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Abstract—This study focuses on improving iris and pupil
segmentation in infrared images, a crucial task for gaze-tracking
systems. We propose a lightweight image preprocessing approach,
which ensures controlled data transformation, effectively elimi-
nating parasitic reflections, noise, and contrast inconsistencies
without introducing unwanted artifacts. Our approach employs
analytically defined transformations, incorporating local and
global filtering techniques to enhance the quality of input images
while preserving physiologically relevant features. We compared
deep learning-based segmentation models with and without
preprocessing, demonstrating that the proposed approach signifi-
cantly improves performance. Experimental results show notable
gains in the mIoU metric, confirming increased robustness to
illumination and image quality variations.

I. INTRODUCTION

In recent years, medical research has increasingly gravitated

toward automation, with a pronounced emphasis on leverag-

ing statistical data analysis techniques and machine learning

methodologies [1]–[4]. Among the diverse array of image

processing challenges [5]–[7], the analysis of ocular structures

stands out due to its inherent complexity and distinctive

nature. The optical properties of the human eye exhibit a high

degree of heterogeneity: the iris, pupil, and cornea possess

varying coefficients of reflection and absorption, complicating

the interpretation of visual data. In particular, infrared-based

ocular imaging has emerged as an indispensable tool for

assessing physiological parameters, underscoring the pivotal

role of precisely segmenting eye structures in such images.

The accurate delineation of the iris and pupil bound-

aries in infrared images is of paramount importance across

multiple domains, including healthcare, scientific research,

and industrial applications. For instance, the efficacy of the

psychophysiological assessment platform developed by NPP

VIDEOMIX [8] is directly contingent upon the precision of

eye structure segmentation within the infrared spectrum.

Ocular image segmentation methodologies can be broadly

categorized into three principal groups. The first encompasses

classical approaches, which partition an image into regions

based on disparities in intensity, texture, or spectral character-

istics [9]–[15]. The second comprises solutions that harness the

capabilities of deep neural networks, which exhibit remarkable

efficacy in segmentation tasks by capturing intricate spatial de-

pendencies [16]–[18]. The third category includes specialized

algorithms explicitly designed for biomedical image analysis,

employing models that have been fine-tuned to accommodate

the idiosyncrasies of medical datasets [19]–[23].

Contemporary gaze-tracking systems infer gaze direction by

analyzing the positional relationship between specular high-

lights and ocular anatomical features. However, ensuring high

precision in such estimations necessitates robust segmentation

techniques. Even marginal inaccuracies in boundary detection

can introduce substantial deviations in gaze estimation, partic-

ularly in high-frame-rate tracking systems that demand precise

temporal and spatial resolution.

One of the most pressing challenges in segmentation per-

tains to the presence of artifacts induced by variations in illu-

mination, spurious reflections, and the intrinsic physiological

characteristics of the eye. Such artifacts can severely distort

the delineation of anatomical structures, thereby compromising

the reliability of gaze modeling. This issue is particularly

pronounced in infrared imaging, where improper handling

of reflections and glare can lead to significant segmentation

errors.

These limitations are especially evident in sophisticated sys-

tems such as MIX GT-19, where segmentation algorithms must

demonstrate heightened adaptability and precision. Addressing

these constraints necessitates the development of novel, task-

specific segmentation strategies capable of accommodating

the intricate conditions of infrared imaging. In this work, we

introduce enhanced segmentation techniques tailored for iris

and pupil detection, specifically designed to mitigate existing

shortcomings and improve segmentation fidelity. The proposed

advancements are aimed at augmenting the reliability of gaze-
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tracking systems, thereby establishing a new benchmark for

accuracy in this domain.

II. RELATED WORK

Conventional methodologies for eye image segmentation

predominantly rely on clustering-based algorithms, which fa-

cilitate the delineation of anatomical structures such as the iris

and pupil by aggregating pixels with similar intensity, texture,

and color properties [11]–[14]. Among these techniques, k-

means clustering remains one of the most widely adopted due

to its computational simplicity and efficiency. This method

partitions an image into a predefined number of clusters,

assigning pixels based on their Euclidean distance to randomly

initialized centroids [10]–[12]. While this approach is com-

putationally lightweight and well-suited for processing large

datasets, its inherent rigidity—stemming from the requirement

to specify a fixed number of clusters—reduces its adaptability

when dealing with complex ocular structures.

