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Abstract—Accurate detection and classification of driving ma-
neuvers play a crucial role in understanding driver behavior,
enhancing road safety, and preventing accidents. This study
proposes an algorithm for maneuver detection based on GPS
data. The method involves preprocessing raw GPS data, trans-
forming coordinates into a local reference frame, and estimat-
ing gyroscope data using Krylov-Euler angles. Maneuvers are
identified by detecting significant changes in angular velocity,
and their boundaries are determined dynamically. A template-
based approach is used to classify maneuvers into left turns, right
turns, and U-turns, with templates constructed based on the total
angle change during the maneuver. To evaluate the proposed
method, we randomly selected 10 drivers who completed 54
trips, totaling 11 hours of driving, from the DriverSVT Dataset.
The dataset includes trips recorded in different geographical
settings. It has segments from urban areas, expressways, rural
roads, and residential areas such as backyards. This diversity
allows the algorithm to be tested in a variety of real-world
driving conditions. The proposed method provides a robust way
to analyze driving behavior. Experimental results demonstrate
the effectiveness of the approach in accurately segmenting trips
and classifying maneuvers.

I. INTRODUCTION

With vehicle automation and intelligent transport systems

evolving, the ability to recognize the driver’s behavior is

becoming increasingly important for providing real-time feed-

back and preventing accidents [1]. Understanding and predict-

ing driver maneuvers is essential for improving road safety.

Many systems have been developed to predict and pre-

vent potentially dangerous maneuvers of the drivers. Data

from GPS, gyroscope, accelerometer and other sources are

used as inputs to help identify maneuvers and assess their

aggressiveness. Cameras inside the cabin capture the driver’s

face, analyzing their emotional state and concentration, while

external cameras provide traffic information. There are studies

that propose measuring the driver’s blood pressure [2], fatigue

level [3], and attention [4] to prevent dangerous maneuvers on

the road using readings from sensors inside the cabin.

We propose an algorithm to match the trip readings with the

type of maneuver. Using gyroscope data, we detect start and

end of the maneuver. Maneuver boundaries are determined dy-

namically based on significant statistical changes in gyroscope

readings, making this approach more adaptable and robust.

Also we can track the angle of rotation and angular velocity

at a given moment in time. This identifies left turns, right

turns, U-Turns left and right. This algorithm can anticipate

dangerous driving maneuvers by leveraging behavioral data,

potentially warning the driver before a risky action occurs.

Through this approach, the system could play a critical role

in accident prevention by actively identifying and responding

to hazardous driving tendencies.

The input data includes text files describing the trip. The

type of maneuver is predicted from the readings from mo-

bile phone sensors such as GPS and gyroscope. However,

obtaining gyroscope data is not always feasible. To address

this issue, our previous research [5] developed an algorithm

that converts GPS data into gyroscope and accelerometer data.

This transformed data can provide prediction of the type of

road maneuver being performed. This will allow to apply the

algorithm with only a GPS sensor in the car, eliminating the

installation of additional sensors.

The proposed approach is applicable in real-time settings

due to its low computational complexity. Calculations are

based on lightweight statistical operations (mean, standard

deviation, thresholds over sliding windows), which makes the

method suitable for on-device implementation on smartphones

or embedded vehicle systems. Limitations include sensitivity

to GPS noise, particularly in urban environments with signal

reflections, although smoothing techniques are employed to

mitigate this. The system has been tested on real driving

data, and practical examples are presented in the experimental

section to demonstrate feasibility.

The rest of the paper is organized as follows. Section 2

provides an overview of existing approaches for detectinig

maneuver boundaries and classifying maneuver type. Section

3 describes the proposed method for classifying maneuver

types using GPS readings. In Section 4, the methodology

from the previous section is applied to a real dataset. Section

5 summarizes the results, discusses future directions, and

outlines limitations.

II. RELATED WORKS

This section describes approaches for driver profiling to

detect maneuver’s boundaries. It also reviews the existing

approaches for determining the type of road maneuver.
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A. Maneuver boundaries detection

Determining maneuver boundaries is a fundamental task for

accurate analysis of driver behavior. The difficulty occurs due

to the inconsistency in the duration of different maneuvers

such as lane changes, turns, and braking. Traditional methods

often use fixed-size sliding windows to segment maneuvers,

but these can be inaccurate due to the dynamic nature of

driving events. Such approach was implemented in [6], [7],

[8].

