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Abstract—Modern music streaming platforms offer vast 
catalogs and personalized discovery experiences. Nevertheless, 
current music recommendation systems often overemphasize 
popular content and fail to capture complex user preferences or 
support the exploration of niche genres. This paper addresses these 
limitations by proposing a deep learning–based multimodal 
recommendation framework that leverages transformer 
architectures to analyze audio signals and contextual metadata. 
The goal is to enhance music similarity modeling and 
recommendation accuracy by generating enriched embeddings 
that capture musical structure, instrumentation, and genre 
subtleties. The research introduces a system that combines audio-
based features with metadata through a fusion strategy informed 
by attention mechanisms. The methodology includes large-scale 
experimentation on public music datasets and evaluation using 
standard recommendation quality metrics. Results demonstrate 
improved personalization and diversity in recommendations 
compared to baseline models. This work contributes to the field by 
providing a novel multimodal architecture and demonstrating the 
effectiveness of audio-content-aware recommendation strategies.

I. INTRODUCTION

Music streaming services today provide access to vast and 
diverse catalogs, allowing users to explore various artists, 
genres, and styles. Music recommendation systems commonly 
employ collaborative filtering, content-based filtering, or hybrid 
approaches that combine both to assist in the discovery process. 
However, despite their success in improving personalization, 
several open challenges remain. For instance, Velankar and 
Kulkarni (2022) [1] highlight issues such as cold start problems, 
insufficient data, and unreliable suggestions that limit the 
effectiveness of current systems. These limitations hinder the 
ability of recommendation systems to deliver personalized, 
relevant content, impacting user engagement and satisfaction.

Personalization, diversity, novelty, and contextual relevance 
remain critical challenges in music recommendation systems, as 
existing models often struggle to balance these factors 
effectively. Furthermore, integrating multimodal data—such as 
audio features, user interaction history, social influence, and 
textual metadata—introduces significant computational and 
methodological complexities. Despite ongoing research, it is still 
unclear how future music recommendation systems can utilize 
multimodal machine-learning techniques to enhance 
personalization and user satisfaction. Overcoming these 
challenges is crucial for building more effective and engaging 
music recommender systems. Perera et al. (2020) [2]

Music similarity research is fundamental for 
recommendation systems, as it identifies tracks, artists, or genres 
with comparable attributes, thereby facilitating the suggestion of 
music that aligns with a user's preferences. The application of 
transformer-based architectures in music recommendation 
remains underexplored, particularly in multimodal fusion and 
similarity modeling. Existing systems rarely exploit the capacity 
of self-attention mechanisms to model long-range dependencies 
in audio or to align semantic information across modalities. As 
a result, recommendations often reflect biases toward popular 
content and fail to surface niche or culturally diverse tracks. 
Additionally, many current approaches lack interpretability, 
making tracing or justifying similarity-based decisions difficult. 
These challenges motivate the development of a unified, 
transformer-based multimodal framework that integrates audio 
and metadata to enhance music similarity analysis. Such a 
framework should not only improve recommendation accuracy 
and diversity but also enable structured, ontology-based 
reasoning to increase the transparency and controllability of the 
recommendation process.

The primary goal of this research is to develop a unified 
transformer-based multimodal framework that enhances music 
similarity modeling and recommendation quality by integrating 
audio content and contextual metadata. The study aims to design 
a transformer architecture capable of capturing long-range 
dependencies in audio signals using self-attention mechanisms, 
enabling a more accurate representation of musical structure and 
characteristics. A key objective is to develop an effective 
multimodal fusion strategy that aligns audio features with 
contextual metadata, resulting in enriched joint embeddings. The 
study also seeks to address the issue of popularity bias by 
improving similarity analysis to support the discovery of niche 
and culturally diverse music. Furthermore, the research 
introduces an ontology-driven similarity layer based on learned 
embeddings to provide a semantically structured and 
interpretable basis for recommendations. The proposed 
approach will be evaluated on public music datasets using 
established metrics to assess accuracy, diversity, and novelty 
improvements compared to existing baseline models.

The structure of this paper is designed to effectively guide 
the reader through the research. The next section delves into 
related work in the field, establishing a clear context for the 
research problem. The third section outlines the methodology 
and models utilized in this study, followed by a thorough 
description of the experimental setup and evaluation in Section 
4. Finally, Section 5 presents the results of the experiments,
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critically discuss the limitations of the approach, and proposes
promising avenues for future research.

II. RELATED WORK

The proliferation of music streaming platforms has 
intensified the demand for robust and contextually aware music 
recommendation systems. Traditional approaches including 
collaborative filtering, content-based filtering, and hybrid 
techniques have formed the foundation of personalized 
recommendation engines. However, these methods continue to 
exhibit critical limitations, including the cold-start problem, 
popularity bias, low diversity in recommendations, and 
inadequate interpretability. Deldjoo et al. (2024) [3]

Collaborative filtering in recommendation systems tends to 
favor popular artists, leading to popularity bias and reducing the
visibility of lesser-known musicians [4], [5], [6]. Despite 
various efforts to address this issue, it persists, as systems often 
prioritize well-known artists over emerging ones. The cold start 
problem, noted by Vr and Pillai (2018) [7], complicates 
recommendations for new users or newly added music due to 
limited interaction data. Additionally, many algorithms exhibit 
cultural bias by favoring recognized genres and neglecting 
diverse musical traditions. Hesmondhalgh et al. (2023) [8] 
pointed out a lack of transparency and fairness in the design of 
these systems on music streaming platforms. Identifying music 
that aligns with personal preferences can be challenging, and 
users may struggle to find songs or artists that match their mood. 
Hosey et al. (2019) [9] explored user search behavior on music 
platforms, emphasizing the need for improved search 
experiences tailored to the domain to enhance user satisfaction 
and efficiency.

Content-based filtering utilizes music information retrieval 
techniques to analyze low-level audio features, but it struggles 
with semantic understanding and the connection between raw 
signal processing and human perception [10]. Traditional 
systems focus on low-level features like pitch and rhythm, 
which may not fully capture the nuances of musical similarity
[11]. Modern techniques now include mid-level and high-level 
features, such as harmonic progression and emotional tone. For 
instance, convolutional neural networks analyze spectrograms, 

providing deeper insights into a song's structure and texture
[12].

