
Exploring Hyperledger Sawtooth: Model Checking
Proof-of-Elapsed Time Algorithm and Testing

Methods for Enterprise Blockchain Applications

Sergey Staroletov
Polzunov Altai State Technical University

Barnaul, Russian Federation

serg soft@mail.ru

Abstract—Blockchain 3.0 or distributed ledger applications
are decentralized, autonomous organizational units governed by
their laws. The distributed ledger here means that all records
(for example, application data, function call results) are stored
in a distributed way among nodes (or peers) of a private net-
work. Cryptocurrencies are a specific application of distributed
ledger technology focused on digital currency transactions, while
distributed ledger applications have broader use cases beyond
finance and other enterprise activities, using blockchains to
enhance trust and transparency across various industries. This
work aims to illustrate Hyperledger Sawtooth, which is now
becoming an integral part of the Splinter platform, as a key
example of a Blockchain 3.0 solution.

We propose methodologies for modeling and verifying its con-
sensus protocol and discuss the application testing for this plat-
form using a containerization approach. We discuss key insights
related to enterprise applications, the Hyperledger consortium,
and the various components of the Hyperledger project. We
provide a brief overview of Hyperledger architecture, focusing
on the PoET (Proof-of-Elapsed Time) consensus protocol and the
hardware methods employed to ensure its reliability. Additionally,
we address formal verification techniques, particularly Model
Checking, to verify the correctness of a simplified protocol model.
Finally, we introduce our industrial solution for testing Sawtooth
applications using Docker containerization.

I. INTRODUCTION

A blockchain application is such kind of modern software,

whose instance stores its own blockchain state, synchronized

to chains of blocks among other network participants (in-

stances of the same application), and for the synchroniza-

tion, a consensus algorithm is used. Some analysis of such

applications in presented in [1]. These applications can be

categorized into three major groups: 1.0, 2.0, and 3.0 (please

do not confuse with the web3 concept in the Ethereum project

discussed in [2]):

1) Blockchain 1.0 refers to cryptocurrencies or digital

currencies that serve as alternatives to traditional fiat

currencies (e.g., EUR or USD), with Bitcoin being the

first and most well-known example.

2) Blockchain 2.0 encompasses models based on “smart

contracts” (for example, see the review [3]), which are

code lines written in specialized programming languages

that automatically carry out predetermined processes

without the need for an intermediary, such as a bank.

3) Blockchain 3.0 includes distributed ledger applications

that function as decentralized, self-governing organi-

zational units operated by their own rules (see some

definitions in [4]). These applications can be utilized

in business contexts and even within public governance

frameworks, offering reliable data storage, access, and

verifiable services like voting and document signing.

The distributed ledger here means that all records (for

example, application data, function call results to modify

current state) are stored in a distributed way among nodes

(or peers) of a private network.

The goal of the work it to discuss Hyperledger Sawtooth

as an example of the Blockchain 3.0 platform and propose

methods to model and verify their consensus protocol and

provide testing methods for platform applications using the

containerization approach.

In the Background section, we highlight notable information

about enterprise applications, Hyperledger consortium and

components of the Hyperledger project, then we describe Hy-

perledger architecture, the consensus protocol PoET (Proof-of-

Elapsed Time) and hardware methods to ensure the trustworthy

of the protocol proposed by Intel corporation. We refer to

formal verification methods, in particular, to Model Checking

and in the appropriate section, we verify the correctness of

a protocol model. We develop a formal model for the PoET

which can be used as a basis for further vulnerability checks

of the protocol and for the educational purposes.

In the section ”Testing Methods of Enterprise Blockchain

Applications”, we propose our industrial solution to test Saw-

tooth applications using the containerization with Docker.

II. RELATED WORKS

In Blockchain 3.0 world, currently known a number of

implemented proof-of-concept solutions using Hyperledger

Fabric platform including e-voting system [5], a cost-effective

solution for healthcare [6], a solution for power grids in a

secure, controlled, monitored, and efficient manner [7]. In

the book [8] an introduction to programming with the Fabric

platform is given.

Regarding blockchain applications testing, in the work [9]

we focused on the containerization when testing Blockchain

1.0 applications as virtual currency gateways, some existing

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 299 --

testing methods and frameworks for Bitcoin and Ethereum

were reviewed and results of tests were discussed.

Moving to consensus protocols, a review of these protocols

was conducted in the paper [10]. In [11], the Proof-of-Elapsed

Time protocol (PoET) was discussed and modeled using

probability distributions for the purposes of security analysis.

As PoET is based on Intel SGX extensions, we also note the

paper [12]. A possible attack to this platform is discussed in

[13].

III. BACKGROUND

A. Enterprise-level blockchain applications

As we have previously noted, blockchain technology has

evolved beyond its initial association with cryptocurrencies.

