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Abstract—This paper addresses the problem of estimating
the parameters of a mixture of distributions. One of the most
popular ways to solve this problem is the Expectation Maxi-
mization algorithm. We introduce a novel alternative method
for estimating the parameters of a mixture of distributions,
based on numerical characteristics of distribution known as L-
moments. Experimental results demonstrate significant speedup
and comparable accuracy compared to classical methods.

I. INTRODUCTION

In various applied problems, methods of mathematical

statistics find wide applications. One of these methods is the

construction of a probabilistic model for describing a particular

process. The model is built on the basis of a sample obtained

from a series of experiments. To build a model, it is often

necessary to be able to estimate distribution parameters based

on some initial data.

For example, Latent Dirichlet Allocation (LDA) used in

text generation requires estimation of the Dirichlet distribution

parameters [1].

In addition to single distributions, there are mixtures of

distributions, the parameters of which also need to be esti-

mated. For instance, the wrapped Gaussian mixture models

are used for modeling and high-rate quantization of phase data

of speech [2]. Moreover, Gaussian mixtures can be used in

solving the image inverse problem [3].

Estimating the parameters of mixtures in which different

families are represented can also be useful, such as estimating

the mixture parameters of the Student’s t and Watson distri-

butions for brain shift compensation [4].

The introduced problem can be solved with the Expecta-

tion Maximization algorithm (EM algorithm), which uses a

maximum likelihood estimation (MLE) method [5]. However,

while effective, this method can be computationally intensive,

especially for large datasets.

To overcome these limitations, we introduce a novel algo-

rithm based on numerical characteristics of distributions such

as L-moments, which offers a potentially huge speedup while

maintaining acceptable accuracy.

II. BACKGROUND

This section overviews mixtures of distributions and the

EM algorithm, which underpin our proposed method, and

introduces their implementations in the module of the PySATL

python library — mpest.

A. Mixture of distributions

Assume we have a sample composed of k subsamples, each

of which is distributed according to some distinct probability

distribution fi(x) ∈ F , where i = 1, ..., k. The probability

density function (PDF) of a mixture distribution with k com-

ponents is then given by:

p(x | F,Ω,Θ) =

k∑
i=1

ωi · fi(x | θi)

where fi ∈ F , ωi ∈ Ω — are the mixture weights that

represent prior probability such that
∑

ωi = 1 and ωi ≥ 0,

θi ∈ Θ — parameters of the i-th component.

An example of mixture distribution with two components

is shown in Fig. 1

We assume that F is known and Ω, Θ are unknown. In

other words, this article addresses the problem of estimating

the parameters of a mixture with known components.

For a detailed exposition on mixture distributions, see [6].

Fig. 1. Example of a mixture distribution with two Gaussian components
with weights 0.6 and 0.4

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 317 ----------------------------------------------------------------------------



B. EM-algorithm

The most popular method to estimate parameters of a

mixture is the EM algorithm [7]. Let zij be the probability

that the i-th observation is distributed according to the j-th

component; then the algorithm relies on two steps:

With the given sample and mixture, zij can be calculated

using the Bayesian formula as follows:

zij =
ωj · fj(xi | θj)

ω1 · f1(xi | θ1) + ...+ ωk · fk(xi | θk) (1)

With the known matrix Z, weights of the given mixture can

be estimated as follows:

ωj =

∑n
i=1 zij
n

(2)

Therefore, the mixture parameters can be iteratively approx-

imated closer to the true values using the EM algorithm:

• E-step: Calculate the matrix Z = (zij) using formula 1.

• M-step: Update the mixture weights using formula 2 and

parameters by maximizing the logarithm of the likelihood

function.

Repeat iterations until convergence, defined by a small

change in the likelihood function or parameters between itera-

tions. Another stopping criterion can be reaching a maximum

number of iterations, which will be utilized in the experiments.

C. Pysatl-mpest

Pysatl-mpest1 is a module that provides an implementation

of the EM algorithm, using the likelihood function, and

provides the functionality for working with mixtures [8]. The

current architecture of the module is structured as in Fig. 2.

• EM: A central component of the library. Contains a class,

which implements the EM algorithm in general form.

• Methods: A component that implements various methods

based on the EM algorithm.

• Core: This component contains implementations of

Weibull, exponential and Gaussian distributions and a

mixture distribution class.

• ADistributionChecker: It is designed to reduce the

impact of degenerate distributions or distributions with

incorrect parameters in the mixture by removing them.

• ABreakPointer: Contains classes that implement

algorithm-stopping conditions denoted in Section II.B.

• Optimizers: Contains implementations of optimizers for

use in the EM algorithm. All calculations are carried out

using the SciPy library.