Hybrid approaches integrating audio-based features and 
metadata, such as genre, artist, and year, offer a more 
comprehensive understanding of music similarity by 
incorporating multiple data dimensions. Audio features, like 
tempo, rhythm, and timbre, provide detailed insights into the 
acoustic properties of songs. At the same time, metadata 
captures contextual information such as the song's historical 
background, cultural significance, and categorization within 
specific genres. Bevec et al. (2024) [13] in their study combined 
these elements into hybrid systems for more effective capturing 
of the nuances of music taste, improving the accuracy and 
personalization of music recommendations. This approach also 
allows for a richer exploration of music that goes beyond the 
limits of individual data types, making the system adaptable to 
various user preferences and diverse music databases. Quadrana 
et al., 2018 [14] introduced matrix factorization techniques 
enhanced by neural networks that have improved scalability and 
personalization in recommendation systems.  Zhang et al. 
(2017) [15] leveraged hybrid models for user interaction data 
and audio features to reduce popularity bias and enhance 
diversity in recommendations.

Emotion-based music recommendation represents a 
growing area of research, aiming to align song 
recommendations with user moods and contexts. Advances in 
affective computing have enabled systems to classify emotions 
using techniques such as sentiment analysis of lyrics, facial 
recognition, and brain-computer interfaces. Gu et al. (2020) 
[16] explored advancements in brain-computer interfaces, 
focusing on signal-sensing technologies and computational 
intelligence techniques such as fuzzy models and transfer 
learning. These methods enable effective monitoring of 
cognitive states during tasks, benefiting healthcare applications 
and research. Aruna et al. (2021) [17] utilized facial recognition 
technology to adapt recommendations based on real-time 
emotional cues dynamically. These methods demonstrate the 
potential of integrating physiological and contextual data into 
recommendation systems, offering more intuitive and adaptive 
user experiences. However, challenges remain in standardizing 
emotion classification and balancing computational efficiency 
with real-time responsiveness.

TABLE I. SUMMARY OF LIMITATIONS IN EXISTING MUSIC RECOMMENDATION SYSTEMS AND CONTRIBUTIONS OF THIS STUDY

Challenge in existing work Identified limitations Planned contribution of this study

Cold-start problem and lack 
of diversity

Existing methods struggle with new users or tracks and often 
generate homogenous recommendations [3], [7].

Leverage rich audio-content and semantic metadata 
fusion to support cold-start scenarios and enhance 

diversity.
Lack of Explainability and 

Transparency
It is difficult to justify recommendations or trace decision logic [8]. Incorporate an ontology-based reasoning layer to 

support interpretable recommendations.

Popularity and cultural bias Recommender systems disproportionately favor mainstream or 
Western music, limiting exposure to diverse or niche content [4], 

[8].

Introduce balanced multimodal embeddings and 
diversity-aware modeling to promote 

underrepresented music.
Low level feature 

dependence
Traditional content-based filtering relies on shallow audio 

descriptors, which poorly reflect musical semantics [10], [11].
Employ transformer models to extract high-level, 

temporally aware representations from audio.
Fragmented or shallow 

multimodal fusion
Current multimodal systems inadequately align audio, metadata, and 

contextual signals [13], [14].
Proposes attention-based multimodal fusion to 

integrate and align heterogeneous data with semantic 
precision.
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While prior studies have advanced the development of 
music recommendation systems through collaborative filtering, 
content-based approaches, and hybrid models, persistent 
challenges remain in personalization, diversity, cultural 
representation, and system transparency. These limitations are 
further compounded by difficulties in modeling long-term user 
behavior, integrating multimodal information, and reducing 
popularity bias. This study proposes a transformer-based 
multimodal framework that leverages deep contextual learning 
and structured semantic reasoning to address these gaps. Table 
1 summarizes the primary shortcomings of existing approaches 
alongside the specific research objectives of the present work, 
thereby clarifying its methodological and scientific 
contributions to the field.

III. METHODOLOGY

This chapter outlines the methodology for developing a 
transformer-based multimodal framework for music similarity 
analysis and ontology-driven recommendation. It covers the 
system architecture, multimodal data representation, model 
training procedures, and the construction of a structured music 
similarity ontology that enables semantically enriched 
recommendation logic. Emphasis is placed on the fusion of 
audio and metadata embeddings and the role of ontological 
reasoning in improving recommendation transparency and 
interpretability. Figure 1 presents a high-level overview of the 
proposed architecture, highlighting key components and their 
interactions.

Fig.1 Transformer-based multimodal architecture

A. Transformers

Transformer-based model was originally introduced by 
Vaswani et al. (2017) [18] and has been used for language 
processing tasks. Huang et al. (2019) [19] in their research, 
incorporated transformer models for music processing. They
discuss how transformers, with their self-attention mechanism, 
can be employed for tasks such as music similarity, classification, 
and retrieval. By leveraging the self-attention mechanism, the 
model effectively learns long-term dependencies in music 

sequences, allowing for accurate representation of melodic, 
harmonic, and rhythmic structures. 

By leveraging the self-attention mechanism, the model 
effectively learns long-term dependencies in music sequences, 
allowing for accurate representation of melodic, harmonic, and 
rhythmic structures. Detailed mathematical derivations of the 
transformer architecture, including the attention mechanism, 
multi-head attention, and feedforward networks, can be found in 
the work by Thickstun et al. (2021) [20]. This research provides
an in-depth explanation of the transformer model’s mathematical 
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operations, such as calculating attention weights, aggregating 
values, and applying residual connections and layer 
normalization. These components form the core of the 
transformer’s ability to model complex relationships in data, 
which is particularly useful in tasks like music similarity and 
recommendation.

The primary reason for using transformers in studying music 
similarity is their versatility and capability to learn complex 
representations from data. The model learns patterns based on 
fixed features in traditional approaches, such as classical machine 
learning methods or convolutional neural networks [21]. For 
example, one might use features like tempo, key, or pitch, which 
are manually engineered. While this is effective, it cannot 
adaptively discover new, more abstract patterns. Transformers 
automatically learn hierarchical and contextual relationships 
from raw data through the attention mechanism. This allows them 
to process music in a way that accounts for local and global 
structures. For instance, a transformer model could learn how a 
melody progresses over time, capture harmonic changes, and 
even recognize recurring patterns that are often difficult to define 
with traditional feature extraction methods. As a result, 
transformers can produce more accurate and generalizable 
representations of music that are not limited by preconceived 
notions of what constitutes similarity.