Today, it offers a diverse range of applications that can signifi-

cantly enhance various aspects of human life. While cryptocur-

rencies demonstrated the practical potential of blockchain,

many organizations have begun adopting its functionalities

in controlled environments, leading to innovative solutions

in corporate settings. We refer here a special terminology to

categorize the current blockchain types (discussed in [14]):

• Permissionless blockchains allow free access and inter-

action without the need for special permissions. These

blockchains maintain their security through consensus

algorithms, which are essential to their operation. Central

to these algorithms is the concept of rewarding miners

(nodes that support the network by validating transactions

and signing blocks according to specific rules and func-

tions). Popular examples of permissionless blockchains

include well-known cryptocurrencies like Bitcoin and

Ethereum.

• Permitted blockchains, also known as permissioned

blockchains or consortium blockchains [15], are those

whose infrastructure is managed by their creators. In these

systems, the consensus mechanism that relies on miners

for security is less relevant, as they are typically non-

public or read-only. If a token (unit of account) exists

within this type of blockchain, it is solely for technical

purposes; it cannot be withdrawn or used outside the

network, rendering it devoid of real value. Despite these

limitations, permitted blockchains share key character-

istics with their permissionless counterparts, such as

robust security, immutability of transaction history, and

decentralization. Additionally, they are also capable of

executing smart contracts.

The most popular tools now for creating permitted-

blockchain systems are introduced by the Hyperledger con-

sortium.

B. Hyperledger consortium

Hyperledger is a joint open-source project created to pro-

mote blockchain technologies by the implementation of com-

mon functions necessary for an open cross-industry standard of

distributed ledgers. This is an international project that brings

together leading companies in the field of finance, banking,

Internet of Things, logistics, manufacturing and technology.

The Hyperledger project operates with the support of Linux

Foundation [16].
The Hyperledger project began its existence at the end of

2015 within the framework of the Linux Foundation (known

by ensuring the development of not only the famous oper-

ating system but also, for example, the Node.js platform).

In 2016, twenty companies and organizations joined the

project, including IBM, which transferred the source code

of OpenBlockchain (later renamed to Fabric), and then Intel

Corporation came with the code of Sawtooth [16].
In general, Hyperledger aims to develop open distributed

ledger technologies that enable companies to build stable in-

dustry applications, platforms, and hardware systems designed

to perform specific business operations. The Hyperledger

initiative originally featured a consortium of approximately

100 partner organizations, representing a diverse of industries.

Corporate members included aerospace leaders like Airbus,

automotive giants such as Daimler, and technology companies

including Fujitsu, Huawei, Nokia, and Samsung. The financial

sector was represented with prominent institutions like J.P.

Morgan and Wells Fargo. The strategy to unite a set of

industry players under a shared framework can accelerate the

technological development of blockchain as well establish best

practices and standards that could benefit the wider adoption

of the technology in various sectors.
Currently, Hyperledger offers some major services [17]:

1) Sawtooth1, initially developed by Intel, is designed

for the creation, implementation, and management of

public digital ledgers. It includes a unique consensus

mechanism known as “Proof-of-Elapsed Time” (PoET),

which is the focus of our paper and aims to reduce

resource consumption across a large decentralized net-

work of validators. Sawtooth facilitates the development

of both permissioned and permissionless blockchains.

Currently, the Sawtooth project has reached the end of

its development and is planned to be integrated into

the Splinter platform (a privacy-focused platform for

distributed applications).

2) Fabric2, initially developed by IBM, serves as a frame-

work for crafting private, permissioned document-

oriented blockchains. Developers working with Fabric

have the flexibility to select from various consensus

algorithms, blockchain data formats, and user authenti-

cation methods. Additionally, it supports smart contracts

written in the Go programming language.

3) Iroha3 framework enables to support various applica-

tions, from private blockchains utilized by central banks

to public blockchains designed for NFT and cryptocur-

rency trading. Iroha was developed with the capability

for cross-blockchain communication in mind. Its event-

driven architecture aids in streamlining operations.

4) Indy4, developed by the Sovrin Foundation, is a software

1https://sawtooth.splinter.dev/docs/1.2/
2https://hyperledger-fabric.readthedocs.io/en/release-2.5/
3https://iroha.tech
4https://hyperledger-indy.readthedocs.io/projects/indy/en/latest/

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 300 --

development kit (SDK) designed for managing “digital

passports” (Self-Sovereign Identity) and facilitating their

integration with public blockchains.

The Hyperledger components currently exhibit a degree of

fragmentation, primarily due to their transfer from various

organizations to the consortium at different points in time.

This lack of cohesion can pose challenges for integration

and collaboration within the ecosystem. The fragmentation of

Hyperledger components raises important considerations for

organizations looking to adopt blockchain technology. In this

paper, we choose to study the Hyperledger Sawtooth frame-

work, due to its enterprise-grade blockchain nature designed

for scalability and flexibility, support a range of permissions

and consensus mechanisms appropriate for various business

use cases including Proof of Elapsed Time (PoET), which is

energy-efficient and designed for permissioned networks.