III. L-MOMENTS OF SINGLE DISTRIBUTION

The main results, on which this work and many others

are based, are described in the fundamental work of J.R.M.

Hosking [9]. In his work, the concept of L-moments was

introduced, and some theory was built around them.

This section describes L-moments of single distributions,

explains their advantage over conventional moments, and gives

1https://github.com/PySATL/pysatl-mpest

Fig. 2. Diagram of components of the pysatl-mpest module

an example. Furthermore, we will review existing implemen-

tations relevant to this research.

A. L-moments

L-moments are numerical characteristics of a distribution

analogous to raw moments, describing its shape. The main

difference is that the definition of L-moments is based on order

statistics.

Consider a sorted sample x(1) < x(2) < ... < x(n), then the

r-th sample L-moment of the sample is given by [9]:

lr =
r−1∑
k=0

pr−1,k ·
∑n

j=k+1

(
j−1
k

) · x(j)

n · (n−1
k

) (3)

where

pr,k = (−1)r−k ·
(
r

k

)
·
(
r + k

k

)

Analytical formulas for estimating parameters by L-

moments are derived for most distributions. For example, for

Gaussian distribution:

μ = l1, σ =
√
π · l2

An important benefit of L-moments over conventional mo-

ments is their wider applicability. L-moments exist under

weaker conditions, requiring only a finite mean, whereas raw

moments of higher orders may not exist for many distributions.

This is supported by a theorem introduced by Hosking.

B. Illustrative Example

Consider the generalized Pareto distribution (GPD) with

probability density function [10]:

f(x | α, k, ξ) =

⎧
⎪⎨
⎪⎩
α−1 · exp

(
−x−ξ

α

)
, k = 0

α−1
(
1− k(x−ξ)

α

) 1−k
k

, k �= 0

Let ξ = 0, α = 1, k = −1

2
, then the PDF of GPD is equal

to:
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fX(x | 1,−1

2
, 0) = (1 +

1

2
x)−3

By definition of raw moments:

μ1 = E[X] =

∫ +∞

0

x · (1 + 1

2
x)−3dx = 2

μ2 = E[X2] =

∫ +∞

0

x2 · (1 + 1

2
x)−3dx = +∞

But 2nd L-moment [9]:

λ2 =
α

(1 + k)(2 + k)
=

4

3

This example shows that the range of application of L-

moments is wider than that of ordinary moments. However,

if the distribution does not have a mean (for example, the

Cauchy distribution), then their use is impossible. For such

a case, there is a generalization of L-moments — Trimmed

L-moments (TL-moments) [11].

C. Existing implementations

• Lmo2: Python library providing a wide range of capa-

bilities, from calculating L-moments to estimating the

parameters of many distributions. The disadvantage is

that Lmo does not involve working with mixtures of

distributions and therefore does not solve the problem

of estimating the parameters of a mixture distribution.

• WeibullDist3: Abandoned Python library primarily fo-

cusing on the Weibull mixtures. It includes parameters

estimation of Weibull mixtures with the L-moments

method. Strong restrictions on the families of the mixture

components make this package not relevant for mixtures

of any distribution [12].

• lmoments34: Python implementation of Fortran library

created by J.R.M. Hosking. Library has a function for

calculating L-moments for distributions mentioned in

Hosking’s work.

There are several implementations of the EM algorithm

for mixtures with various distributions on GitHub5 6, but no

general case has been found.
The libraries studied, although making individual contribu-

tions to specific aspects of L-moment methodologies, collec-

tively do not provide a generalized solution for estimating

mixture model parameters.
The pysatl-mpest, with its built-in ELM algorithm, directly

addresses this need by offering a more generalized and exten-

sible Python library for L-moments-based mixture analysis.

IV. ELM ALGORITHM

In this section, we present an adaptation of the formula

of L-moments for mixtures and introduce the Expectation L-

moments algorithm (ELM algorithm).

2https://github.com/jorenham/Lmo
3https://github.com/MakuhIlyukh/WeibullDist
4https://github.com/Ouranosinc/lmoments3
5https://github.com/rezaahmadzadeh/Expectation-Maximization
6https://github.com/dmetivie/ExpectationMaximization.jl

A. Mixture L-moments

The definition of L-moments in Section III.A assumes

that all observations come from a single distribution. This

assumption is violated in mixture models, where samples are

distributed according to mixture distribution, making a direct

application of the standard L-moments calculation inappropri-

ate. Therefore, the formula is adapted as follows:

l(j)r =

r−1∑
k=0

pr−1,k ·
∑n

i=k+1 b
(j)
ik · zij · x(i)∑n

i=1 zij ·
(
n−1
k

) (4)

where l
(j)
r — r-th L-moment of the j-th component of

mixture, zij — probability that x(i) distributed from the j-

th component of the mixture, b
(j)
ik =

(�∑i
l=1 zij�
k

)
, symbol ��

denotes rounding to nearest integer

It should be noted that formula 4 was derived empirically,

through iterative evaluation of algorithm performance.