1) Wav2Vec: is an advanced deep learning model [22]
developed by Meta AI [23] for self-supervised learning on 
speech data, utilizing raw audio waveforms to learn effective 
speech representations without extensive labeled data. The 
model's architecture includes a convolutional neural network 
for feature encoding, a transformer-based context network, and 
a quantization module that discretizes the latent speech 
representations. During pretraining, Wav2Vec 2.0 masks 
random sections of the input audio and trains the model to 
predict the masked regions using the surrounding context. This 
innovative approach allows the model to capture local and 
global dependencies in the audio signals, producing robust 
representations that generalize well across various speech tasks. 
Fine-tuning the model on labeled datasets tailors it for specific 
applications such as automatic speech recognition, speaker
identification, and speech emotion recognition. Wav2Vec 2.0 
has achieved state-of-the-art performance in ASR, significantly 
reducing the need for labeled data. However, its substantial 
computational requirements for pretraining and fine-tuning 
present challenges for accessibility. Nevertheless, Wav2Vec 2.0 
significantly advances speech processing, opening new avenues 
for self-supervised learning in audio and other domains.

2) Audio Spectrum Transformer (AST): is an advanced neural
network architecture [24] designed specifically for audio 
classification and related tasks. It operates directly on 
spectrogram representations of audio signals, treating them as 
image-like inputs. This approach enables the model to capture 
local and global dependencies in the audio data, making it 
highly effective for tasks requiring a nuanced understanding of 
spectral patterns. The core of the model consists of a multi-head 
self-attention mechanism, which allows the model to 
dynamically focus on different parts of the input spectrum, 
facilitating the recognition of complex acoustic events. 
Pretraining strategies, such as masked spectrogram patch 

prediction, are often employed to enable self-supervised 
learning, reducing the reliance on labeled data. Fine-tuning on 
downstream tasks, such as environmental sound classification 
or music genre identification, has shown the AST to achieve 
state-of-the-art performance across multiple audio benchmarks. 

3) MuLan: is a multimodal transformer-based model [25]
designed for understanding and generating music by aligning 
audio and natural language. By leveraging a contrastive 
learning framework, MuLan learns joint embeddings of music 
and text, enabling tasks such as music retrieval via text 
descriptions and text-based music classification. Trained on 
large-scale music and associated metadata datasets, it uses a 
dual-encoder architecture where one encoder processes audio 
features such as spectrograms and the other processes textual 
input. MuLan's ability to bridge audio and text modalities is a 
powerful tool for cross-modal music understanding and 
recommendation systems.

4) Contrastive Language-Audio Pretraining (CLAP): is an
innovative framework [26] that unifies audio and textual 
modalities through self-supervised learning, enabling robust 
multimodal representation learning for audio tasks. Inspired by 
the success of vision-language models like CLIP [27], CLAP 
employs dual-encoder architecture where one encoder 
processes audio inputs and another processes textual 
descriptions. These encoders are trained jointly using a 
contrastive loss function to maximize the similarity between 
corresponding audio-text pairs while minimizing the similarity 
of mismatched pairs. This approach allows CLAP to learn 
semantically meaningful and generalizable representations that 
align audio signals with their natural language descriptions. The 
framework has been shown to excel in various downstream 
tasks, including zero-shot audio classification, audio 
captioning, and audio-based retrieval, where textual prompts 
can be used to query audio databases. CLAP’s reliance on large-
scale, diverse datasets during pretraining ensures that its 
representations are broadly applicable across domains, from 
environmental sound recognition to music analysis. However, 
its performance is influenced by the quality and diversity of the 
pretraining data, and its computational demands may limit 
accessibility. Despite these challenges, CLAP represents a 
significant step forward in bridging the gap between auditory 
and linguistic modalities, paving the way for more intuitive and 
flexible audio understanding systems.

5) RoBERTa: is a transformer-based model that employs
dynamic masking during pretraining, uses larger batch sizes, 
and trains on significantly more data. RoBERTa demonstrates 
robust generalization capabilities in diverse text-based tasks 
like classification, summarization, and translation. Its 
optimizations make it a state-of-the-art model for text 
representation learning, widely used in research and real-world 
applications. MusicBERT [30] learns contextual relationships 
between musical events such as notes, durations, and velocities. 
Its architecture is adapted to capture music's hierarchical and 
sequential nature, making it practical for melody continuation, 
chord prediction, music classification, and similarity analysis. 
MusicBERT’s specialized focus on symbolic music data 

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 263 ----------------------------------------------------------------------------



enables it to outperform general-purpose models in music-
specific tasks, providing a powerful tool for music information 
retrieval and generation.

B. Input Modalities and Feature Extraction

The proposed model utilizes multiple input modalities to 
effectively capture diverse dimensions of music similarity, each 
contributing distinct information that aids in accurate music 
recommendation and analysis. These modalities include audio 
features, lyrics features, metadata, and user interaction data, 
each processed through specialized techniques to extract 
meaningful representations. Each modality is processed 
independently to extract the relevant features before being 
integrated into a unified model. The feature extraction process 
ensures that each modality contributes its unique perspective on 
the music, capturing a holistic view of similarity. 

1) Audio Features: Audio signals provide essential
information for understanding musical content. Features such 
as spectrograms [31], Mel-Frequency Cepstral Coefficients 
(MFCCs) [32], and raw waveforms are utilized to characterize 
the audio content. These features are typically extracted using 
state-of-the-art models such as VGGish[33], OpenL3 [34], or 
Wav2Vec2, which are designed to transform raw audio into 
compact, informative representations. Additionally, pre-trained 
models like CLAP can generate high-level audio embeddings 
that capture both low- and high-level musical structures, 
enriching the model's ability to discern subtle similarities 
between tracks.

2) Lyrics Features: The lyrics of a song provide insight into
its thematic and emotional content, which can significantly 
influence listener preferences and music similarity. To 
transform lyrics into useful features, transformer-based natural 
language processing [35] models such as BERT [36], GPT [37], 
or SBERT [38] are utilized to create dense embeddings that 
capture semantic and syntactic information. Beyond simple 
embeddings, sentiment analysis and topic modeling can be 
applied to further elucidate the lyrics' emotional tone and central 
themes. These features provide an additional layer of 
understanding regarding how songs might be similar in lyrical 
content, contributing to more comprehensive 
recommendations.

3) Metadata Features: In addition to audio and lyrics, metadata
- such as genre, mood, instrumentation, and artist-specific 
attributes - plays a crucial role in understanding music similarity. 
These features can be extracted from widely used datasets such as 
the Spotify API [39] or the Million Song Dataset [40], providing 
rich and structured music information. The inclusion of metadata 
enables the model to consider contextual information that may not 
be directly captured in the audio or lyrics but is still significant for 
accurate similarity comparisons. For example, songs within the 
same genre or from the same artist may be more likely to share 
similarities, even if their audio features differ.

C. Transformer-Based Multimodal Fusion

In music recommendation, this mechanism supports cross-
modal alignment - such as between lyrical themes and audio 
textures - by enabling each token such as a beat, a lyric word, or a 

genre tag to attend to all others in the sequence. Multi-head 
attention further enriches this capability by allowing the model to 
learn diverse relational subspaces, particularly important when 
fusing disparate inputs like timbral features and lyrical semantics.