Multiple window fusion methods have been investigated to

improve the detection of maneuver boundaries. In [9] authors

introduced multiple sliding windows of different sizes to create

a more robust feature set that adapts to different durations

of maneuvers. By combining short and long windows, the

system can more accurately capture the boundaries of complex

maneuvers.

Another approach used by researchers is to specify a set

of rules, the execution of which indicates that a maneuver

has been made. In [10] the authors developed a framework

for unsupervised analysis of driver’s style, where the first step

is maneuver detection. Maneuvers are detected based on the

turn radius R and longitudinal acceleration. If R > 1000m,

the vehicle is considered to be moving straight, while R <
1000m indicates a turn. Additionally, changes in longitudinal

acceleration are analyzed to identify acceleration, braking,

and constant-speed driving phases. This approach can detect

both longitudinal and lateral maneuvers. However, its accuracy

depends on predefined thresholds that may require calibration

for different road types and driving conditions.

In addition, some researchers have integrated deep learning

techniques such as convolutional neural networks (CNNs) to

detect maneuver boundaries by analyzing smartphone sensor

data (accelerometer and gyroscope). This approach [11] in-

cludes signal preprocessing, detecting significant changes in

yaw rate and acceleration, and refining boundary detection

with machine learning models like CNNs. This method enables

real-time maneuver recognition without external sensors.

B. Maneuver type classification

Today, authors propose various approaches to solving the

problem of maneuver type classification. For instance, re-

searchers have utilized accelerometer data to identify patterns

of parking, driving, and braking, implementing sliding win-

dows to detect distinct events within specific timeframes [12].

Building on this, others have applied telemetry data to a more

diverse array of driving conditions. One approach uses an

energy-maximization algorithm (EMA) to extract and classify

events from continuous driving signals, applying machine

learning models such as CNNs, LSTMs, and random forests

for high accuracy in maneuver classification across multiple

datasets [13]. Another method uses multi-length sliding win-

dows with a CNN model, producing a more robust feature

set that improves classification accuracy. By fusing data from

short and long windows, the model achieved a high F1 macro

performance of 87.67% in predicting maneuvers such as lane

keeping, braking, turning and lane changing [14].

Studies have integrated deep learning techniques, such as

CNNs, RNNs, and FFNNs, to classify and cluster maneuvers

based on sensor data, demonstrating reliable performance

across 13 types of maneuvers [15]. This approach not only

leverages different classifiers but also evaluates their com-

bination to optimize detection accuracy, yielding a balanced

accuracy of 0.90 and an F1 score of 0.71 on real driving data.

To improve maneuver detection in real world conditions,

smartphone sensors, especially accelerometers and gyroscopes,

are increasingly used.

Such input data allow not only the classification of ma-

neuver types but also the characterization of how they are

performed. For example, the authors of [8] use accelerometer,

gyroscope, and speed data to determine one of four driving

styles: normal, aggressive, distracted, drowsy, and drunk driv-

ing. The input signals from in-vehicle sensors are transformed

into images, which are then classified by a CNN to assess the

driving behavior.

Such systems make it possible to track and analyze driving

patterns over time, enabling the creation of dynamic driver

profiles. These profiles can be used to assess driving habits,

detect risky behavior, and provide real-time feedback to im-

prove road safety [1].

In this study, we propose our own method for detecting

maneuvers during a trip. This algorithm uses readings from

GPS sensor and focuses on identifying maneuver boundaries

and distinguishing between different maneuver types.

III. METHOD

Figure 1 shows the general pipeline of the method. At the

first stage, GPS coordinates are used as input data, which

are pre-processed: interpolation, emission filtering and time

scale transformation. Then, the coordinates are converted to a

local system taking into account the orientation of the vehicle.

Next, using Krylov-Euler angles, gyroscope data are calculated

[5]. Based on manually marked maneuver templates, reference

ranges are generated and used for maneuver detection. At the

final stage, the algorithm determines the beginning and end of

each maneuver and classifies its type.