To enhance the accuracy of k-means, preprocessing tech-

niques such as Gabor filters, graph-based segmentation, and

morphological operations are commonly integrated. However,

this method remains highly sensitive to variations in image

quality and structural heterogeneity. As an alternative, the

mean-shift clustering algorithm [15] employs a density-based

strategy, dynamically identifying regions of interest without

the need to predefine the number of clusters. Despite its adapt-

ability, the high computational burden associated with mean-

shift often renders it impractical for real-time applications,

particularly in resource-constrained environments.

The shortcomings of traditional segmentation techniques

become particularly evident when processing images under

non-uniform illumination, varying object scales, and diverse

orientations. To address these challenges, deep learning-

based approaches—particularly convolutional neural networks

(CNNs)—have gained prominence, owing to their ability to

extract complex spatial dependencies [16]–[18]. Early break-

throughs in CNN-driven eye segmentation were marked by

models such as PupilNet [24], [25] and DeepIris [26], which

leveraged convolutional layers for feature extraction and fully

connected layers for segmentation map generation.

Recent advancements have led to the refinement of CNN

architectures, with UNet [19], [20], [27], [28] emerging as

a leading solution in biomedical image segmentation. By

integrating an encoder-decoder framework alongside upsam-

pling and downsampling operations, UNet achieves superior

delineation of anatomical boundaries. Another noteworthy

development is ENet [29], which prioritizes computational

efficiency, making it particularly suitable for mobile and

embedded applications. Further refinements of these architec-

tures, such as MinENet, EyeNet [30], and EyeMMS [31], have

demonstrated exceptional performance (mIoU over 0.92) on

benchmark datasets like OpenEDS [32].

Despite these advancements, existing CNN-based models

continue to face significant limitations when applied to in-

frared eye image segmentation. The primary obstacles include

specular reflections, variations in corneal reflectance, and

the physiological uniqueness of each individual’s eye. These

factors pose considerable challenges in high-precision gaze-

tracking systems, such as MIX GT-19, where segmentation

accuracy is paramount to system reliability.

An in-depth analysis of current solutions reveals that main-

stream CNN architectures struggle to generalize to infrared

imaging conditions, as confirmed by evaluations on InP [33],

a dataset developed in collaboration with NPP VIDEOMIX.

Existing methodologies, including those proposed in [34], fail

to achieve the required segmentation fidelity, underscoring the

necessity for more domain-specific algorithmic adaptations.

One of the most promising avenues for improvement lies in

infrared image preprocessing, incorporating localized contrast

enhancement, suppression of parasitic reflections, and stabi-

lization of anatomical contours. However, given the compu-

tational constraints of medical hardware, these preprocessing

techniques must remain computationally efficient while mini-

mizing the burden on processing resources.

Furthermore, the application of end-to-end generative neural

networks in this domain introduces substantial risks. Since

such models operate within tensor-based latent representations,

they inherently lack strict control over generated outputs, po-

tentially introducing artificial artifacts that do not correspond

to the actual physiological structure of the eye. This issue is

particularly problematic for gaze-tracking applications, where

data fidelity is a critical requirement.

Thus, achieving high-accuracy segmentation for infrared

eye imaging necessitates the development of custom-tailored

preprocessing techniques that effectively mitigate artifacts,

precisely delineate the iris and pupil, and retain computational

efficiency. Optimizing such algorithms is pivotal for enhanc-

ing the robustness of gaze-tracking systems, ensuring stable

performance even in challenging infrared imaging conditions.

In this study, we introduce an adapted preprocessing approach

specifically designed to address these challenges, offering an

optimal solution for infrared eye image segmentation.

III. PROPOSED SOLUTION

We introduce an adapted approach to eye image prepro-

cessing based on the UniFi methodology [35], [36], which

ensures strict control over the data transformation process

and guarantees the absence of unwanted artifacts. Unlike

generative neural network-based methods, the UniFi approach

employs analytically defined transformations that combine

local and global filtering techniques. These filters perform

contrast correction, suppress noise, and eliminate parasitic

reflections while fully preserving the physical integrity of

the original image. Due to the deterministic nature of these

operations, the risk of uncontrolled modifications in the image

structure is completely mitigated, making this method partic-

ularly effective for iris and pupil segmentation in the infrared

spectrum.

Beyond presenting a lightweight infrared image preprocess-

ing model, this study conducts an in-depth evaluation of its

effectiveness when integrated into existing eye segmentation

solutions. Specifically, a comparative analysis was carried out,
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Fig. 1.

where segmentation algorithms were tested in two scenarios:

in their original form and with the addition of UniFi-based

preprocessing. The obtained results indicate that incorporat-

ing the proposed module significantly enhances segmentation

accuracy, reduces artifact interference, and improves the ro-

bustness of algorithms under varying illumination conditions

and noise levels.