Two modalities: audio and text are represented as and 
respectively. The attention calculation mechanism is defined as:

where Q, K and V are the query, key and value metrics derived 
from the input embeddings, and is the dimensionality of key
vectors.

where h is the number of attention heads and is the learned
output weight matrix that projects the concatenated results back to 
the desired output dimension for audio and text modalities.

To enable context-aware fusion, dynamic weights are assigned 
to the multi-head attention outputs from each modality, based on 
their relevance to the current input:

where and are the learned weights that dynamically adjust
based on the input, indicating the importance of each modality in 
the context of the song.

The dynamic weights and can be computed based on the
relevance of each modality in each context, which could be 
learned via a softmax function over context features, such as song 
genre or temporal characteristics:

where is a function that encodes contextual features
such as genre, song structure. is the weight matrix
learned for context-based weighting.

The final fused representation, which will be used for similarity 
computation or recommendation tasks, is obtained from the fusion 
process:

This representation will be dynamically adjusted based on the 
context of the input song, allowing the model to prioritize the most 
relevant features for accurate recommendation.

Various fusion techniques can be employed to integrate 
information from multiple modalities effectively. These methods 
combine the embeddings generated by different models, such as 
Wav2Vec2, CLAP, AST, and MuLan, into a unified 
representation that captures the complex relationships between 
audio, lyrics, and metadata. The fusion process not only preserves 
the distinct characteristics of each modality but also facilitates the 
extraction of more comprehensive and meaningful features. 

(1)

(2)

(3)

(4)

(5)
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Several strategies for multimodal fusion are outlined below, each 
with its strengths in enhancing the model's ability to capture the 
nuances of music similarity and recommendation. 

1) Concatenation-Based Fusion: is a fusion method [41] where 
feature vectors from different models are combined into a single 
high-dimensional representation. Shi et al. (2024) [42] explored 
various approaches to multimodal fusion in their research. This 
method preserves distinct characteristics from both audio and text, 
enhancing the model’s ability to capture multimodal relationships. 
For example, if an audio model Wav2Vec2 generates a 512-
dimensional embedding and a joint audio-text model CLAP 
produces a 256-dimensional embedding, concatenating them 
results in a 768-dimensional vector that retains information from 
both domains. 

2) Attention Feature Fusion: is a more adaptive fusion 
technique [43] that involves multi-head attention mechanisms, 
which assign varying importance to different modality 
embeddings based on context. This approach lets the system 
dynamically focus on the most relevant features, optimizing 
similarity computation based on the song’s characteristics. The 
model may prioritize audio features in instrumental music, 
capturing spectral and temporal properties. For lyrically rich 
songs, attention may shift towards textual embeddings, 
emphasizing semantic and linguistic elements. This context-aware 
fusion enhances the model’s ability to generate robust and 
meaningful representations across diverse music styles. 

3) Cross-Modal Projection: To achieve a unified latent space, 
embeddings from different sources can be projected to a standard 
representational format using a linear transformation or a neural 
network-based mapping function. Aligning embeddings in the 
same dimensional space allows for more effective cross-modal 
interaction, improving the system’s ability to compare and relate 
information from audio, lyrics, and metadata coherently. 

4) Multimodal Similarity Calculation: After combining the 
embeddings, the system calculates the similarity between music 
entities to make recommendations. Cosine Similarity [44] 
quantifies the cosine of the angle between two vectors and is 
typically used when embeddings are normalized to unit length. 
Euclidean Distance [45] calculates the straight-line distance 
between two vectors in the embedding space. Dot Product [46] 
can assess proximity when embeddings are transformed into a 
space where larger values indicate more significant similarity. 

D. Music similarity ontology 

To define and organize the concepts, relationships, and 
attributes related to the similarity between music elements such 
as songs, genres, artists, and audio features. It is structured 
using a set of predefined classes and properties in an ontology. 
Web Ontology Language (OWL) provides a semantic 
framework for understanding how music items relate to one 
another in terms of similarity. Korzun et al. (2018) [47] 
demonstrated that ontological modeling and semantic 
interoperability enhance cultural information retrieval and user 
experience in ontology-enabled recommender systems. This 
aligns with the current study's use of ontologies for organizing 

multimodal music metadata, highlighting the importance of 
semantic technologies in developing adaptive recommender 
systems across cultural domains. 

To integrate transformer-based models into an OWL 
Ontology, we need to define the classes and properties that 
represent key concepts in the music domain. Classes: Song; 
AudioFeature; TextFeature; Artist; Genre; Mood. Properties: 
hasGenre; hasArtist; hasAudioFeature; hasTextFeature; 
hasTextFeature; hasMood. 

Each model's output embeddings should be mapped into the 
OWL ontology. This involves creating instances of classes and 
assigning properties that represent the features learned by each 
transformer. An instance of the Song class should be created for 
each song in the model process. Create corresponding instances 
in the AudioFeature and TextFeature classes for each audio and 
text feature. AudioFeature1: An instance of the AudioFeature 
class corresponding to the embedding from Wav2Vec2. 
TextFeature1: An instance of the TextFeature class 
corresponding to the text embedding from CLAP. 

After extracting the features and mapping them to the 
appropriate classes, OWL object properties define the 
relationships between the entities within the ontology. For 
example, the Song instance is linked to its corresponding 
AudioFeature and TextFeature instances, such as Song1 having 
the AudioFeature AudioFeature1 and the TextFeature 
TextFeature1. In the case of multimodal models like MuLan, 
both audio and text relationships are established together, where 
Song1 is connected to AudioFeature1 and TextFeature1. 
Additionally, the properties hasGenre and hasArtist establish 
connections between the song and its genre and artist, 
respectively, linking Song1 to Genre1 and Artist1. 

The proposed approach makes several key assumptions 
about the data and the nature of the problem. First, it assumes 
that high-quality embeddings can be generated from each 
modality, which is sufficiently informative to distinguish 
between different music tracks. Second, it assumes that the 
embeddings are aligned in a common space where multimodal 
fusion can occur effectively. The model also assumes that the 
various features (audio, text, and metadata) can be meaningfully 
related to each other in the context of similarity with music. 
Additionally, the methodology assumes that cross-modal 
relationships, such as the relationship between lyrics and 
melody, can be captured through the proposed attention 
mechanism and projection techniques. 

