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Abstract—Sound event detection is a critical task with
widespread applications in industrial and scientific domains.
However, most state-of-the-art methods rely on large neural
networks with a substantial number of parameters, render-
ing them unsuitable for deployment in resource-constrained
environments. Additionally, these approaches typically employ
a single recurrent neural network as a decoder to predict
the probabilities of event occurrences at specific timestamps.
In contrast, this paper introduces a model featuring a multi-
head gated recurrent unit decoder, which achieves competitive
prediction accuracy while significantly reducing the number
of trainable parameters. Our proposed model attains an F1-
score of 62.53% and a polyphonic sound detection score of
0.4979 on the DESED evaluation dataset, requiring only 3.2
million trainable parameters, thereby achieving state-of-the-art
performance among low-complexity models. Furthermore, we
provide a comprehensive analysis of the proposed approach.
First, we demonstrate that multi-heading enables the creation of
models with comparable or superior prediction accuracy while
utilizing significantly fewer trainable parameters. Second, we
show that our approach is more effective for improving the model
performance compared to simply increasing the hidden size of
the network. Finally, we explore the limitations of the proposed
technique in scenarios where auxiliary pretrained transformers
are used to generate additional informative embeddings from
input audio recordings.

I. INTRODUCTION

The task of automatic meta-information recognition involves

identifying and extracting various types of information from

an audio signal. This includes data such as speech [1], unusual

sounds or anomalies [2], emotions [3], specific events [4],

acoustic environments [5], and other elements present in the

sound. In today’s world, automatic audio processing is essen-

tial for many applications. For example, smart devices with

advanced audio analysis capabilities are becoming increasingly

popular. At the same time, researchers are actively exploring

ways to improve the recognition of different types of audio

data, as seen in studies presented at the annual Detection

and Classification of Acoustic Scenes and Events (DCASE)

conference [6]–[14]. A key focus of this work is sound event

detection (SED), which aims to identify specific sound events

in an audio recording and provide labels along with their start

and end timestamps.

The state-of-the-art approach for addressing the SED task

involves converting the input audio signal into a log-mel

spectrogram, processing it through an ensemble of large

transformer-based models such as PaSST [15], BEATs [16],

and ATST [17], and then decoding the resulting embeddings

using a recurrent neural network (RNN). The most accurate

solution for DCASE Task 4 achieves a polyphonic sound

detection score (PSDS) of 0.68 and utilizes 1 billion trainable

parameters [18]. Consequently, the described system is not

suitable for deployment within smart devices due to its high

computational complexity and substantial resource require-

ments.

An alternative method for solving the SED problem in-

volves replacing the large transformer encoder with a memory-

efficient convolutional neural network (CNN) combined with

embeddings extracted from a frozen BEATs transformer [19].

However, this system cannot be considered low-complexity

due to the computational and storage costs associated with the

BEATs model. Moreover, when analyzing the system without

including BEATs, it becomes evident that the crucial part of

trainable parameters is concentrated in the RNN decoder. In

this paper, we address the challenge of reducing the number

of trainable parameters in the RNN decoder.

Fig. 1. Architecture of gated recurrent unit (GRU)

One of the most efficient RNN-based decoders is the gated

recurrent unit (GRU) [20]. The model operates by maintaining

a hidden state ht−1 and updating it to generate the next state ht

based on the input vector xt. The update process is governed

by a series of gating mechanisms, as illustrated in Fig. 1 and

mathematically defined in Equations 1,2,3,4.

rt = σ(Wirxt + bir +Whrh(t−1) + bhr) (1)

zt = σ(Wizxt + biz +Whzh(t−1) + bhz) (2)

h̃t = tanh
(
Wih̃xt + bih̃ + rt � (Whh̃h(t−1) + bhh̃)

)
(3)

ht = (1− zt)� h̃t + zt � h(t−1) (4)
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where ht is the hidden state at time t, xt is the input at time

t, h(t−1) is the hidden state of the layer at time (t − 1) or

the initial hidden state at time 0, and rt, zt, h̃t are the reset,

update, and new gates, respectively. σ is the sigmoid function,

and � is the Hadamard product.