The necessity to compute binomial coefficients in formula

4 introduces a significant computational overhead, especially

as the sample size and order of L-moment increase. Pre-

computations of factorials up to n = 1000 were implemented

to speed up calculations. For n > 1000, we propose using

Stirling’s formula. Since the accuracy of calculating the bi-

nomial coefficients is not very important for large n, using

approximations will allow one to obtain a significantly faster

result without serious loss of accuracy.

B. Implementation of algorithm

Algorithm 1 ELM algorithm

1: Initialization:
2: Ω(0) = {ω(0)

j }
3: Θ(0) = {θ(0)j }
4: Z(0) = {z(0)ij }
5: for t = 0, 1, . . . do
6: LM-step:
7: for j = 1, . . . , k do
8: Lj ← calculate lm()

9: θ
(t+1)
j ← estimate(Lj)

10: end for
11: E-step:
12: for i = 1, . . . , n, j = 1, . . . , k do
13: Z(t+1) ← calc indicators()
14: ω

(t+1)
j ← update weights()

15: end for
16: for j = 1, . . . , k do
17: if ω(t+1)

j < δ or θ
(t+1)
j is incorrect then

18: Delete j-th component

19: end if
20: end for
21: if end condition() then
22: Exit.
23: end if
24: end for
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As the base for the ELM algorithm, the EM algorithm

from Section II.A. will be used. While the E-step remains

the same, the Maximization step (M-step) is substituted with

the L-moments step (LM-step).

Thus, the algorithm has the form shown in pseudocode in

Algorithm 1

Upper indices, e.g. Θ(t) denotes a variable at step t.

In words, the algorithm looks like this:

• LM-step: For all components fj , calculate L-moments up

to the required order r using formula 4. Using formulas

introduced by J.R.M. Hosking, calculate components

parameters θj .

• E-step: This step is identical to that of the EM algorithm.

The function calc indicators calculates matrix Z by

formula 1. In the function update weights, formula 2

is used to calculate mixture weights Ω.

After each iteration, using the class of type ADistribu-
tionChecker a j-th component is removed if its parameters

θ
(t+1)
j are deemed invalid or if its weight ω

(t+1)
j is less than

the threshold δ.

The end condition function checks the fulfillment of the

algorithm end conditions specified in Section II.C.

V. EXPERIMENT PIPELINE

Since ELM and EM algorithms are implemented in pysatl-

mpest, we will compare them under the conditions of this

library. To conduct the experiment conveniently, an experi-

mental environment was implemented. The experimental en-

vironment is able to save all intermediate results and compare

methods by criteria.

In this section, we pose research questions about the ELM

algorithm. To address research questions outlined and evaluate

the proposed algorithm, we design and execute a series of

experiments.

A. Research questions

To measure the efficiency and accuracy of the provided

method in Section IV, we formulated three research questions:

• RQ1: To what extent is the scope of applicability of the

new method within the set conditions coinciding with the

EM algorithm? The answer to this question will reveal

the limitations that may overlap with the use of the L-

moment method.

• RQ2: What is the computational speed of the ELM

algorithm in comparison with the maximum likelihood

method? Within the framework of this issue, it remains

to be seen whether the L-moments method is faster or

slower than the classic.

• RQ3: Is the ELM algorithm more or less accurate than

the EM algorithm, and what factors influence their rel-

ative accuracy? The answer to this question will allow

you to understand in which cases it is better to use the

L-moment method and in which it is better to use the

EM algorithm.

B. Experiment pipeline

To ensure the reproducibility of the experiment, a fixed seed

of 42 was utilized for all random processes.

The experiment is separated into different steps. As a step 0,

the configuration is fixed: the sample size and F — families of

components. Then for each configuration three steps defined

as follows:

• Step 1: Data sampling from configured mixture with

random Ω and Θ. Samples and base mixtures of each

run are saved.

• Step 2: Parameter estimation by EM and ELM on each

sample from Step 1. For each sample, a single set of

weights Ω and parameters Θ is generated randomly.

This random initial guess is then used for both EM and

ELM algorithms. The resulting mixtures are saved for

subsequent analysis.