The proposed design fully addresses the requirements 
through its multimodal fusion approach. By leveraging 
transformer-based architectures, the system effectively learns 
inter- and intra-modal relationships. The concatenation-based 
fusion ensures that no critical features are lost during 
integration. At the same time, multi-head attention allows the 
model to focus on the most relevant features in different 
contexts, whether for instrumental or lyrical tracks. The cross-
modal projection guarantees that the embeddings from different 
sources can be aligned into a unified latent space, facilitating 
coherent comparison and similarity calculation. Finally, using 
multiple similarity computation methods (Cosine Similarity, 
Euclidean Distance, and Dot Product) ensures the system can 
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calculate similarity effectively across various music 
embeddings, providing accurate and meaningful 
recommendations. The system can provide robust, context-
sensitive, and scalable music recommendations by solving these 
critical requirements. 

IV. EXPERIMENTAL SETUP AND RESULTS 

This section describes the experimental setup used to 
evaluate the performance of the transformer-based multimodal 
architecture for music similarity tasks and presents the results 
of these experiments. The main goal is to assess the system's 
effectiveness in identifying music similarity across audio and 
textual features and evaluate how well the music similarity 
ontology enhances music recommendations. 

A. Dataset 

A dataset must adequately represent the diversity of musical 
genres, styles, and cultures to ensure the model generalizes well 
across various use cases. Transformers are data-hungry models 
that benefit from large-scale datasets. However, the dataset's 
size should be balanced against the availability of 
computational resources. Longer tracks allow for better 
modeling of temporal dependencies but require careful handling 
to manage memory constraints. The selection and preprocessing 
of an appropriate number of tracks should be a crucial 
component of the data preparation. Metadata such as genre 
labels, tempo, mood, or structure enhances supervised tasks. 
The quality of the audio files in the dataset is crucial, as noisy 
or low-resolution data can degrade model performance. The 
quality of audio files in a dataset is critical, as loud or low-
resolution recordings can significantly impair model 
performance. However, high sampling rates are generally 
unnecessary for speech-based tracks, as speech signals can be 
effectively captured at lower resolutions without compromising 
intelligibility or feature extraction. Ethical considerations are 
paramount in dataset selection. Using datasets with clear 
licensing terms that permit academic use is essential. Datasets 
with permissive open-source licenses are preferred. 

1) Million Song Dataset (MSD): is a large-scale benchmark 
dataset [40] designed to advance music information retrieval 
and audio analysis research. The dataset contains metadata and 
precomputed audio features for one million contemporary songs 
spanning various genres, artists, and years. The MSD does not 
include raw audio files but provides detailed information such 
as song identifiers, artist names, release years, and features like 
timbre, tempo, loudness, and pitch. This dataset enables 
scalable research by combining audio content analysis with 
associated metadata and user-tagged information. The MSD has 
been extensively used for genre classification, artist similarity, 
recommendation systems, and temporal analysis of musical 
trends. However, its reliance on precomputed features and the 
absence of raw audio data presents limitations for researchers 
aiming to develop new feature extraction methods.  

2) GTZAN: is te is a widely used dataset [48] for music genre 
classification and audio analysis tasks. It comprises 1000 audio 
tracks, each 30 seconds long, spanning 10 distinct genres: blues, 
classical, country, disco, hip-hop, jazz, metal, pop, reggae, and 
rock. The dataset is balanced, with 100 tracks per genre, making 

it an attractive choice for machine learning and signal 
processing research. The audio files are sampled at 22,050 Hz 
in monaural format, facilitating ease of computational analysis. 
Despite its popularity, GTZAN has limitations, including 
duplicate tracks, recording artifacts, and potential mislabeling 
of genres, which have led to calls for caution in its use and 
evaluation of results. Nevertheless, it remains a foundational 
resource in music informatics, inspiring advancements in 
feature extraction, classification algorithms, and deep learning 
applications for audio processing. 

3) FSD50K: is a large-scale, open-access dataset [49] 
designed explicitly for sound event detection and audio tagging 
tasks. Published under a Creative Commons license [50], this 
dataset provides a rich resource for research and development 
in machine listening, enabling advancements in automatic 
sound recognition. It is characterized by its breadth of sound 
categories, high-quality annotations, and robust design to 
support diverse machine-learning tasks.  

4) Free Music Archive: is a comprehensive resource [] for 
research in music information retrieval and related fields. It 
consists of over 100,000 tracks spanning various musical 
genres, including rock, electronic, hip-hop, classical, and more, 
all freely available under Creative Commons licenses. The 
dataset is organized into multiple subsets of varying sizes: 
small, medium, large, and complete, according to different 
computational needs and research objectives. Each track is 
enriched with extensive metadata, such as artist, album, genre, 
and release year, providing valuable context for tasks such as 
genre classification, music recommendation, and music 
similarity analysis. Additionally, FMA offers precomputed 
audio features, including spectral, tonal, and rhythmic 
descriptors, enabling researchers to focus on high-level tasks 
without the overhead of feature extraction. A unique strength of 
FMA lies in its openness and standardization, which have made 
it a benchmark dataset for evaluating machine learning models 
in MIR. However, challenges remain, such as class imbalance 
across genres and the potential for cultural bias due to the 
predominance of Western music. Despite these limitations, the 
FMA dataset continues to be a cornerstone for advancing the 
state of the art in computational music analysis. It has inspired 
many applications, from automatic playlist generation to audio-
based emotion recognition. 

B. Data Preparation 

Selecting the ideal sample duration for music similarity tasks 
using transformer models necessitates a compromise between 
computational efficiency and contextual depth. Short samples (1-
5 seconds) are excellent for intricate analysis, such as rhythm, but 
they do not provide enough context for overarching structures. 
Medium samples (10-30 seconds) effectively balance transitions 
and patterns, maintaining computational efficiency. Long 
samples (30+ seconds) deliver a thorough representation but pose 
significant computational difficulties. Generally, transformer 
models perform best with 10-30-second samples, effectively 
capturing musical features without incurring excessive costs. 

The effectiveness of transformer models in music similarity 
tasks depends on preprocessing choices, particularly the audio 
sample rate. Higher sample rates capture more musical detail 
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but increase computational costs, while lower rates reduce 
fidelity. Music spans a broad frequency spectrum, requiring a 
balance between preserving key features like timbre and 
harmony and maintaining efficiency. Research shows that a 
22.05 kHz sample rate provides similar performance to 44.1 
kHz while significantly reducing computational demands. This 
makes it a practical choice for transformer-based music 
similarity models. 