C. Hyperledger Sawtooth architecture

Sawtooth is a framework for the development of enterprise-

level distributed ledger systems. Proposed by Intel, declared

to be focused on security, scalability and modularity [18].

The Sawtooth architecture consists of the following main

components [18] (see also 5) :

Fig. 1. Architecture of the Hyperledger Sawtooth network organization

1) Peer-to-Peer network for sending messages and transac-

tions between nodes.

2) Distributed ledger contains ordered transactions.

3) State machine/smart contract logic layer to handle trans-

action content.

4) Distributed storage based on Merkle trees.

5) Consensus algorithm to determine the order of transac-

tions and the resulting state.

6) Transaction Processor to manage the business logic

of transactions by validating and applying them to

the blockchain’s state. Sawtooth comes with predefined

transaction families and also supports the creation of

new ones.

7) Validator is a node within the network responsible for

validating transactions and proposing new blocks. It

5https://www.geeksforgeeks.org/hyperledger-sawtooth-in-blockchain/

ensures that transactions are processed accurately and

that blocks comply with the consensus criteria.

In Fig. 1 (obtained from the documentation), we show how

the components are connected and interact with each other. In

Fig. 2, we depict our reconstruction of the internal architecture

of the project by studying its source code.

D. PoET

Proof-of-Elapsed Time (PoET) is a specific consensus pro-

tocol, which can be used in the Hyperledger Sawtooth network

to choose a winner on the next generation unit. Intel developed

the PoET algorithm to offer a fair competition mechanism

for nodes seeking to generate new blocks in a blockchain.

This approach prioritizes efficiency and simplicity, and it

achieves a significantly lower energy consumption compared

to conventional consensus methods, such as Proof of Work

(PoW). The operation of the PoET algorithm is as follows:

each participating node in the network should wait for a

random period of time, and the first one who wakes up after

the waiting gets the right to generate a new block. That is,

the process can be schematically represented as (with some

degree of abstraction):

1) Each node in the blockchain network generates a random

timeout and goes into sleep mode for a specified period.

2) The one that wakes up first, i.e. the node with the

shortest wait time, becomes eligible to create a new

block in the blockchain, broadcasting the necessary

information across the peer-to-peer network.

3) The block is verified by other participants.

4) The same process is repeated to find the next block.

The consensus mechanism of the PoET network must meet

two important conditions: (1) the waiting time should really be

chosen by the participants randomly, and not based on some

short period, which increases the chances of winning; and (2)

the winner should really wait until the end of the appointed

time.

Thus, PoET offers a high-tech approach to solve the com-

putational problem of “random leader election” (see some

definitions [19] and a survey [20] on it). To maintain fairness

and prevent manipulation of wait times, the PoET mechanism

can utilize a trusted execution environment implemented in

Intel Software Guard Extensions (SGX). It ensures that the

random wait time is generated and processed securely. Once

the node awakens and proposes a block, it provides proof of

its wait time, which can be verified by other nodes within the

network.

E. Intel SGX

The SGX (Software Guard Extensions) technology provides

a means to execute trusted code within secure enclaves, ensur-

ing a high level of isolation and protection against unautho-

rized access. This technology comprises several components:

specialized hardware instructions, a kernel module, user-space

code that interacts with the kernel module, and developer

tools designed for creating, declaring, and signing trusted

components of the code, as well as for verifying their integrity.

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 301 --

Fig. 2. Internal Architecture of the Hyperledger Sawtooth project

With SGX, developers can design solutions that rely on

isolated and immutable code segments. This is useful for

applications requiring a trustworthy execution environment,

such as those utilizing the PoET protocol for trusted waiting

mechanisms.

In Fig. 3, we show a fragment of PoET enclave defini-

tion file (.edl). Please follow the documentation to get the

definitions for used functions like CreateWaitTimer()6). The

Hyperledger Sawtooth SGX implementation is available on

a Github repository [21]. The developer documentation is

available from Intel [22].

While SGX aims to create a secure enclave, numerous

vulnerabilities have emerged over time, including Foreshadow

[23]. The effectiveness of SGX is largely contingent upon the

security of the host platform, requiring the processor to be

free from vulnerabilities that could be exploited either directly

or indirectly. Consequently, new security advancements like

Intel’s Trust Domain Extensions (TDX) and AMD’s Secure

Encrypted Virtualization (SEV) offer hardware-based isolation

and improved capabilities for virtualization, making SGX from

the 11th generation of Intel Core processors deprecated. An

alternative to Intel SGX from ARM is ARM TrustZone.

Thus, in addition to the initial PoET specification, in the

face of vulnerabilities, a special statistical test can be used

in the protocol to determine whether the waiting time of the

leader really follows the specified distribution [11].