Let D denote the dimensionality of the input vector xt, and

let H represent the dimensionality of the hidden state. Under

these conditions, the GRU contains O(HD+H2) trainable pa-

rameters. In this work, we propose a novel model constructed

by replacing a single GRU with an ensemble of k GRUs, each

with a hidden size h such that hk = H . This modification

results in minimal degradation in model prediction accuracy

while reducing the total number of trainable parameters to

O(k(H/k)D+ k(H/k)2) = O(HD+H2/k). This approach

demonstrates a significant reduction in model size while

preserving performance, offering a more efficient alternative

for resource-constrained applications. Moreover, the presented

model achieves new state-of-the-art SED performance in terms

of F-measure among low-complexity models on the DCASE

Task 4 public evaluation dataset [9].

II. METHOD

A. Conventional method

In this section, we introduce the conventional sound event

detection method. In mathematical terms, the prediction sys-

tem corresponds to the operation Y = DθD (EθE (X)), where

E denotes an encoder, D is a decoder, θE represents the set

of trainable parameters in the encoder model, θD is the set

of weights in the decoder model, X = (x1, . . . , xN ), with

xi ∈ RD, is the sequence of log-mel spectrogram feature vec-

tors, and N is the total number of time frames. Let us denote

EθE (X) = Q = (q1, . . . , qM ) as the sequence of embeddings

obtained by the encoder model. Finally, Y = DθD (Q) is

the output of the network. Under these designations, the

model complexity can be defined as the number of trainable

parameters |θE |+ |θD|.
The SED task involves determining the timestamps corre-

sponding to the occurrence of each predefined sound event. In

this work, we utilize a set of 10 sound events from DCASE

2024 Task 4 [9]: alarm bell ringing, blender, cat, dishes, dog,

electric shaver or toothbrush, frying, running water, speech,

and vacuum cleaner. A significant challenge in this task is

the presence of overlapping time segments associated with

different event types. To address this issue, most state-of-the-

art models generate outputs in the form Y ∈ RN×10, where

Yt,c represents the probability of the existence of sound event

c ∈ {1, . . . , 10} at time frame t ∈ {1, . . . , N}.

One of the most effective approaches to solving the SED

task is to fine-tune an ensemble of large transformer models,

such as PaSST [15], BEATs [16], and ATST [17], using the

standard binary cross-entropy (BCE) loss function. The predic-

tion pipeline is further enhanced by applying median filtering

to the outputs, which improves the PSDS [21], a widely-used

evaluation metric for SED. An alternative approach involves

employing a low-complexity CNN to generate embeddings,

concatenating these embeddings with feature vectors produced

(a) Conventional linear layer (b) LoRa

Fig. 2. Architecture of the low-rank adaptation module

by an auxiliary pretrained BEATs model, and decoding the

predictions using a recurrent neural network (RNN).

However, the aforementioned approaches involve the use

of large neural networks, which prevents them from being

considered low-complexity models. Nevertheless, there exists

a series of systems that can be classified as low-complexity

models [22], [23]. These systems demonstrated competitive

performance until 2023, when the authors of DCASE Task 4

introduced the possibility of using large neural networks as

auxiliary models to improve overall prediction accuracy, dis-

regarding their size. Conventional low-complexity approaches

are fundamentally similar to resource-intensive models, with

the primary difference being the inclusion of a large pretrained

encoder as an additional source of generating useful and

informative embeddings from audio recordings. As a result,

most compact models consist of a CNN encoder and an RNN

decoder without any additional large subsystems. In this work,

we consider such approaches as baseline models.

B. The proposed method

Let us examine the complexity of the GRU decoder. The

model comprises three linear layers with O(HD) parameters

and three linear layers with O(H2) weights. By optimizing the

utilization of these linear layers, it becomes possible to reduce

the overall model complexity. The conceptual foundation of

our work is inspired by the following techniques in deep

learning.

The first technique is referred to as low-rank adaptation

(LoRa) [24]. Initially, this method was developed for the

efficient fine-tuning of large language models (LLMs). The

core idea of LoRa is based on the observation that most linear

layers in LLMs exhibit low-rank properties. Consequently,

such layers, which typically consist of H × W weights, can

be replaced with two linear layers of dimensions H × k and

k×W , separated by an activation function. Fig. 2 demonstrates

the scheme of the explained model. This approach reduces the

number of parameters in the layer from HW to (H +W )k.