C. Experimental adjustments for music similarity tasks 

For Wav2Vec 2.0, the embedding size is set to 768, with 12 
transformer layers, a learning rate of 0.0001, and a batch size of 
32, using the Adam optimizer. CLAP utilizes a 512 embedding 
size, 12 layers, a learning rate of 0.0001, and a batch size of 64, 
designed for handling multimodal inputs. AST is configured 
with a 768 embedding size, 12 layers, a learning rate of 0.00005, 
and a batch size of 32, focusing on spectrogram-based audio 
representations. Mulan, which processes both audio and text, 
has a 512 embedding size, 6 transformer layers, a learning rate 
of 0.0001, and a batch size of 32. Each model includes a dropout 
rate of 0.1 to prevent overfitting, and the sequence lengths for 
the models are set at 500 spectrogram frames for AST and 512 
tokens for CLAP and Mulan. These models are trained and 
evaluated on datasets including MSD, GZTAN, FSD50K, and 
Free Music Archive, which provide diverse music content for 
evaluating performance across different genres and formats. 

During the experimentation process, several strategies were 
applied to optimize the performance of the models. First, the 
learning rates for each model were fine-tuned: for Wav2Vec 
2.0, a lower learning rate of 0.00005 was used to prevent 
overshooting during fine-tuning, given its deep architecture and 
large pre-trained weights; for AST, learning rates of 0.0001 and 
0.0002 were tested to achieve faster convergence without 
sacrificing accuracy, considering its focus on spectrograms; and 
for Mulan, a smaller learning rate of 0.00005 was chosen to 
improve the integration of both audio and text features. 
Additionally, learning rate schedulers, were implemented to 
adjust the learning rate dynamically during training to enhance 
convergence. To increase model robustness, data augmentation 
techniques like pitch shifting, time-stretching, and noise 
injection were applied for Wav2Vec 2.0 and AST. Pre-trained 

models for CLAP and Mulan were fine-tuned on music-specific 
datasets, such as FSD50K, to improve model accuracy by 
adapting the models to domain-specific music features. 

D. Evaluation 

The performance of the music similarity and recommendation 
system is assessed using multiple evaluation metrics to ensure a 
comprehensive analysis of its effectiveness. These metrics help 
quantify the relevance, ranking quality, and similarity of the 
recommended songs in relation to a given query song. Below, we 
describe each metric in detail, followed by a presentation of 
example evaluation tables illustrating the system’s performance 
across different experimental conditions. 

1) Evaluation Metrics: precision and recall [52] are 
fundamental metrics for evaluating the quality of music 
recommendations. Precision measures the proportion of 
relevant recommended songs, while recall assesses the 
proportion of relevant songs successfully retrieved by the 
system. However, precision and recall often have a trade-off, 
where increasing one may decrease the other. The F1-score 
balances by calculating their harmonic mean [53]. A higher F1 
score indicates better overall performance. For example, if 
precision is 60% and recall is 40%, the F1-score provides a 
single metric 48% that reflects the balance between them. 

Mean Average Precision [54] is a ranking-based metric that 
evaluates how well the recommendation system orders relevant 
songs in a ranked list. It computes the average precision for each 
relevant item in the list and then averages over all queries. 

2) Results: present a comprehensive analysis of the 
transformer-based model evaluation, examining their 
performance in both standalone configurations and an 
integrated hybrid approach. By comparing individual models 
that process audio and text separately with a combined 
multimodal architecture, I assess the impact of feature fusion on 
music similarity and recommendation accuracy. The results 
highlight how leveraging multiple modalities enhances the 
system’s ability to capture intricate relationships between 
songs, ultimately improving recommendation quality and 
interpretability.  

TABLE II. PRECISION, RECALL AND F1-SCORE MODEL EVALUATION 

Model Modality Precision Recall F1-score MAP10 

Wav2Vec2 Audio 0.72 0.65 0.7 0.76 

CLAP Audio 0.75 0.68 0.73 0.79 

AST Text 0.68 0.61 0.67 0.72 

MuLan Audio+Text 0.79 0.74 0.77 0.81 

Hybrid Audio+Text 0.87 0.82 0.85 0.88 

The hybrid model combines both audio and text features to 
improve key aspects like precision, recall, and ranking 
accuracy. By structuring music similarity relationships within a 
semantic framework, the ontology enhances the interpretability 
of the recommendations. The use of cosine similarity helps to 

identify that songs within the same genre or by the same artist 
tend to have higher similarity scores, which aligns with how 
humans generally perceive music similarity. When comparing 
Wav2Vec2 and AST, the AST model performs slightly better in 
audio-only scenarios. This is because AST processes 
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spectrograms, capturing more detailed frequency and temporal 
patterns in the music. The Hybrid Model (Wav2Vec2 + AST + 
BERT), which combines Wav2Vec2, AST, and BERT, shows 
the best overall performance. This emphasizes the benefits of 
incorporating both audio (through Wav2Vec2 and AST) and 
text (through BERT) features to improve music similarity. By 
combining these different modalities, the model is able to 
extract richer, more comprehensive information, leading to 
more accurate predictions. When comparing MuLan with the 
Hybrid Model, the addition of Wav2Vec2 and AST in the 
hybrid approach enhances the feature extraction process, 
yielding better performance across all metrics. These results 
demonstrate that hybrid models, leveraging transformer-based 
architectures across various modalities, can significantly 
improve music similarity evaluation and provide more accurate, 
contextually relevant recommendations. MAP10 is a metric 
used to assess the quality of a recommendation system by 
focusing on the relevance of the top 10 recommendations.

The proposed transformer-based approach achieves strong 
performance but requires significant computational resources, 
which may limit deployment on smaller or resource-constrained 
platforms. To address this, the system can be adapted using 
lightweight transformer variants or lower-dimensional 
embeddings. Additionally, precomputing embeddings and 
using efficient retrieval methods can reduce real-time costs, 
improving scalability in practical settings.

While the study acknowledges the cold-start problem, the 
transformer-based approach mitigates it more effectively than 
traditional methods by leveraging pre-trained models and 
semantic embeddings. The model can infer similarity based on 
content alone by incorporating rich contextual information from 
audio, lyrics, and metadata, even for items with limited 
interaction history. This allows the system to recommend new 
or obscure songs without relying solely on user behavior data, 
offering a more robust solution to cold-start scenarios.

D. Building ontologies

Building an ontology from the evaluation of a music 
recommendation system involves structuring the key concepts 
and relationships between them in a formalized way. 

1) Classes: based on the evaluation, the following classes
could be relevant:

Song: represents individual tracks of music.
Artist: represents the creators or performers of songs.
Genre: represents different categories of music.
AudioFeature: Represents audio-based features of a
song, such as rhythm, pitch, timbre, or beat.
TextFeature: Represents text-based features of a song,
such as lyrics or metadata.