F. Formal verification with SPIN tool

Formal verification allows verifying engineers to prove the

correctness of a model on all possible states with respect to

6https://sawtooth.splinter.dev/docs/core/1.2/architecture/poet.html

given requirements. The Model Checking method deals with

models in the form of programs that are converted to a special

kind of finite state machines, and the requirements expressed

in terms of linear-time temporal logic (LTL). Teaching this

can be combined with software testing in modern university

courses [24]. The logic was first introduced in [25]. Since then,

many different extensions have been made (including domain-

specific ones [26]), but the verifier we use only supports pure

LTL.

SPIN (stands for Simple Promela INterpreter) is a formal

verification tool for models written in Promela (Protocol

MEta-LAnguage) with respect to given LTL requirements (for-

mulas constructed using key variables of the model). To deal

with our models, we may rely upon the following language

features [27]:

• it is an actor-based (process-oriented) language;

• it is primarily designed to describe protocols interopera-

tions;

• it has C-styled syntax;

• it allows non-deterministic transitions.

We use the SPIN tool and the Promela language to create

and check a model of the PoET protocol behavior. We have

already discussed that the protocol is a part of the leader-

selection protocol family (such as one included as a case study

in the SPIN repository [28]) – in PoET, a node is elected

as a leader and then that node generates a new block in the

blockchain.

Although SPIN and Promela are valuable tools for formal

verification, their application to modeling complex real-world

protocols like PoET necessitates careful consideration of their

limitations in terms of complexity, state space management,

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 302 --

Fig. 3. Enclave definition in the Eclipse environment with Intel SGX tools installed

timing, expressiveness, and usability. In our work, we are

balancing these factors to successfully leveraging the benefits

of formal methods in practical situations.

G. DevOps methodics

DevOps is a combination of cultural principles, approaches

and tools that allow software companies to create applications

and services at high speed. With DevOps, product development

and optimization are executed faster than using traditional soft-

ware development and infrastructure management processes.

In the DevOps model, the lines between the development

and operations teams become increasingly blurred. Often,

these two groups merge into a single team, where engineers are

responsible for the entire application lifecycle, from develop-

ment and testing to deployment and maintenance. To improve

efficiency, these teams leverage specialized methods, including

dedicated software and automated scripts, to streamline pro-

cesses that were once carried out manually and slowly. With

these tools at their disposal, technicians can independently

resolve issues that previously required assistance from other

teams, such as deploying code or initializing infrastructure.

This autonomy significantly accelerates overall workflow and

productivity.

DevOps techniques and processes are the following [29]:

• Continuous Integration is a software development prac-

tice in which developers consistently merge their code

changes into a central repository, followed by automated

building and testing processes.

• Continuous Delivery builds upon continuous integration

by guaranteeing that all code changes, following the

build stage, are deployed to either a testing or production

environment. When implemented effectively, continuous

delivery ensures that developers always have a ready-

to-deploy version of the software that has successfully

passed standardized testing procedures [30].

• Microservice Architecture is a design approach that struc-

tures an application as a collection of small independent

services. Each service operates within its own process

and communicates with other services through a well-

defined API, typically utilizing an HTTP-based interface.

These microservices are tailored to meet specific business

needs, with each one dedicated to performing a particular

function.

• Infrastructure as Code is a modern practice that involves

managing and provisioning infrastructure through code

and software development techniques, such as version

control and continuous integration. This approach enables

engineers to interact with the infrastructure using code-

based tools, just as they do with application code.

In this work, we apply these principles to develop, deploy

and test Hyperledger Sawtooth applications using container-

ized Docker environment.

IV. VERIFICATION OF POET PROTOCOL USING THE

MODEL CHECKING APPROACH

We consider a very simplified implementation of the pro-

tocol that does not lose key properties of it. Fig. 4 shows

the sequence of interaction that we model. To demonstrate

the feasibility of the approach, we did the following: (1)

implemented the PoET interaction sequence in the Erlang

actor-based language7; (2) rewrote this code for channel

interaction, which the Promela language allows. For ease of

implementation in Promela, all P2P interactions are reduced to

creating one network process (in reality, it is needed to send

messages to all network nodes and, accordingly, respond to

them).

So, the PoET process waits for the network to enter the

initialization state of a new round, then it asks for a random

number and waits for the specified time. After that, the current

state of the network is determined, if there is no new block

at the moment, the process considers ourselves the leader and

checks the status of all other nodes to count the number of

all nodes in leader and non-leader state (here it should be

7https://github.com/SergeyStaroletov/PromelaSamples/blob/master/PoET.erl

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 303 --

Fig. 4. Sequence diagram for block generation in PoET

noted that while the process was receiving a message, someone

another could also become a leader), so the process needs to

make sure that other nodes are in the expected state and then

it can create a new block. If there are several leaders, the

round is canceled and the process repeats. We understood the

necessity of reelection during implementation and simulation

of the model.