Notably, it has been demonstrated that this technique preserves

the prediction accuracy of the model.

The second method involves utilizing a series of inde-

pendent prediction models and aggregating their outputs to

produce the final result. This collection of models is referred to

as an ensemble. This technique has demonstrated state-of-the-

art performance across various domains, including computer
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Fig. 3. Architecture of the multi-head self-attention taken from [28]

(a) Conventional GRU (b) Multi-head GRU

Fig. 4. Architecture of the proposed multi-head GRU decoder

vision (CV) [25], natural language processing (NLP) [26], and

automatic speech recognition (ASR) [27].

The third approach is known as multi-head self-attention

(MHSA) [28]. Conventional self-attention computes relation-

ship scores between each pair of input vectors and generates

output embeddings based on the relative importance of each

input vector. To achieve this, the self-attention module projects

input vectors into a single vector space of dimensionality H ,

where these operations are performed. In contrast, multi-head

self-attention projects input vectors into k independent vector

spaces, each of dimensionality H/k as shown in Fig. 3. It then

performs the aforementioned operations within each subspace

and concatenates the results, producing a final sequence of

vectors with dimensionality k · (H/k) = H . Multi-head atten-

tion enables the model to simultaneously attend to information

from different representation subspaces at various positions.

This capability is inhibited in single-head attention.

Building upon these ideas, we propose a novel multi-head

recurrent neural network as a decoder model for addressing the

problem of SED. Fig. 4 illustrates a schematic architecture of

the invented approach. Specifically, we replace a conventional

GRU with a hidden size of H with an ensemble of k
smaller GRUs, each with a hidden size of H/k. We refer to

these GRUs as heads and the entire model as a multi-head

GRU. While the original GRU generates an output vector of

dimensionality H , our proposed ensemble produces a series of

vectors, each of dimensionality H/k. These vectors are con-

catenated into a single vector of dimensionality k·(H/k) = H ,

which is then propagated through a final linear layer to ob-

tain the output probabilities, consistent with the conventional

model. By replacing one GRU with O(DH+H2) parameters

with k smaller GRUs, each with O(DH/k+(H/k)2) param-

eters, the total number of trainable weights in our model is

reduced to O (
k(DH/k + (H/k)2)

)
= O(DH +H2/k).

III. EXPERIMENTS

A. Dataset

We utilize the DESED dataset [9], which contains 85.1
hours of 10-second recordings with labels of varying gran-

ularity: 9.6 hours of strongly-labeled samples, which include

precise timestamps of event occurrences; 4.4 hours of weakly-

labeled examples, which only indicate the presence of event

types; 27.8 hours of synthetically generated data; and 3.3 hours

of validation data. All audio samples are resampled to a 16 kHz

sampling rate and subsequently transformed into log-mel

spectrograms. These spectrograms are generated using 128-

channel filter banks, computed over a 128ms window with a

10ms stride. Additionally, spectrogram masking augmentation

is applied, with a maximum masking ratio of 15%.

B. Training

Given that the dataset consists of half unlabeled examples,

we employ knowledge distillation from the state-of-the-art

approach proposed by Schmid [18] to address this challenge.

Specifically, we utilize classical soft distillation, leveraging

the conventional mean squared error (MSE) between the

predictions of the teacher and student models. During training,

we employ a batch size of 48 samples. Optimization is per-

formed using the AdamW optimizer with a cosine annealing

learning rate schedule, where the maximum learning rate is

set to 10−4. The models are trained from default random

initialization for 500 epochs until convergence, with the first

10% of the epochs allocated for the warmup stage. To ensure

robustness and reliability, we report the average metric values

across three independent experimental runs. We observe that

the standard deviation across all runs remains within 1%
of the relative metric value for all experimental setups. A

single experimental run requires approximately 24 hours when

executed on 1× NVIDIA Tesla V100 32GB.