• Step 3: Evaluation metric values representing a similarity

between the resulting mixture and base mixture and exe-

cution time. Following the analysis of all Step 2 results,

samples of metric values and algorithm running times are

obtained. For these samples, descriptive statistics such as

mean, median, and standard deviation are then computed.

Scripts were written to perform each step, which can be

found in the branch of the pysatl-mpest repository7.

To evaluate the accuracy of methods, the mean integrated

square error (MISE) implemented in pysatl-mpest will be used:

∫ +∞

−∞

(
p(x | F,Ω,Θ)− p(x | F,Ω∗,Θ∗)

)2

dx (5)

where p(x | F,Ω,Θ) — density function of mixture with

true parameters Ω and Θ, p(x | F,Ω∗Θ∗) — density function

of result mixture with estimated parameters Ω∗ and Θ∗.

The integral is calculated using SciPy library.

C. Experiment setup

To answer the research questions posed, we developed an

experimental setup:

• Mixtures contain only exponential, Gaussian, and two-

parametric Weibull components.

• For the parameters estimation using the EM algorithm,

all optimizers were used. Among all the results, the one

with the best metric value is chosen.

• Samples size: 200, 500 and 1000

• Components number — 2

• Runs per configuration — 100

• Maximum number of algorithms steps — 16

If an error occurs at any step, the algorithm terminates and

returns the resulting mixture.

The mixture of exponential and Weibull distributions is not

included in the experiment setup because the exponential is a

special case of the Weibull.

7https://github.com/iraedeus/pysatl-mpest/tree/exp scripts
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VI. EXPERIMENT RESULTS

The pipeline of the experiment given in Section V yielded

meaningful results.

In this section, we will present the results of comparing the

accuracy of the algorithms in Tables I and II and their runtime

in Table III. Subsequently, we will delve into an analysis of

these results and provide answers to the research questions

outlined in Section 5.

Results of all steps of the experiment pipeline are contained

in the GitHub repository8.

A. Accuracy comparison

TABLE I INFORMATION ABOUT THE MISE OF THE RESULTING MIXTURE

OF THE EM ALGORITHM COMPARED TO THE TRUE ONE

Sample size Mixture MISE

μ σ Median

200 Exp+Exp 0.0057 0.0083 0.0024
Exp+Gauss 0.06 0.114 0.017
Gauss+Gauss 0.0031 0.0022 0.0025
Weib+Gauss 0.11 0.23 0.028
Weib+Weib 0.027 0.12 0.0045

500 Exp+Exp 0.0029 0.0042 0.0015
Exp+Gauss 0.074 0.17 0.018
Gauss+Gauss 0.0012 0.0008 0.0011
Weib+Gauss 26.0 237.0 0.029
Weib+Weib 0.077 0.59 0.0016

1000 Exp+Exp 0.0014 0.0006 0.002
Exp+Gauss 0.079 0.18 0.017
Gauss+Gauss 0.008 0.025 0.0007
Weib+Gauss 0.1 0.22 0.026
Weib+Weib 0.013 0.06 0.0013

Tables I and II, which present accuracy metrics, shows that

the median and mean decrease steadily as the sample size

increases. The exception is the Weibull and Gaussian mixture,

which are characterized by outliers.

It can be seen that, unlike the ELM, the accuracy of the EM

algorithm almost does not change with increasing sample size

for a mixture of Exponential and Gaussian.

Comparing medians and means, it is noticeable that the EM

works better for smaller sample sizes. However, for a sample

size of 1000, the situation is completely opposite. The ELM

algorithm shows better results for larger samples compared to

the classic EM.

As for standard deviation, its dependence on sample size is

similar to the dependence of median and mean. This statistic

also decreases with sample size for all mixtures except those

containing a Weibull component.

Comparing the two algorithms based on these statistics, it

can be seen that the ELM algorithm has a significant advantage

starting from a sample size of 1000.

TABLE II INFORMATION ABOUT THE MISE OF THE RESULTING MIXTURE

OF THE ELM ALGORITHM COMPARED TO THE TRUE ONE

Sample size Mixture MISE

μ σ Median

200 Exp+Exp 0.0057 0.0083 0.0024
Exp+Gauss 0.0086 0.02 0.0037
Gauss+Gauss 0.0034 0.0026 0.0029
Weib+Gauss 0.67 5.0 0.003
Weib+Weib 0.36 1.9 0.005

500 Exp+Exp 0.0029 0.0042 0.0015
Exp+Gauss 0.0034 0.0055 0.0015
Gauss+Gauss 0.0014 0.0011 0.0012
Weib+Gauss 0.13 0.92 0.0012
Weib+Weib 0.064 0.55 0.0017