In this section, we include our Promela implementation of

PoET model: it is not so complicated, easy-understandable

and may show the Promela language features to an interested

reader because one of the purposes of the paper was the

popularization of Model Checking approach in the industrial

sphere. The full code of the model is available on Github [31].

In the implementation, we use global variables for the network

state instead of broadcasting this through the processes in

messages.

To begin, we follow the SPIN guidelines [32] to random

number generation and implement a non-deterministic process

that simulates the operation of Sawtooth SGX enclave and

generates random numbers from 0 to 32767 after requesting

it from its channel:

active proctype gen() {
byte buf;
short nr;
do

:: {
SGX ? buf;
do

:: (nr < 32768) -> nr++;
:: (nr > 0) -> nr--;
:: break

od;
SGX ! nr;
}

od
}

Next, we describe the global variables of the model, namely,

we have five processes, the logic of which is modeled with all

possible switches (interleaving):

#define P 5 /* number of processes in the
model */

chan SGX = [0] of {short}; /* channel for
random number generation */

mtype = {STATE_INIT, STATE_GEN,
STATE_WAITING, STATE_MINE_BLOCK,
STATE_NO_MINE_BLOCK}; /* type for
states */

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 304 --

Fig. 5. Simulation of the model with iSpin tool

mtype state = STATE_INIT; /* global
network state */

mtype procStates[P]; /* status of network
nodes */

short procTimes[P]; /* the waiting time
of nodes */

bool isGenerating = false; /* during
block generation will be true */

byte generator; /* process-generator of
the last block */

short Nblock = 0; /* number of blocks */

As for the main process, we implement the algorithm for

selecting a leader, based on its description. The expectation,

in this case, is modeled by a cycle at a given time. Global

variables are used to send global state changes. Each process

keeps its local state and can become a leader after the

waiting. However, the numbers may match and two or more

processes may think that they are leaders, although only one

can generate a block. In the model, this is solved by checking

the number of leaders according to their states and assigning

a reelection procedure in this case. If the formal precondition

for generating a block is met, the block is generated and the

selection of a new generator is repeated. The model code for

the node is shown in Appendix A.

To start the processes, we use the main process and set

initial states of the processes and the network.

active proctype main() {
state = STATE_WAITING;
short count = P - 1;
do
:: (count >= 0) -> {
procStates[count] = STATE_INIT;

run poet(count);
count--;

}
:: else -> break;

od
state = STATE_INIT;

}

The simulation of the model using the iSpin tool (a Tcl/Tk

simple GUI for SPIN) is shown in Fig. 5. We can see that the

network is in a normal state and a leader was elected.

The internal automaton of the model is shown in Fig. 6.

Note that the automaton has potentially infinite paths (reelec-

tion after reelection) and technologies like state hashing should

be used to facilitate verification this model.

To verify the protocol model, we formulate a requirement

using a temporal logic expression. Specifically, it states that

whenever a block is generated and the L process is designated

as the leader, two conditions must hold: the leader must exhibit

the minimum waiting time and can only be in the state of block

generation. Meanwhile, all other processes should be in a state

that indicates they have detected that the block was produced

by another entity. The rule can be expressed in a logical form:

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 305 --

Fig. 6. Internal automaton of the PoET process model: the SPIN tool generates it from the Promela code

∀L ∈ P : G((isGenerated ∧generator == 0) =⇒
∧

∀I∈P,I �=L
(procTimes[L]≤ procTimes[I])∧

(procStates[L] == STAT E MINE BLOCK)

∧
∀I∈P,I �=L

(procStates[I] == STAT E NO MINE BLOCK))

(1)

(where G is the Globally LTL operator, P is the process set

in the model, L is the process number for a current leader,

other variables and states were defined above), and then that

requirement for the verification purposes is translated into the

series of LTL formulas in Promela syntax like this one for the

process 0 of 5 total processes in the model:

ltl checkFor0 {
[] (isGenerating && (generator == 0) ->
(procTimes[0] <= procTimes[1] &&

procTimes[0] <= procTimes[2] &&
procTimes[0] <= procTimes[3] &&
procTimes[0] <= procTimes[4]) &&

(procStates[0] == STATE_MINE_BLOCK &&
procStates[1] == STATE_NO_MINE_BLOCK

&& procStates[2] ==
STATE_NO_MINE_BLOCK && procStates[3]
== STATE_NO_MINE_BLOCK && procStates
[4] == STATE_NO_MINE_BLOCK))

};

However, if we try to check LTL properties like this: a
given node will always be able to generate a block at some
point, Model Checker will give a negative answer with a

counter-example. Also, properties like the re-voting process
will always end are not met in our model. Since the protocol

is probabilistic, such processes will end in a real system,

whereas in the strict model the liveness of the protocol is not

guaranteed.

V. TESTING METHODS FOR ENTERPRISE BLOCKCHAIN

APPLICATIONS

Earlier we described the general architecture of Hyper-

ledger Sawtooth. For a convenient and quick launch enterprise

blockchain applications under tests is proposed to containerize

all Hyperledger Sawtooth nodes.