C. Evaluation metrics

We evaluate the proposed model using two distinct groups

of metrics: one for assessing prediction accuracy and the other

for estimating model complexity. The first group of metrics

includes the F1-score and the PSDS [29] for evaluating the

prediction accuracy of the SED task, with hyperparameters

described in Table I. The second group focuses on model

complexity and comprises the number of trainable parameters.
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TABLE I. HYPERPARAMETERS OF THE EVALUATION

METRICS

Metric Hyperparameter name Hyperparameter value
F1 Collar 200ms
PSDS Detection Tolerance 0.7

Ground Truth intersection 0.7
Cost of instability across class 1
Cost of CTs1 on user experience 0
Maximum False Positive rate 100

1 Cross-triggers – the subset of false positives which match another
labelled class of the multi-class system

TABLE II. ARCHITECTURE DETAILS OF CONSIDERED

SINGLE AND MULTI-HEAD MODELS

Model Size, M1 Heads Channels in encoder
M2(1) 2 1 [8, 16, 32, 64, 128, 208, 208]
M2(2) 1.5 2
M2(4) 1.3 4
M2(8) 1.1 8
M3.5(1) 3.5 1 [16, 32, 64, 128, 128, 274, 274]
M3.5(2) 2.6 2
M3.5(4) 2.2 4
M3.5(8) 1.9 8
M4(1) 5 1 [32, 64, 128, 256, 256, 292, 292]
M4(2) 4 2
M4(4) 3.5 4
M4(8) 3.2 8
M0.5(1) 0.5 1 [4, 8, 16, 32, 32, 108, 108]
M1.1(1) 1.1 1 [8, 16, 32, 64, 64, 157, 157]
M2.2(1) 2.2 1 [16, 32, 64, 128, 128, 210, 210]
M4(1) 4 1 [16, 32, 64, 128, 128, 296, 296]
1 ”M” corresponds to millions

D. Configurations

In our experiments, we utilize a convolutional neural net-

work (CNN) comprising seven consecutive blocks as the

encoder. Each block includes a convolutional layer with a

kernel size of 3, followed by batch normalization, a ReLU

activation function, and average pooling. The encoder pro-

cesses the input log-mel spectrogram to produce a sequence of

H-dimensional vectors, which are subsequently passed to the

GRU decoder. To evaluate the impact of our proposed method

on model size and performance, we conduct experiments with

various configurations by adjusting the number of channels

in the encoder and the hidden size of the decoder. This

approach allows us to create a series of models with varying

numbers of trainable parameters, facilitating evaluation across

diverse scenarios. We develop three models with 2, 3.5, and

5 million trainable parameters, respectively. For each model,

we investigate multi-head configurations with 1, 2, 4, and 8
heads. We denote the model configuration with initially W
trainable weights in single-head mode, which is transformed

into a model with k GRU heads as MW (k). The hidden size

of the decoder model is equal to the number of channels

in the last layer of the encoder model. Table II provides

a comprehensive characterization of the proposed models.

Furthermore, to assess the contribution of the multi-head

decoder, we train single-head conventional networks of similar

size and compare them with their multi-head counterparts. As

baselines, we consider state-of-the-art low-complexity models

TABLE III. A COMPARISON OF BASELINE, SINGLE AND

MULTI-HEAD MODELS

Model Size, M1 F1-score PSDS
Baseline [22] 15 58% 0.4743
Baseline [23] 10 58.22% 0.456
M2(1) 2 60.55% 0.4855
M2(2) 1.5 61.14% 0.4875
M2(4) 1.3 59.63% 0.4907
M2(8) 1.1 58.84% 0.4759
M3.5(1) 3.5 61.56% 0.4935
M3.5(2) 2.6 61.33% 0.4940
M3.5(4) 2.2 61.41% 0.4950
M3.5(8) 1.9 60.39% 0.4984
M5(1) 5 61.07% 0.4905
M5(2) 4 61.66% 0.4964
M5(8) 3.2 62.53% 0.4979
1 ”M” corresponds to millions