Further details on the experimental setup, evaluation

methodology, and dataset characteristics are thoroughly dis-

cussed in the Evaluation section.

A. Method Overview

The proposed approach is structured as a multi-stage com-

posite algorithm, integrating an image preprocessing module

and one of the segmentation models for ocular structures.

This modular architecture provides adaptability across various

infrared image processing scenarios, ensuring both flexibility

and scalability.

A fundamental component of the system is the preprocess-

ing module, which is responsible for noise filtration, suppres-

sion of parasitic reflections, and localized contrast normaliza-

tion. This stage is critical for enhancing the quality of input

data by mitigating artifacts that could otherwise deteriorate the

accuracy of subsequent segmentation. A detailed breakdown

of the employed filtering techniques and their application

principles is provided in Section III-B.

The second core element of the approach is the segmen-

tation model, designed to precisely delineate the anatomical

structures of the eye, including the iris and pupil, in infrared

imagery. This selection allowed for a comprehensive assess-

ment of the robustness of our approach and its adaptability

across diverse architectural paradigms. The baseline models

utilized for experimental validation are thoroughly described

in Section IV-B.

The complete processing pipeline is illustrated in Figure 1,

which outlines the sequential data transformation flow, starting

from image preprocessing and culminating in the segmentation

stage.

B. Image Pre-processing Model

The pre-processing framework outlined in [36] served as the

foundation for our method, with several targeted modifications

introduced to enhance its applicability. The structural represen-

tation of the corrective transformation process is formalized as

follows:

Ie = Io +

n∑
i=1

fi(Io, hi(Iso)).

This formulation encapsulates a modular configuration,

where the total number of computational blocks corresponds

to the number of employed filters. Each block i processes a

scaled version of the source image Iso through a parameter

generator hi, which extracts a parameter set pi specific to the

corresponding filter function fi. The resulting transformation

outputs are then applied independently to the original image

Io, and the final enhanced image is obtained by summing the

original image with the cumulative filter outputs.

The parameter generation module adheres to the structural

principles of LFIEM [36], adopting a lightweight convo-

lutional architecture. This generator comprises two primary

stages: the first stage consists of three convolutional layers

with a stride of 2, followed by batch normalization and a

LeakyReLU activation function (except for the initial layer).

The number of feature maps is progressively increased, with

16, 32, and 128 filters for the first, second, and third layers,

respectively. The second stage incorporates two fully con-

nected layers, separated by ReLU activation, which refine

the extracted feature representations. At the final stage, an
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Fig. 2.

Fig. 3.

activation function is applied based on the required output

constraints: a sigmoid function for values within the range

[0,1], a hyperbolic tangent function for values in [-1,1], and

no activation when constraint-free filtering is needed. The

complete architecture of the parameter generator is visualized

in Fig. 2. Notably, despite its advanced design, the module

remains computationally lightweight, comprising only 47,000

trainable parameters.

Addressing prevalent challenges in microscopic scene im-

ages, such as blur artifacts, insufficient contrast, and low

sharpness, necessitated the implementation of corrective trans-

formation filters.

One of the essential transformations is the sharp filter,

mathematically formulated as follows:

Iout = Iin � 1

ν
(K +M · q),

where K denotes the convolution kernel, M represents a

corresponding map matrix of identical dimensions, and ν
is a normalization coefficient computed as the summation

of all elements within (K + M · q). This transformation is

applied independently to the red, green, and blue channels,

each parameterized by a distinct trainable variable. The filter

matrix configurations are explicitly defined as follows:

K =

⎛
⎜⎜⎜⎜⎝

1 4 6 4 1
4 16 24 16 4
6 24 −476 24 6
4 16 24 16 4
1 4 6 4 1

⎞
⎟⎟⎟⎟⎠

,

M =

⎛
⎜⎜⎜⎜⎝

0.8 0.8 0.8 0.8 0.8
0.8 0.9 0.9 0.9 0.8
0.8 0.9 1 0.9 0.8
0.8 0.9 0.9 0.9 0.8
0.8 0.8 0.8 0.8 0.8

⎞
⎟⎟⎟⎟⎠

.