Consider the diagram in Fig. 1. For this architecture, it

is possible to implement a single description file using the

Docker-compose syntax, which allows us to deploy the entire

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 306 --

environment with a single command, so it can be useful

during Unit- or Integration Testing, as well as in Continuous

Integration / Deployment practices. At the same time, tests for

transaction processors can be run both inside and outside of

containers.
Transaction processors themselves may not be turned into

a container, but only connected to a validator inside a Docker

network, if it is necessary to run the tests repeatedly locally,

for example on the developer’s PC.
The architecture of Hyperledger, along with its API and

containerization features, promotes innovative programming

practices such as Test-Driven Development (TDD) [33]. In

TDD, development begins by writing tests that reflect the

initial requirements. Next, developers create minimal stub code

to meet those requirements. As time allows, developers can

refine this code by introducing more sophisticated tests and

enhancing the underlying logic (see how to teach/learn it in

[24]). Notably, Hyperledger’s design simplifies the develop-

ment process, allowing developers to focus on testing and

infrastructure setup with just a command, without needing to

worry about the complexities of network organization.
However, the essence of this architecture is ephemeral, that

is, their operation results can not be saved in any way, also,

node keys are generated during the startup process. So it is

extremely problematic to get access to them, but they are

needed when a blockchain application is implemented, since

the transactions of which should be signed with the keys

known in advance. In this case, we can use a Docker volume

that is bound to a physical folder in the host OS. Note that it is

necessary to connect it both to the validator and the container

with the consensus engine (in particular, the PoET engine),

but the data mapping must be made to different folders. This

is schematically shown in Fig. 7.

Fig. 7. Architecture of a Hyperledger Sawtooth node validator with a mounted
shared data volume

However, the above does not allow us to create an infras-

tructure that we can restart, update the code of its elements

(transaction preprocessors), use its state in other processes. It

can be useful for the final stage of testing (manual) or some

end-to-end tests. We propose to run such infrastructure in three

scenarios:

• Generation of the keys and basic configuration files.

With the help of console utilities of the Hyperledger

Sawtooth validator, a required number of public and

private keys are generated in advance, they are stored in

the Docker volume mounted to the host OS folder. Basic

configuration files are also generated based on these keys.

• Generation of genesis-block. With the help of console

utilities of the Hyperledger Sawtooth validator, previously

obtained private keys, derived configuration files, the

so-called genesis-batch is generated – this is the first

transaction in the blockchain, in which some rules of

behavior of the network participants of this blockchain

are written. This item is also stored in a special folder on

the mounted volume.

• Starting peer nodes without genesis.

• Running the overall infrastructure. The blockchain infras-

tructure is created on the basis of genesis-batch and keys.

Let us revisit the issue of backing up blockchain data for

future use. Hyperledger Sawtooth utilizes what are known as

sparse files to maintain the blockchain state. While the system

indicates that the space required is over 1TB, the actual size

may only be a few kilobytes. This discrepancy presents a

problem: mounting a volume in a folder on the host operating

system is inadequate if the OS does not have more than 1TB

of available space. However, this issue can be resolved by

using a different type of Docker volume that is not directly

linked to the host OS folder, allowing for physical backups

without requiring substantial disk space. The connection of

such a volume is shown in Fig. 8.

Fig. 8. Final architecture of our Hyperledger Sawtooth node validator

Now, let us focus on the development of the Ending

Transaction Processor (TP), which was specifically created for

this project. Currently, the Sawtooth framework has a notable

behavior: if the last transaction within a received packet results

in an error (a scenario that can arise when testing the function-

ality of a transaction processor), the validator continuously re-

broadcasts this erroneous transaction until it processes a new

successful one. This behavior negatively affects the accuracy

of metrics and logs associated with the tested components. To

address this issue, we have designed a specialized transaction

processor that adds a new element to the transaction package.

This new transaction will not only be guaranteed to succeed

but can also include various metadata related to the current test

or the entire testing suite. This enhancement facilitates more

comprehensive analytics moving forward.

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 307 --

VI. CONCLUSIONS

As a result of our research on Hyperledger Sawtooth, we

successfully integrated two highly beneficial methodologies:

formal verification to ensure the integrity of the PoET con-

sensus mechanism and Docker to implement CI/CD practices

in the development of enterprise blockchain applications.

We demonstrate the application of the Model Checking tech-

nique to represent the PoET consensus in a simplified network

environment. The insights gained from this modeling can be

leveraged to develop more complex models to rigorously check

protocol behavior.

Additionally, employing container virtualization for the

components of Hyperledger Sawtooth has enabled the incor-

poration of various DevOps practices into the development

lifecycle of Blockchain 3.0 applications on this platform.