TABLE IV. A COMPARISON OF STRAIGHTFORWARD MODEL

MAGNIFICATION WITH THE PROPOSED MULTI-HEAD GRU

Model Size, M1 F1-score PSDS
M1.1(1) 1.1 59.34% 0.4800
M2(1) 2 60.55% 0.4855
M2.2(1) 2.2 61.16% 0.4914
M3.5(1) 3.5 61.56% 0.4935
M4(1) 4 60.54% 0.4970
M2(2) 1.5 61.14% 0.4875
M3.5(4) 2.2 61.41% 0.4950
M5(8) 3.2 62.53% 0.4979
M5(4) 3.5 61.72% 0.5015
1 ”M” corresponds to millions

from [22], [23]. To ensure a fair comparison, we evaluate our

approach against their versions that do not incorporate any

pretrained auxiliary models.

E. Results

Based on the experimental results presented in Table III,

it can be observed that replacing the conventional single-

head GRU model with our proposed multi-head GRU not

only preserves prediction accuracy but also enhances it while

significantly reducing the model size. Specifically, for the

M2 model, replacing the single-head version with a two-head

version results in an increase in the F1-score from 60.55% to

61.14%, an improvement in the PSDS from 0.4855 to 0.4875,

and a reduction in model size from 2 million parameters to

1.5 million, representing a 25% relative decrease. For the M3.5

model, replacing one head with four heads leads to a marginal

decrease in the F1-score from 61.56% to 61.44%, while the

PSDS increases from 0.4935 to 0.4950. Notably, the model

size is significantly reduced from 3.5 million to 2.2 million

parameters. Finally, for the M5 model, replacing one head with

eight heads results in a performance improvement: the F1-

score increases from 61.07% to 62.53%, the PSDS improves

from 0.4905 to 0.4979, and the model size decreases from 5
million to 3.2 million parameters. Overall, the most accurate

configuration, M5(8), outperforms the baseline model by 4.3%
in absolute F1-score and by 0.02 in PSDS while reducing the

model size by up to three times.

Developing the most efficient model architecture is a critical

aspect of solving complex tasks in machine learning. A
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TABLE V. A COMPARISON BETWEEN A MULTI-HEAD GRU

WITH A SINGLE-HEAD GRU WITH SMALLER HIDDEN SIZE

Model Size, M1 F1-score PSDS
M1.1(1) 1.1 60.33% 0.4825
M2(8) 1.1 58.84 0.4792
M1.9(1) 1.9 59.94% 0.4875
M3.5(8) 1.9 60.39 0.498
M3.2(1) 3.2 61.51% 0.4922
M5(8) 3.2 62.53 0.4979
1 ”M” corresponds to millions

straightforward approach to improving performance is to in-

crease the model size by adding more layers or expanding the

dimensionality of the hidden state. However, as demonstrated

in Table IV, our proposed method offers a more effective

strategy for achieving higher prediction accuracy compared to

simply increasing the hidden size. Specifically, when compar-

ing models with increased hidden sizes, our approach yields

superior results. For instance, instead of scaling a model from

1.1 million to 2 million parameters by increasing its hidden

size, it is more advantageous to adopt the M2(2) model,

as it demonstrates greater accuracy. Similarly, the M3.5(4)
model outperforms the transition from M2(1) to M2.2(1),
and the M5(8) model is preferable to scaling from M2.2(1)
to M3.5(1). Furthermore, the M5(4) model provides better

performance than increasing from M3.5(1) to M4(1). These

results highlight the efficacy of our approach in achieving

higher accuracy without relying solely on increasing model

size.

To better understand the impact of replacing a single GRU

with a series of smaller GRUs, we hypothesize that the

considered model configurations may not be optimal in terms

of hidden size. Specifically, we investigate whether a single-

head GRU with a reduced hidden size could achieve better

prediction accuracy compared to our proposed multi-head

approach. To test this assumption, we reduce the hidden size of

our single-head models by half, transforming M2(1), M3.5(1),
and M5(1) into M1.1(1), M1.9(1), and M3.2(1), respectively.

We then compare their prediction accuracy with multi-head

GRU models of the same size. As shown in Table V, our

proposed multi-head models consistently outperform single-

head versions for models with 1.9 and 3.2 million train-

able parameters. However, for extremely small models with

1.1 million parameters, the single-head version demonstrates

slightly better performance. This suggests that the benefits

of our approach become more pronounced as the model size

increases.