Another fundamental transformation is automatic contrast
correction, dynamically adjusted by the parameter p ∈ [−1, 1].
This parameter dictates the modification applied to each pixel

of the input image, leading to the following computational

transformation:

Iout[x, y] =

{
(Iin[x, y]− 0.5) · 1

1−r , if r > 0

(Iin[x, y]− 0.5) · (1− r), otherwise;

Given the substantial variation in lighting conditions com-

monly encountered in microscopic imaging, exposure cor-

rection is a critical step in the preprocessing pipeline. The

corresponding automatic exposure adjustment transformation

is given by:

Iout[x, y] = Iin[x, y] · 2t.
To optimize computational efficiency and minimize redun-

dant operations, we consolidated all predictor functions for the

parameter estimation process into a unified neural network

encoder. This architectural refinement significantly reduces

processing overhead while maintaining the integrity of the

corrective transformations.

The structural organization of the pre-processing module is

comprehensively illustrated in Fig. 3.

IV. EVALUATION

In this study, we leveraged the InP dataset [33] to assess

the outcomes of our experiments systematically. A compre-
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a) b)

c) d)

Fig. 4. InP dataset [33] illustration: a) iris and mask; b) iris and mask; c)
pupil and mask; d) pupil and mask.

hensive comparative analysis was conducted, enabling a rig-

orous evaluation of the proposed approaches utilizing different

UniFi filters, both relative to each other and against existing

solutions that do not incorporate the lightweight preprocessing

model. This examination facilitated a stringent validation of

the proposed methodologies, providing empirical evidence of

their advantages over alternative techniques. By capitalizing on

the diversity and representativeness of the dataset, we ensured

a holistic performance assessment, reinforcing the practical

applicability and real-world feasibility of our developed tech-

niques.

A. Dataset

We utilized the InP dataset [33], a publicly available

collection of annotated infrared eye images, developed in

collaboration with NPP VIDEOMIX. The dataset comprises

structured pairs of images, where each instance consists of an

infrared capture of a human eye alongside its corresponding

binary segmentation mask, delineating key anatomical compo-

nents—namely, the iris and pupil. Representative examples of

these labeled data pairs are provided in Fig. 4.

The dataset is structured into two distinct subsets, each

tailored to a specific segmentation task. The first subset

comprises 1,758 images dedicated to iris segmentation. These

images were obtained using an infrared imaging system,

capturing data from 8 individual subjects, with an approximate

mean of 439 samples per participant. Every image in this sub-

set is paired with a corresponding ground-truth segmentation

mask, ensuring precise delineation of the iris region.

The second subset focuses on pupil segmentation and con-

tains a total of 7,343 images. This portion of the dataset was

collected from 21 participants, with an average of 699 images

per subject. Analogous to the iris segmentation dataset, each

image in this section is accompanied by a manually annotated

segmentation mask, allowing for accurate model training and

evaluation.

For rigorous performance assessment and to enhance the

generalizability of the models, we employed a systematic

partitioning strategy. The dataset was split into training and

testing subsets using a 5:1 ratio, ensuring an optimal balance

between model learning capacity and validation robustness.

This methodical division facilitates effective training while

retaining a sufficient volume of unseen data for benchmarking

and performance validation.

B. Baselines

We conducted a comprehensive evaluation of the perfor-

mance of standard image segmentation methods by integrating

our lightweight image preprocessing model. To achieve this,

we selected representative models from each primary category:

specialized models and general biomedical segmentation mod-

els. This comparative analysis allows us to assess the impact

of our preprocessing module on the segmentation accuracy

of infrared images of the human eye, as well as to identify

the strengths and limitations of our approach when applied

alongside various segmentation baselines.

For the first category of models, we employed DeepIris. For

the second category, we utilized the Unet and Unet++ models.

All the aforementioned models have demonstrated robust

performance in image segmentation tasks. To ensure a fair

comparison in terms of the number of trainable parameters,

we adopted a backbone feature extractor for both UNet-

based segmentation models and keypoint-based segmentation

architectures. This strategy guarantees a balanced evaluation

of our preprocessing model’s capabilities, mitigating potential

disparities arising from differences in feature extraction com-

plexity.

C. Training Details

We trained all models on 1 × NVIDIA RTX 3090 GPU

for up to 100 epochs. The AdamW optimizer [?] was used

with β1 = 0.9 and β2 = 0.999, and a weight decay rate of

0.05. The batch size was set to 8. The initial learning rate was

10−8. Each model underwent 10 training cycles to ensure the

robustness and consistency of the testing results.

D. Experimental results

To evaluate the effectiveness of our models, we employed a

set of metrics widely used in image segmentation tasks. Specif-

ically, we utilized the mean Intersection over Union (mIoU)

metric, computed separately for pupil and iris segmentation,

which provides an objective and comprehensive assessment of

segmentation accuracy. The complete experimental results are

presented in Table I.