This integration has had a favorable impact on the quality

of our output. The effective containerization of nodes has

significantly expedited both the development process and the

deployment of the final blockchain system. Moreover, the

transaction processor we developed has been successfully

implemented in a production environment, providing enhanced

logging and metrics that align with our objectives.

ACKNOWLEDGEMENT

The author would like to express his sincere gratitude to

Roman Galkin from WinteX Solutions for his work on a

master’s thesis on a related topic.

REFERENCES

[1] J. Abou Jaoude and R. G. Saade, “Blockchain applications–usage in
different domains,” IEEE Access, vol. 7, pp. 45 360–45 381, 2019.

[2] Q. Wang, R. Li, Q. Wang, S. Chen, M. Ryan, and T. Hard-
jono, “Exploring web3 from the view of blockchain,” arXiv preprint
arXiv:2206.08821, 2022.

[3] Z. Zheng, S. Xie, H.-N. Dai, W. Chen, X. Chen, J. Weng, and M. Imran,
“An overview on smart contracts: Challenges, advances and platforms,”
Future Generation Computer Systems, vol. 105, pp. 475–491, 2020.

[4] M. Zachariadis, G. Hileman, and S. V. Scott, “Governance and control
in distributed ledgers: Understanding the challenges facing blockchain
technology in financial services,” Information and organization, vol. 29,
no. 2, pp. 105–117, 2019.

[5] A. Sharma, F. M. Schuhknecht, D. Agrawal, and J. Dittrich, “How to
databasify a blockchain: the case of hyperledger fabric,” arXiv preprint
arXiv:1810.13177, 2018.

[6] D.-J. Munoz, D.-A. Constantinescu, R. Asenjo, and L. Fuentes, “Clini-
cappchain: A low-cost blockchain hyperledger solution for healthcare,”
in International Congress on Blockchain and Applications. Springer,
2019, pp. 36–44.

[7] C. Banks, S. Kim, M. Neposchlan, N. Velez, K. Duncan, J. James,
A. St Leger, and D. Hawthorne, “Blockchain for power grids,” in IEEE
SoutheastCon, 2019.

[8] N. Gaur, L. Desrosiers, V. Ramakrishna, P. Novotny, S. A. Baset,
and A. O’Dowd, Hands-On Blockchain with Hyperledger: Building
decentralized applications with Hyperledger Fabric and Composer.
Packt Publishing Ltd, 2018.

[9] S. Staroletov and R. Galkin, “Testing methods for blockchain appli-
cations,” in International Conference on High-Performance Computing
Systems and Technologies in Scientific Research, Automation of Control
and Production. Springer, 2021, pp. 401–418.

[10] C. Cachin and M. Vukolić, “Blockchain consensus protocols in the wild,”
arXiv preprint arXiv:1707.01873, 2017.

[11] L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, and W. Shi, “On security

analysis of proof-of-elapsed-time (poet),” in International Symposium
on Stabilization, Safety, and Security of Distributed Systems. Springer,
2017, pp. 282–297.

[12] Y. Shen, Y. Chen, K. Chen, H. Tian, and S. Yan, “To isolate, or to
share?: That is a question for Intel SGX,” in Proceedings of the 9th
Asia-Pacific Workshop on Systems. ACM, 2018, p. 4.

[13] M. Schwarz, S. Weiser, and D. Gruss, “Practical enclave malware with
Intel SGX,” in International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2019, pp. 177–196.

[14] A. Miller, “Permissioned and permissionless blockchains,” Blockchain
for distributed systems security, pp. 193–204, 2019.

[15] X. Chen, S. He, L. Sun, Y. Zheng, and C. Q. Wu, “A survey of
consortium blockchain and its applications,” Cryptography, vol. 8, no. 2,
p. 12, 2024.

[16] V. Dhillon, D. Metcalf, and M. Hooper, “The hyperledger project,” in
Blockchain enabled applications. Springer, 2017, pp. 139–149.

[17] Hyperledger projects. [Online]. Available: https://www.hyperledger.org/
projects

[18] K. Olson, M. Bowman, J. Mitchell, S. Amundson, D. Middleton, and
C. Montgomery, “Sawtooth: An introduction,” The Linux Foundation,
Jan, 2018.

[19] H. M. Sayeed, M. Abu-Amara, and H. Abu-Amara, “Optimal asyn-
chronous agreement and leader election algorithm for complete networks
with byzantine faulty links,” Distributed Computing, vol. 9, no. 3, pp.
147–156, 1995.

[20] F. S. Gharehchopogh and H. Arjang, “A survey and taxonomy of leader
election algorithms in distributed systems,” Indian journal of science
and technology, vol. 7, no. 6, p. 815, 2014.

[21] Hyperledger, “Sawtooth-poet,” 2019, https://github.com/hyperledger/
sawtooth-poet.