Fig. 1. Maneuver classification based on GPS data

A. Data Processing

The experiments involved the driversvt [16] dataset. It

contains data from more than 50 drivers and more than

3000 minutes of video recordings synchronized with GPS

trip data. As input data, we used data from GPS sensors.
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The input data has a floating granularity ranging from 0.08

to 0.15 seconds. Values are not always available for every

time interval, and identical nonzero GPS values may appear

for different consecutive time intervals. These repeated values

were merged (only the first occurrence was retained), and

quadratic interpolation was applied. Additionally, zero-speed

values at the beginning and end of the trip were removed.

These preprocessing steps help reduce the impact of GPS noise

and signal dropouts, especially in challenging environments

such as urban canyons and tunnels.

As a result of interpolation, negative speed values could

appear. These were replaced with zero speed, assuming that

no movement occurred at that moment. Therefore, such cases

were not considered in this study. Finally, outliers were

removed by filtering out values that exceeded the 5% quantile

threshold.

Next, to obtain gyroscope data from GPS readings the

algorithm described in [5] was used. The input data consisted

of GPS measurements. The first step was transforming the

data into a local coordinate system. The described algorithm

utilizes Krylov-Euler angles to compute the rotation of the

displacement vector over a time interval along three axes.

After each rotation, the local coordinate system changes, so

it must be reset to its initial state. To achieve this, a resulting

quaternion is constructed, representing the total rotation at a

given moment in time. These operations are applied sequen-

tially to all pairs of vectors, forming an array of rotation angles

along the three axes.

For zero or near-zero speed values, the gyroscope readings

tend to be high in magnitude. Since the displacement is very

small, any change in angle becomes highly sensitive. This

situation typically occurs when the driver stops along the

route, such as at a traffic light. To avoid noisy gyroscope data,

computed values for speeds below 5 km/h were replaced with

zeros.

Within a trip, a granularity of 0.1 seconds was excessive,

as the duration of the analyzed trips was at least 5 minutes.

Therefore, we aggregated the obtained values into 2-second

intervals. A moving average was calculated, where the value

at the end of each 2-second interval represents the average

over that period.

B. Maneuver boundaries detection

In our previous study [7], we applied a fixed maneuver

duration of 3 seconds. This approach eliminates the need to

determine the exact boundaries of maneuver completion but

is less sensitive to changes in driver behavior on the road.

In this study, we detected both the start and end of each

maneuver to improve the accuracy of the calculated metrics

during maneuvers. The key assumption was that the gyroscope

shows stable values during normal driving and changes during

maneuvers.

In our study we applied the Ruptures library [17] to

detect the start and the end of a maneuver in a time series

of gyroscope data. The goal was to identify the points in time

with a significant change in the motion dynamics marking the

beginning and the end of a maneuver.

We used the Pelt algorithm implemented in the

Ruptures [17]. This algorithm effectively identifies the

points in the data where the statistical properties of the signal

change (the mean or the variance) change significantly.

The problem of detecting the change point can be formal-

ized as that of identifying the point where the statistical prop-

erties of the data change. Given a time series {y1, y2, ..., yT },

the goal is to detect a set of such change points {τ1, τ2, ..., τk},

that the data before and after each τi behaves differently.

Mathematically, this can be defined as:

L(y1, ..., yT , {τ1, τ2, ..., τk}) =
k+1∑
i=1

Li({yt : τi−1 < t ≤ τi}),

where: - Li represents the loss function for the data in each

segment.

- τ0 = 0 and τk+1 = T represent the beginning and the end

of the entire time series, respectively.

- The goal is to minimize the total loss L, which estimates

how well the segments fit the observed data.

Pelt’s algorithm selects an optimal set of change points that

minimizes the loss function - Radial Basis Function (RBF) cost

function. The RBF cost function is designed to model non-

linear shifts in the data, which is often found in real signals

such as gyroscope measurements. It performs a greedy search

for each possible change point, balancing between matching

the data and introducing too many change points (penalizing

their number).

The RBF function between two segments:

R(y1, ..., yT ) =

T−1∑
i=1

exp

(
−|yt − yt+1|2

σ2

)
,

where σ is a parameter defining the width of the radial basis

function. The function represents the smoothness or sharpness

of the transition between segments, making it sensitive to

sudden changes in signal dynamics. By minimizing the total

RBF over the entire series, we can detect significant transitions

in the data.

Thus, we obtained a set of points where changes in gyro-

scope readings occurred. The next step was to determine which

of these intervals corresponded to actual driver maneuvers.