2) Relationships: between the identified classes. These
relationships will allow the ontology to represent how the 
entities are connected:

hasArtist: connects a song to an artist.
hasGenre: connects a song to a genre.
hasAudioFeature: connects a song to its audio.
hasTextFeature: Connects a song to its text features.

similarTo: represents similarity between two songs
based on shared attributes.

The structure of the proposed music ontology is illustrated in 
Fig 2.

3) Evaluation Metrics: to reflect the evaluation the ontology
includes evaluation metrics. Metrics can be modeled and linked 
to the Song class to show how well a recommendation matches 
the expected relevance, for example: Song A hasPrecision 0.8.

As the system evolves and new data or features are 
incorporated, the ontology should be updated to include new 
classes, relationships, and instances. This iterative process 
ensures that the ontology stays relevant and accurately 
represents the music domain. Integrating OWL-based 
ontologies enhances semantic understanding by structuring 
metadata and contextual relationships among musical entities. 
These ontologies are mapped to an embedding space through 
ontology-aware feature encoders, aligning symbolic descriptors 
with learned representations. During inference, this semantic 
layer aids in real-time filtering, disambiguation, and contextual
enrichment of recommendations.

V. CONCLUSION

This study presents a transformer-based multimodal 
framework for music similarity analysis and recommendation, 
addressing ongoing personalization, diversity, and contextual 
relevance challenges. By independently extracting features 
from audio, lyrics, and metadata using state-of-the-art models 
such as Wav2vec, CLAP, AST, and Mulan and fusing them 
within a transformer architecture, the proposed system captures 
complex inter-modal relationships to generate more accurate 
and context-aware recommendations.

The novelty of our approach lies in its unified transformer-
driven design, which enables deeper semantic integration across 
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modalities compared to traditional architectures. This leads to a 
more comprehensive understanding of music similarity, 
allowing the model to generalize across genres, cultural 
contexts, and listener behaviors. A modular multimodal 
processing pipeline may incorporate specialized encoders 
tailored for distinct data types. Additionally, a transformer-
based fusion mechanism can be employed to capture high-level 
interrelationships across various modalities. Furthermore, a 
framework for integrating user interaction data will enhance 
implicit similarity modeling and support personalized 
experiences.

Empirical evaluations on benchmark datasets demonstrate 
the effectiveness of the proposed framework in improving both 
the accuracy and contextual relevance of music 
recommendations.

Each modality is processed independently to extract the 
relevant features before being integrated into a unified model. 
The feature extraction process ensures that each modality 
contributes its unique perspective on the music, capturing a 
holistic view of similarity. Afterward, these diverse features are 
merged within the transformer model, which is designed to 
learn complex relationships between the various input sources. 
This integrated approach allows the model to generate highly 
accurate and context-aware music recommendations, providing 
a comprehensive understanding of music similarity across 
different levels of analysis.

Several directions remain open for further research. First, 
incorporating temporal modeling of user behavior through 
sequence-based or recurrent approaches could enhance the 
system’s responsiveness to evolving preferences. Second, 
exploring cross-lingual and culturally adaptive models would 
improve global applicability. Third, extending the framework 
with contrastive learning or self-supervised objectives may lead 
to more robust representations, especially in low-resource or 
cold-start scenarios. Finally, real-time deployment challenges 
must be addressed to bring such multimodal systems into 
production-grade environments, including scalability, latency, 
and privacy-aware design.

In conclusion, this study contributes to the growing body of 
research on deep learning-based music recommendation 
systems by demonstrating the effectiveness of transformer 
models in enhancing similarity analysis and personalization. 
Continued advancements in this area will be essential for 
developing more intelligent, context-aware, and inclusive 
music recommendation frameworks that cater to a global 
audience.

REFERENCES

[1] M. Velankar and P. Kulkarni, “Music Recommendation Systems: 
Overview and Challenges,” in Advances in Speech and Music 
Technology, A. Biswas, E. Wennekes, A. Wieczorkowska, and R.H. 
Laskar, Eds., Signals and Communication Technology, 2023.

[2] D. Perera, M. Rajaratne, S. Arunathilake, K. Karunanayaka, and B. 
Liyanage, “A Critical Analysis of Music Recommendation Systems 
and New Perspectives”, in Human Interaction, Emerging Technologies 
and Future Applications, T. Ahram, R. Taiar, V. Gremeaux-Bader, and 
K. Aminian, Eds., vol. 1152, Advances in Intelligent Systems and 
Computing, 2020.

[3] Y. Deldjoo, M. Schedl, and P. Knees, “Content-Driven Music 
Recommendation: Evolution, State of the Art, and Challenges”, 
Comput. Sci. Rev., vol. 51, 2024.

[4] A. Klimashevskaia, D. Jannach Elahi, and M. Trattner, “A Survey on 
Popularity Bias in Recommender Systems”, User Model. User-Adapt. 
Interact., 2024, doi: 10.1007/s11257-024-09406-0. Online publication 
date: 1-Jul-2024.

[5] S. Gupta, K. Kaur, and S. Jain, “EqBal-RS: Mitigating Popularity Bias 
in Recommender Systems”, J. Intell. Inf. Syst., vol. 62, pp. 509–534, 
2024.

[6] M. Waris, M. Zaman Fakhar, M. Gulsoy, E. Yalcin, and A. Bilge, “A 
Novel Pre-Processing Technique to Combat Popularity Bias in 
Personality-Aware Recommender Systems”, IEEE Access, vol. 12, pp. 
183230–183251, 2024.

[7] V.R. Revathy and S.P. Anitha, “Cold Start Problem in Social 
Recommender Systems: State-of-the-Art Review”, in Advances in 
Computer Communication and Computational Sciences, S. Bhatia, S. 
Tiwari, K. Mishra, and M. Trivedi, Eds., vol. 759, Advances in 
Intelligent Systems and Computing, Springer, Singapore, 2019.

[8] D. Hesmondhalgh, R. Campos Valverde, D. Kaye, and Z. Li, “The 
Impact of Algorithmically Driven Recommendation Systems on Music 
Consumption and Production: A Literature Review”, UK Centre for 
Data Ethics and Innovation Reports, Thousand Oaks, California, USA, 
2023.

[9] D. Shakespeare, V. Chareyron, and C. Roth, “Reframing the Filter 
Bubble through Diverse Scale Effects in Online Music Consumption”, 
Sci. Rep., Feb. 2025.

[10] M.A. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. 
Slaney, “Content-Based Music Information Retrieval: Current 
Directions and Future Challenges”, Proc. IEEE, vol. 96, no. 4, pp. 668–
696, Apr. 2008.

[11] C. Anuradha, R. Abhinaba, and H. Dorien, “MIRFLEX: Music 
Information Retrieval Feature Library for Extraction”, Nov. 2024.