[22] Intel, “Intel® software guard extensions sdk for linux os,” 2016.
[Online]. Available: https://01.org/sites/default/files/documentation/
intel sgx sdk developer reference for linux os pdf.pdf

[23] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient Out-
of-Order execution,” in 27th USENIX Security Symposium (USENIX
Security 18), 2018, pp. 991–1008.

[24] S. Staroletov, “Teaching the discipline “Software testing and
verification” to future programmers,” System Informatics, no. 21,
pp. 1–28, 2022. [Online]. Available: https://system-informatics.ru/files/
article/n21-staroletov.pdf

[25] A. Pnueli, “The temporal logic of programs,” in 18th annual symposium
on foundations of computer science (SFCS 1977). IEEE, 1977, pp. 46–
57.

[26] N. O. Garanina, I. S. Anureev, V. E. Zyubin, S. M. Staroletov,
T. V. Liakh, A. S. Rozov, and S. P. Gorlatch, “A temporal logic
for programmable logic controllers,” Automatic Control and Computer
Sciences, vol. 55, no. 7, pp. 763–775, 2021.

[27] S. Staroletov and N. Shilov, “Applying model checking approach with
floating point arithmetic for verification of air collision avoidance
maneuver hybrid model,” in F. Biondi et al. (Eds.): SPIN 2019, LNCS
11636. Springer Nature Switzerland AG, 2019, p. 15.

[28] Nimble-code, “Dolev, Klawe & Rodeh for leader election in
unidirectional ring,” 2015. [Online]. Available: https://github.com/
nimble-code/Spin/blob/master/Examples/leader0.pml

[29] M. Virmani, “Understanding devops & bridging the gap from continuous
integration to continuous delivery,” in Fifth International Conference on
the Innovative Computing Technology (INTECH 2015). IEEE, 2015,
pp. 78–82.

[30] J. Humble and D. Farley, Continuous Delivery: Reliable Software Re-
leases through Build, Test, and Deployment Automation (Adobe Reader).
Pearson Education, 2010.

[31] S. Staroletov, “PoET model source code in Promela.” [On-
line]. Available: http://github.com/SergeyStaroletov/PromelaSamples/
blob/master/PoET.pml

[32] Promela, “Rand - for random number generation,” http://spinroot.com/
spin/Man/rand.html.

[33] K. Beck, Test-driven development: by example. Addison-Wesley
Professional, 2003.

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 308 --

APPENDIX A

MODELING POET IN THE PROMELA FORMAL LANGUAGE

proctype poet(byte N) {
do
:: {

/* waiting for a next iteration -- for state STATE_INIT */
do

:: (state == STATE_INIT) -> break;
:: else -> skip;

od

procStates[N] = STATE_GEN;
/* generate a random number by asking it from the special process */
short nr = 0;
SGX ! 1;
SGX ? nr;
procTimes[N] = nr;
printf("Process pid = %d got nr = %d \n", _pid, nr);
procStates[N] = STATE_WAITING;

/* simulate the waiting: in the loop we decrement count */
short count = nr;
do

:: (count >= 0) -> count--;
:: else -> break;

od

/* after the waiting we check for the block present and try to generate it */
bool ifOurBlock = false;
if

:: (state != STATE_MINE_BLOCK) -> {
/* if not, we are the first and we name us the leader */
atomic {

state = STATE_MINE_BLOCK; /* we mark the the block is mined */
procStates[N] = STATE_MINE_BLOCK; /* mark that the block is ours */
ifOurBlock = true;

}
if /*otherwise the block is not ours */

::(procStates[N] != STATE_MINE_BLOCK) ->
procStates[N] = STATE_NO_MINE_BLOCK;
::else -> skip;

fi
}
:: else -> procStates[N] = STATE_NO_MINE_BLOCK;

fi
/* next there is the logic of block generation */
if

:: ifOurBlock == true -> {
/* we think we are the leader - wait for other processes */
do
:: {

count = P - 1;
short countReady = 0;
short countLeaders = 0;
do

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 309 --

:: (count >= 0) -> {
if

/* calculate count of non-leader processes */
:: (procStates[count] == STATE_NO_MINE_BLOCK) ||
/* and also new processes */
(procStates[count] == STATE_INIT) -> {

countReady++;
}
/* count the leaders */
:: (procStates[count] == STATE_MINE_BLOCK) ->
countLeaders++;
:: else -> skip;

fi
count--;

}
:: else -> break;

od
if :: (countReady == P - 1) ->
/* normal state: I am the leader and there are no others */
{

isGenerating = true;
generator = N;
Nblock++;
printf("BLOCK %d generated by process %d! \n", Nblock, _pid);
isGenerating = false;
break;

}
:: (countLeaders != 1) -> {
/* something wrong: more than one leader, reelection */

printf("REELECTION! \n");
break;

}
:: else -> skip;
fi

} od
/* initiate a new round */
printf("NEW ROUND INITIATED BY %d \n", _pid);

}
::else ->
skip;

fi
}

od
}

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 310 --