For baseline comparisons, we selected neural network archi-

tectures that are compatible with integration into the MIX GT-

19 system. Our analysis included various UNet-based models,

encompassing both general architectural enhancements and

task-specific adaptations tailored for eye segmentation.

Among the generalized improvements, we evaluated

UNet++ [20], which incorporates additional multi-scale feature

fusion layers, as well as UNet variants employing different

encoder backbones, such as ResNets [37] and EfficientNets

[38]. Furthermore, we assessed specialized pupil segmentation

techniques optimized for seamless integration into the MIX

GT-19 processing pipeline.

The obtained results validate the effectiveness of the pro-

posed approaches, which outperformed all existing solutions
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TABLE I COMPARATIVE ANALYSIS

Filters configuration Segmentation model mIoU Iris mIoU Pupil

w/o preprocessing model DeepIris 0.799 0.793
w/o preprocessing model ENet 0.828 0.820
w/o preprocessing model MinENet 0.837 0.829
w/o preprocessing model EyeNet 0.855 0.859
w/o preprocessing model EyeMMS 0.880 0.887
w/o preprocessing model Unet ResNet-18 0.805 0.798
w/o preprocessing model Unet ResNet-50 0.820 0.815
w/o preprocessing model Unet EfficientNet-b4 0.839 0.823
w/o preprocessing model Unet++ EfficientNet-b4 0.867 0.861

Exposure + Contrast DeepIris 0.801 0.795
Exposure + Contrast ENet 0.830 0.825
Exposure + Contrast MinENet 0.841 0.832
Exposure + Contrast EyeNet 0.859 0.864
Exposure + Contrast EyeMMS 0.884 0.891
Exposure + Contrast Unet ResNet-18 0.807 0.802
Exposure + Contrast Unet ResNet-50 0.823 0.819
Exposure + Contrast Unet EfficientNet-b4 0.837 0.826
Exposure + Contrast Unet++ EfficientNet-b4 0.870 0.865

Exposure + Sharpness DeepIris 0.810 0.809
Exposure + Sharpness ENet 0.840 0.831
Exposure + Sharpness MinENet 0.848 0.839
Exposure + Sharpness EyeNet 0.866 0.875
Exposure + Sharpness EyeMMS 0.893 0.900
Exposure + Sharpness Unet ResNet-18 0.812 0.805
Exposure + Sharpness Unet ResNet-50 0.828 0.822
Exposure + Sharpness Unet EfficientNet-b4 0.845 0.832
Exposure + Sharpness Unet++ EfficientNet-b4 0.879 0.872

examined in our experiments. Notably, while the differences in

metric values may appear incremental at first glance, they have

a substantial impact in the context of gaze-tracking systems.

For systems processing high-frequency image streams from

multiple cameras, even marginal improvements in segmenta-

tion precision contribute to significantly enhanced stability and

reliability. These findings underscore the practical significance

of the proposed methods and demonstrate their applicability

in real-world infrared eye-tracking scenarios.

V. CONCLUSION

This study addressed the segmentation of the iris and pupil

in infrared images, a critical component in gaze-tracking

systems. We introduced an adapted image preprocessing ap-

proach based on UniFi, ensuring controlled data transforma-

tions, eliminating undesirable artifacts, and preserving essen-

tial image features. Unlike generative neural network-based

approaches, the proposed method employs analytically defined

transformations, incorporating both local and global filtering

techniques to perform contrast correction, noise suppression,

and parasitic reflection removal. Furthermore, our approach

guarantees the absence of newly generated artifacts, common

in generative models.

A comprehensive evaluation, including comparative testing

of segmentation models with and without UniFi preprocess-

ing, demonstrated that the proposed approach significantly

enhances segmentation quality. Specifically, the integration

of UniFi preprocessing led to higher segmentation accuracy,

reduced sensitivity to noise, and improved robustness to

illumination variations. The effectiveness of this approach

is confirmed by mIoU metrics, which indicate a consistent

improvement in performance when incorporating the UniFi

module into the infrared eye image processing pipeline.

Thus, this work not only validates the effectiveness of the

proposed preprocessing method but also establishes a foun-

dation for further advancements in eye segmentation systems.

Future research may focus on further optimization of filtering

algorithms as well as adapting the proposed approach to other

medical and industrial image analysis tasks, expanding its

applicability beyond infrared eye segmentation.
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