C. Maneuver type classification

In this study, we recognized five types of maneuvers: left

turn, right turn, U-turn to the left, and U-turn to the right.

These maneuvers are the most common and essential in

everyday driving practice and, thus, represent a wide range

of situations in which drivers must make decisions and take

actions that directly impact road safety. The input data con-

sisted of gyroscope measurements. The key idea was to detect

a turn based on the total rotation angle during the maneuver.

To achieve this, it was necessary to compute reference angle

ranges for each maneuver type. We analyzed 20 hours of
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trips and identified 200 maneuvers from GPS trajectories, with

50 examples for each maneuver type. Segments of trips con-

taining maneuvers were selected, including ±5 seconds from

the manually identified maneuver boundaries. Additionally, we

identified 20 examples of lane changes to the left and right.

An algorithm for determining the maneuver boundaries

was applied to the obtained data. We dropped the idea of

calculating the turn angle from manually defined boundaries

so that the method for determining the start and end of

the maneuver was consistent with the approach used in the

experiments. In other words, the same method was used to

determine maneuver boundaries for both maneuver template

generation and maneuver detection among all drivers.

Based on the detected maneuvers, the total turning angles

for each maneuver type were calculated. The results are

presented in Table I:

TABLE I
ANGLE RANGES FOR DIFFERENT MANEUVER TYPES

Maneuver Type Minimum Angle Maximum Angle
Left Turn 40 80

Right Turn -80 -25
U-Turn Left 95 200

U-Turn Right -180 -80

We also removed maneuvers with durations less than 2.5

seconds from consideration. Based on the template maneuvers

found, there were no maneuvers with duration less than 2.5

seconds.

For lane change maneuvers to the left and right, the total

rotation angles ranged from -5 to +5 degrees. This result is

logical since during a lane change, the angle first shifts in

one direction and then in the opposite direction to continue

moving straight. Distinguishing lane changes from straight

driving with such minimal angle variations is not feasible using

this method. Therefore, these maneuver types were excluded

from this study.

D. Vizualization

To compare the detected maneuvers with the driver’s actual

movement, the driving trajectory was reconstructed based on

gyroscope data. The identified maneuvers were displayed in

different colors to facilitate the evaluation of the algorithm’s

performance.

The detected change points were marked and visualized

on the angular velocity graph over time. Points where the

movement transitioned from a stable to a more dynamic

state were plotted to visualize maneuver boundaries and were

highlighted with a red dashed line.

Additionally, a linear velocity graph was used to assess how

fast the driver was moving at the moment of the maneuver.

E. Validation

To evaluate the quality of the detected maneuvers, we

conducted a selective manual review of driver trips. 10 drivers

were randomly selected who made a total of 57 trips with a

total duration of 11 hours. Among the selected drivers, there

were trips that did not pass validation because there are trips

in the dataset where the speed was zero or less then 5 km

per hour. A sample of trips was visually analyzed to compare

the identified maneuvers with actual driving behavior. This

manual validation helped assess the accuracy of maneuver

detection and ensured that the detected events corresponded

to real driving actions.

IV. RESULTS

The results obtained are shown in Fig. 2. The plot presents

a left turn. The graph on the left displays the trajectory

constructed using the original GPS data. The trajectory in

the central graph was plotted in local coordinates after trans-

forming the coordinate system. The trajectory on the right

was reconstructed using the speed data and the computed

gyroscope values.

In addition to the visual comparison, we validated the

computed gyroscope values against real gyroscope readings

recorded with a smartphone during personal test drives. The

comparison is illustrated in Fig. 3 and demonstrates a close

match between the synthetic gyroscope data derived from

GPS and real gyroscope data, confirming the reliability of the

reconstruction method.

Fig. 2. Three driver trajectories calculated

A. Detection of Maneuver Boundaries

The ruptures library provided the boundaries. The sensi-

tivity factor was found to be 4, which provides a balanced

compromise between over-detection (breaking maneuvers into

smaller segments) and under-detection (missing key some tran-

sitions between maneuvers). With these settings, the algorithm

successfully identified most maneuver boundaries with high

accuracy. The results highlight the robustness of the gap-based

approach in detecting transitions in driver behavior, even when

the input data contains noise or is variable due to external

factors such as road conditions or specific driver styles.
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Fig. 3. Calculated and real trajectories

This sensitivity setting also ensured that the detected bound-

aries matched accurately the true, validated manual annota-

tions, making the approach a reliable tool for further maneuver

classification and analysis.