Finally, considering that the current state-of-the-art ap-

proach for solving the SED problem involves using auxiliary

BEATs embeddings, we evaluate our proposed method in this

context. Specifically, we test our approach by incorporating

embeddings from a pretrained BEATs model [16] while com-

paring model sizes without accounting for the storage and

computational costs of the large transformer. We augment

the models M5(1), M5(2), M5(4), and M5(8) with BEATs

embeddings and compare them against the state-of-the-art

TABLE VI. A COMPARISON OF BASELINE, SINGLE AND

MULTI-HEAD MODELS IN CASE OF USING AUXILIARY

BEATS EMBEDDINGS

Model Size, M1 F1-score PSDS
Baseline [30] 184 65.6% 0.5667
M5(1) 6.3 65.43% 0.5117
M5(2) 5.3 64.80% 0.5172
M5(4) 4.8 63.69% 0.5092
M5(8) 4.6 62.95% 0.5067
1 ”M” corresponds to millions

approach proposed by the winners of DCASE 2023 Task

4 [30]. The experimental results, presented in Table VI, reveal

that the impact of splitting a single-head GRU into a multi-

head GRU is more pronounced when using additional BEATs

embeddings. Increasing the number of heads by a factor of

two leads to a significant decrease in the F1-score by 1% in

absolute terms and a reduction in the PSDS by 0.002. This

degradation is likely due to the mismatch between the BEATs

embedding size of 768 and the significantly smaller hidden

size of the GRU, which diminishes the influence of the GRU

embeddings on the overall model performance. Nevertheless,

our proposed approach demonstrates competitive performance

compared to baseline models, particularly considering that the

authors of [30] employ an extensive ensemble of 46 models

and utilize additional external datasets.

IV. LIMITATIONS

Although our proposed approach demonstrates improve-

ments in preserving model quality while significantly reducing

its size, our work is limited by the scope of encoder models

considered. Specifically, we focus solely on convolutional

neural networks (CNNs) as encoder models, while other

powerful architectures, such as transformers, Conformer [31],

and LSTM-based encoders, remain unexplored. Additionally,

we restrict our investigation to GRU-based decoders, leaving

open questions about the applicability of our approach to other

decoder architectures, such as LSTMs, which exhibit slightly

different structural properties. Furthermore, the primary goal

of this work is to develop memory-efficient models, and thus

we do not explore the impact of our approach on larger mod-

els, which remains an essential direction for future research.

Another limitation arises from our reliance on knowledge

distillation in the training pipeline, which leaves uncertainty

about the effectiveness of our technique in supervised, semi-

supervised, or unsupervised learning scenarios. Finally, our

multi-head recurrent neural network employs a series of small

GRUs with equal hidden sizes. However, it is hypothesized

that greater diversity in the ensemble, such as using smaller

networks with varying hidden sizes, could lead to improved

performance. Investigating this possibility represents a critical

area for future research.

V. CONCLUSIONS

In this work, we investigate a novel architecture designed

to optimize memory consumption for solving the problem

of sound event detection. Our approach involves replacing
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a single GRU decoder with an ensemble of smaller GRUs,

which significantly reduces memory usage while maintaining

model prediction accuracy. The proposed model achieves state-

of-the-art performance, with an F1-score of 62.53% and a

polyphonic sound detection score (PSDS) of 0.4979, out-

performing other low-complexity models. The most effective

configuration based on a single-head model with 5 million

trainable parameters, where the single GRU is replaced with

8 smaller GRUs of equal hidden size. Additionally, we conduct

a series of extensive experiments to evaluate the impact of the

proposed approach. Our findings demonstrate that multi-head

models achieve competitive performance while significantly

reducing memory consumption up to three times. Moreover,

we show that multi-heading is a more effective strategy for

improving model quality compared to simply increasing the

hidden size. We also analyze the impact of our approach when

using auxiliary BEATs embeddings and conclude that multi-

heading in this scenario is detrimental rather than beneficial.

Finally, we discuss the limitations of our work and outline

potential directions for future research.
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