are af-
fected.

RT: encryption, file; SW: Ran-
somWhere; PER: Wardle

RT: encryption, file; SW: Ran-
somWhere; PER: Wardle

RT: encryption, file; SW: Ran-
somWhere; PER: Wardle

2 SemiAccurate analyst Charlie Demer-
jian had prior knowledge of the vul-
nerability while investigating hardware
backdoors.

ORG: SemiAccurate;
PER: Charlie, Demerjian;
RT: hardware, backdoor,
vulnerability

ORG: SemiAccurate ; PER:
Charlie, Demerjian ; RT: hard-
ware, backdoor, vulnerability

PER: Charlie, Demerjian; RT:
hardware, backdoor, vulnera-
bility

3 The authentication mechanism was in-
troduced by the FIDO Alliance, and
Apple’s chips and Android smartphones
adhere to this standard.

ORG: FIDO Alliance, Apple,
Android ; RT: chip

ORG: FIDO Alliance, Apple ;
SW: Android ; RT: chip

ORG: Apple; SW: Android;
RT: chip

4 Reverse engineering techniques deter-
mine the cryptographic signature’s lo-
cation.

RT: reverse engineering RT: reverse engineering RT: reverse engineering

5 Removing delimiters from an encrypted
IP address, followed by base64 decryp-
tion and XOR, retrieves the actual IP
address.

RT: IP address RT: IP address RT: IP address

6 The DarkCloud III Trojan removal tool
mitigates malware threats.

SW: DarkCloud III ; RT: Tro-
jan

SW: DarkCloud III ; RT: Tro-
jan

SW: DarkCloud III; RT: Tro-
jan

7 The OpenResty platform eliminates the
need for additional Lua installations.

SW: OpenResty No prediction (correct) None

8 CVE-2017-0882 allows an attacker to
access confidential user data.

VUL ID: CVE-2017-0882 ;
RT: vulnerability, user, request,
permission, attacker

VUL ID: CVE-2017-0882 ;
RT: vulnerability, user, request,
permission, attacker

VUL ID: CVE-2017-0882;
RT: vulnerability, user,
request, permission, attacker

9 The second and third most exploited
vulnerabilities are CVE-2012-0158 and
CVE-2015-1641.

VUL ID: CVE-2017-0199,
CVE-2012-0158, CVE-2015-
1641

VUL ID: CVE-2017-0199,
CVE-2012-0158, CVE-2015-
1641

VUL ID: CVE-2017-0199,
CVE-2012-0158, CVE-2015-
1641

C. Case Study Analysis

To assess the practical applicability of the proposed model

in real-world cybersecurity environments, a qualitative eval-

uation was conducted by analyzing the entity classification

results from sample sentences extracted from our curated

cybersecurity NER dataset. These samples were evaluated

across different DeBERTa versions, and the outcomes for these

sentences are summarized in Table IV.

Key observations from Table IV:

• For structurally simple sentences (Sentence 1), the model

demonstrates high accuracy in identifying security enti-

ties, correctly labeling them as per the dataset annota-

tions.

• In Sentence 2, the model not only correctly detects the

typical entities (e.g., PER, RT) but also identifies an

unexpected ORG entity not annotated in the dataset.

This highlights the model’s ability to generalize to novel

entity types based on its training on diverse cybersecurity

sources.

• Sentences 3 and 7 show the model’s ability to generalize

beyond training data, where previously unlabeled entities

(ORG, SW) are correctly identified, indicating strong

performance in handling new entity types or noisy data

structures.

• For VUL ID entities (Sentences 8 and 9), which con-

sist of alphanumeric characters typical in cybersecurity

contexts (e.g., CVE IDs), the model identifies these
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Fig. 4. Recall Comparison Across Security Entities

Fig. 5. Loss Function Trend During Training

consistently, regardless of their syntactical context.

• Hybrid security entities like “”, containing both Indian

characters and Roman numerals, and “IP”, consisting of

English letters and Indian characters, are also accurately

classified, demonstrating the model’s robustness across

multilingual and multi-script data.

Despite these positive results, several limitations were ob-

served:

• In Sentence 3, the first occurrence of “”” (chip) was cor-

rectly recognized, but the second instance was misclas-

sified. This suggests that the model’s context-dependent

classification could be further optimized for repeated

entities.

• The term ”Android” was erroneously classified as an

ORG entity. This misclassification likely occurred due to

the term’s proximity to previously identified ORG enti-

ties, leading to a contextual misinterpretation, especially

in informal language used in cybersecurity reports.

• The model shows difficulty in accurately recognizing long

and complex ORG entity names, which are often seen

in cybersecurity datasets containing intricate threat actor

names or software vendors. These names may require

more sophisticated tokenization or handling of complex

syntactic structures.

D. Summary of Key Findings

• The proposed DeBERTa-TransformerCNN-BiLSTM

model demonstrates strong generalizability in

cybersecurity entity recognition tasks, especially in

extracting entities from multi-source threat intelligence

data.

• However, challenges remain in the accurate classification

of long, complex entity names. This limitation highlights

the need for further optimization in handling syntactically

complex entities or considering alternatives to improve

accuracy, especially in domain-specific contexts.

VI. CONCLUSION

Recognizing cybersecurity entities in open-network textual

data presents significant challenges due to the complexity

and heterogeneity of security-related terminology. To address

these challenges, this study proposes a novel DeBERTa-
TransformerCNN-BiLSTM cybersecurity entity recognition

model, integrating:

• DeBERTa for contextual representation at the character

level.

• Transformer-CNN hybrids for feature extraction and

hierarchical representation learning.

• BiLSTM-Softmax as an alternative to CRF for final

entity classification.

A. Key Contributions and Findings

• The proposed DeBERTa-TransformerCNN-BiLSTM

model surpasses existing baseline models in terms

of accuracy and precision for the recognition of

cybersecurity entities.

• The model exhibits strong generalization ability, particu-

larly for unseen but semantically related security entities.

• Despite its effectiveness, challenges persist in recognizing

long ORG entity names, indicating potential areas for

further refinement.

B. Future Research Directions

• Enhancing the training data set by incorporating Web-

based cybersecurity corpora to improve entity recognition

performance.

• Developing domain-specific embeddings with more

expressive language models trained in cybersecurity

datasets.

• Addressing class imbalance using data augmentation

techniques or advanced training strategies for low-

resource entity types.

• Refine sequence modeling techniques to enhance the

recognition of lengthy and structurally complex security

entities.
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