Figure 4 reveals the detected maneuver boundaries, with a

sensitivity coefficient of 15, using the ruptures library.

Fig. 4. Maneuver’s boundaries

B. Maneuver type classification

Maneuvers were classified based on the obtained table of

turn angle ranges for the maneuver given in Method. For

maneuvers with found limits, the total angle for the maneuver

was calculated and correlated with one of the maneuvers from

the table, or marked as no maneuver.

Table II shows the frequency of each type of maneuver

observed in the dataset. The right and the left turns were

the most common maneuvers, with 135 and 120 occurrences,

respectively. The right and the left lane changes were also

frequent, with 110 and 90 detections. Aggressive braking

and sudden acceleration were less common with 75 and 80

occurrences, respectively.

TABLE II
NUMBER OF DETECTED MANEUVERS CLASSIFIED BY TYPE

Maneuver Type Count
Left Turn 30
Right Turn 61
U-Turn Left 21
U-Turn Right 20
No maneuver 497
Total 629

Figures Fig. 5, 6, and 7 illustrate an example of the

algorithm’s performance. The first graph represents the driver’s

trajectory, computed based on angular velocity data. Dif-

ferent colors indicate various maneuvers detected through

the analysis of angular velocity changes. The second graph

displays the angular velocity, where red lines mark transi-

tion points—locations where a change in driving behavior

occurred. The bottom graph shows the linear velocity of the

vehicle.

The duration of the trip shown in Fig. 5 was 10 minutes.

This trip was divided into 16 segments, each corresponding to

statistically significant changes in gyroscope readings. These

segments are represented by different colors in the first plot.

Within this trip, four right turns and one left turn were

detected, while the remaining intervals were classified as

straight driving without maneuvers. The points of change in

gyroscope data are marked with red dashed lines. A visual

analysis confirms that these changes correspond to actual

variations in the driver’s trajectory, accurately reflecting the

real road situation. The average linear speed throughout the

trip was 24 km/h.

The second and third trips, shown in Fig. 6 and Fig. 7, were

significantly shorter, lasting approximately 2–3 minutes each.

In the second trip, a single maneuver—a left U-turn—was

detected. In the third trip, two maneuvers were identified: a

left turn and a right turn, both of which align with the actual

driving events. The green and red segments in Fig. 7 clearly

indicate these maneuvers.

It is important to note that the analyzed trips were selected

randomly. For all other manually validated results, the detected

maneuvers matched the actual maneuvers performed by the

driver, further confirming the accuracy of our approach.

As we can see, the proposed method successfully detects

different types of maneuvers and effectively segments the trip

into distinct phases. The transition points are well-aligned with

changes in driving behavior, ensuring a logical division of the

trip. Additionally, the maneuver labels are correctly classified,

demonstrating the robustness of the approach in identifying

and categorizing driving events.

The algorithm relies on quaternion-based estimation of

Euler-Krylov angles using lightweight trigonometric opera-

tions. These computations are applied independently at each

timestamp, resulting in linear complexity with respect to

dataset size. Once the angles are estimated, maneuver bound-

aries are determined using statistical techniques such as thresh-

olding and analysis of angular velocity changes. These steps
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Fig. 5. Trip 1. Results

are computationally simple and scale well with larger datasets.

Thanks to its low computational complexity, the method can

be applied in real time, including on devices with limited

processing power.

V. CONCLUSION

In this study, we proposed a method for maneuver detection

based on GPS and gyroscope data that effectively identi-

fies maneuver boundaries and classifies different maneuver

types, allowing for a detailed analysis of driving behavior.

By leveraging gyroscope-derived angular velocity and pre-

defined maneuver templates, we successfully segments trips

into distinct driving patterns. The results demonstrate that the

method reliably detects left turns, right turns, and U-turns

while filtering out minor lane changes that cannot be distin-

guished from straight driving using this method. The ability

Fig. 6. Trip 2. Results

to accurately determine maneuver boundaries enables not only

trip-level analysis but also the identification of driving style

characteristics. In future research, we plan to synchronize our

maneuver detection algorithm with in-cabin video recordings

of drivers during trips. This will allow us to analyze how a

driver’s behavior changes depending on their emotional state

and level of attention.
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