1000 Exp+Exp 0.0014 0.002 0.0006
Exp+Gauss 0.0014 0.0023 0.0007
Gauss+Gauss 0.0006 0.0005 0.0006
Weib+Gauss 180.0 1790.0 0.0007
Weib+Weib 0.033 0.66 0.001

TABLE III COMPARISON OF MEAN EXECUTION SPEED OF
ALGORITHMS

Mixture Sample size Execution Time (seconds)

ELM EM

Exp+Exp 200 0.067 ± 0.003 0.41 ± 0.11
500 0.21 ± 0.04 1.2 ± 0.46
1000 0.37 ± 0.17 1.7 ± 0.47

Exp+Gauss 200 0.11 ± 0.012 2.4 ± 1.2
500 0.33 ± 0.066 6.6 ± 4.0
1000 0.67 ± 0.28 12.0 ± 6.2

Gauss+Gauss 200 0.16 ± 0.01 2.9 ± 1.8
500 0.47 ± 0.096 8.9 ± 5.5
1000 0.89 ± 0.048 15.0 ± 10.0

Weib+Gauss 200 0.14 ± 0.019 4.3 ± 2.4
500 0.47 ± 0.11 13.0 ± 8.7
1000 0.74 ± 0.046 23.0 ± 12.0

Weib+Weib 200 0.12 ± 0.056 1.7 ± 0.96
500 0.37 ± 0.19 5.1 ± 3.5
1000 0.62 ± 0.39 7.8 ± 4.3

B. Runtime comparison

Table III shows that the execution speed of the presented

algorithm is significantly lower in comparison with the EM

algorithm. This follows obviously from the fact that EM algo-

rithm performs optimization of the logarithm of the likelihood

function while the ELM algorithm just computes L-moments.

Also, the standard deviation indicates that the execution

speed of the ELM algorithm is much more stable than that

of the EM algorithm, which may be due to its resistance to

8https://github.com/iraedeus/EM-algo-experiment
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initial conditions or to the fact that the EM algorithm solves

the function optimization problem.

VII. RESULTS DISCUSSION

A. RQ1

Our results demonstrate that the ELM algorithm works

well in the same domain as the EM algorithm. A common

characteristic of both algorithms is outliers in metric values

when dealing with the mixtures that contain Weibull and

Gaussian components.

The comparable accuracy in parameter estimation for the

considered distributions and mixture configurations allows the

use of ELM as an alternative.

B. RQ2

In all cases, the ELM algorithm is significantly faster than

the EM algorithm. Specifically, for datasets with a sample of

size 200, ELM execution time is under 200 ms.

From the data in Table III on the increase in time with in-

creasing sample size, it follows that the asymptotic complexity

of both algorithms is most likely O(n · k). However, from the

data on the absolute difference in the execution time of the

algorithms with sample sizes of 1000 and 200, it follows that

the hidden constant in the complexity of ELM is significantly

smaller.

C. RQ3

The accuracy of the EM algorithm by the metric proposed in

formula 5 is higher on samples with a size of 200 than ELM.

On samples with higher sizes (500, 1000), the introduced

approach has higher or comparable accuracy than the classical

method.

To be more specific, let’s look at different mixtures.

• Exp+Exp: The mean accuracy of both algorithms is

absolutely identical. However, the median accuracy of

ELM algorithm exhibits a significant improvement at a

sample size of 1000.

• Exp+Gauss: The EM algorithm works worse with in-

creasing sample size, but the ELM algorithm works with

increasing accuracy at the same time.

• Gauss+Gauss: The accuracy of both algorithms is com-

parable.

• Weib+Gauss: Based on the median values, the ELM

algorithm outperforms the EM algorithm at the sample

sizes of 500 and 1000.

• Weib+Weib: Presents ambiguous results. The EM algo-

rithm underperforms across all metrics only at a sample

size of 200. At a sample size of 500, the ELM algorithm

exhibits lower median accuracy, while at a size of 1000,

it’s better only at the mean and standard deviation.

VIII. CONCLUSION

In this work we introduced and implemented a novel ap-

proach to estimate parameters of mixtures using L-moments.

Moreover, to implement ELM algorithm, we adapted the L-

moment formula for the case of mixture distributions. Based

on the results of the study, we can conclude that the algorithm

is quite promising. However, it is necessary to continue its

research for more accurate results.
Therefore, in the future, it is planned to expand the class of

distributions implemented in pysatl-mpest. To conduct more

experiments with larger samples as well as mixtures of size 3

or more, it is planned to refine the experimental environment.

To support distributions with an uncertain mean (e.g., Cauchy),

it is planned to develop an algorithm based on TL moments,

as well as its implementation in the pysatl-mpest module.
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