[12] Y.M.G. Costa, L.S. Oliveira, and C.N. Silla, “An Evaluation of 
Convolutional Neural Networks for Music Classification Using 
Spectrograms”, Appl. Soft Comput., vol. 52, 2017.

[13] M. Bevec, M. Tkalčič, and M. Pesek, “Hybrid Music Recommendation 
with Graph Neural Networks”, User Model User-Adap. Inter., vol. 34, 
pp. 1891–1928, 2024.

[14] M. Quadrana, P. Cremonesi, and D. Jannach, “Sequence-Aware 
Recommender Systems”, 2019.

[15] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep Learning Based 
Recommender System: A Survey and New Perspectives”, ACM 
Comput. Surv., vol. 50, no. 1, 2019

[16] X. Gu et al., “EEG-Based Brain-Computer Interfaces (BCIs): A 
Survey of Recent Studies on Signal Sensing Technologies and 
Computational Intelligence Approaches and Their Applications”, 
IEEE/ACM Trans. Comput. Biol. Bioinformatics, vol. 18, no. 5, pp. 
1645–1666, Sept.-Oct. 2021.

[17] O. Aruna, B. Venkata, and S. Naik, “Emotion Based Music Player”, 
2024.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. 
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is All You Need”, in 
Proc. 31st Conf. Neural Inf. Process. Syst. (NIPS), Long Beach, CA, 
USA, Dec. 4–9, 2017.

[19] C.-Z.A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer, C. Hawthorne, 
A.M. Dai, M.D. Hoffman, and D. Eck, “Music Transformer: 
Generating Music with Long-Term Structure”, in Proc. Int. Conf. 
Learn. Represent. (ICLR), 2019.

[20] J. Thickstun, “The Transformer Model in Equations”, University of 
Washington, Seattle, WA, 2021.

[21] Y. Lai, “A Comparison of Traditional Machine Learning and Deep 
Learning in Image Recognition”, J. Phys. Conf. Ser., 2019.

[22] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “A Framework for 
Self-Supervised Learning of Speech Representations”, 2020.

[23] Meta AI official website. Web: https://ai.meta.com
[24] Y. Gong, Y. Chung, and J. Glass, “AST: Audio Spectrogram 

Transformer”, Interspeech, 2021.
[25] Q. Huang, A. Jansen, J. Lee, R. Ganti, J.Y. Li, and D.P.W. Ellis, 

“MuLan: A Joint Embedding of Music Audio and Natural Language”, 
2022.

[26] Y. Cai, Y. Liu, Z. Zhang, and J.Q. Shi, “CLAP: Isolating Content from 
Style through Contrastive Learning with Augmented Prompts”, 2023.

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 269 ----------------------------------------------------------------------------



[27] W. Huang, A. Wu, Y. Yang, X. Luo, Y. Yang, L. Hu, Q. Dai, X. Dai, 
D. Chen, C. Luo, and L. Qiu, “LLM2CLIP: Powerful Language Model 
Unlocks Richer Visual Representation”, 2024.

[28] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, 
“Swin Transformer: Hierarchical Vision Transformer using Shifted 
Windows”, Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), 2021.

[29] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, 
L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A Robustly Optimized 
BERT Pretraining Approach”, 2019.

[30] M. Zeng, X. Tan, R. Wang, Z. Ju, T. Qin, and T.-Y. Liu, “MusicBERT: 
Symbolic Music Understanding with Large-Scale Pre-Training”, 2021.

[31] R. Jahangir, Y.W. Teh, H.F. Nweke, G. Mujtaba, M.A. Al-Garadi, and 
I. Ali, “Speaker identification through artificial intelligence 
techniques: A comprehensive review and research challenges”, Expert 
Syst. Appl., vol. 171, 2021.

[32] MFCC implementation and tutorial, Kaggle website, Web: 
https://www.kaggle.com/code/ilyamich/mfcc-implementation-and-
tutorial.

[33] An audio event embedding model vaggish Kaggle documentation, 
Web: https://www.kaggle.com/models/google/vggish.

[34] OpenL3 is an open-source Python library documentation, Web: 
https://openl3.readthedocs.io/en/latest.

[35] Natural language processing definition, Web: 
https://www.ibm.com/think/topics/natural-language-processing.

[36] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of Deep Bidirectional Transformers for Language 
Understanding”, 2018.

[37] OpenAi GPT official website, Web: https://openai.com/index/chatgpt
[38] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence Embeddings 

Using Siamese BERT-Networks”, 2019.
[39] Spotify API official documentation, Web: 

https://developer.spotify.com/documentation/web-api
[40] Million Song Dataset official web page, Web:  

http://millionsongdataset.com.
[41] R. Shankar, K. Tan, B. Xu, and A. Kumar, “A Closer Look at 

Wav2Vec2 Embeddings for On-Device Single-Channel Speech 
Enhancement”, 2024.

[42] X. Shi, X. Li, and T. Toda, “Multimodal Fusion of Music Theory-
Inspired and Self-Supervised Representations for Improved Emotion 
Recognition”, Interspeech, 2024.

[43] Y. Dai, F. Gieseke, S. Oehmcke, Y. Wu, and K. Barnard, “Attentional 
Feature Fusion”, IEEE Winter Conf. Appl. Comput. Vis. (WACV), 
Waikoloa, HI, USA, Jan. 2021, pp. 3559–3568.

[44] J. Han, M. Kamber, and J. Pei, “Getting to Know Your Data”, in Data 
Mining, 3rd ed., 2012.

[45] F.E. Szabo, “The Linear Algebra Survival Guide”, Academic Press, 
2015.

[46] H. Yin, G. Song, L. Zhang, and C. Wu, “Chapter 1 - Introduction: 
Virtual experiments with iBEM”, Academic Press, 2022.

[47] D. Korzun, S. Yalovitsyna, and V. Volokhova, “Smart services as 
cultural and historical heritage information assistance for museum 
visitors and personnel”, Balt. J. Mod. Comput., vol. 6, Dec. 2018.

[48] GTZAN Dataset - Music Genre Classification, Web: 
https://www.kaggle.com/datasets/andradaolteanu/gtzan-dataset-
music-genre-classification

[49] D. E. Fonseca, X. Favory, J. Pons, F. Font, and X. Serra, “FSD50K: 
An open dataset of human-labeled sound events,” 2022.

[50] Creative commons official website, Web: 
https://arxiv.org/pdf/2010.00475v2

[51] Free Music Archive official website, Web: 
https://freemusicarchive.org/.

[52] Precision and Recall in Machine Learning definition, Web: 
https://www.analyticsvidhya.com/articles/precision-and-recall-in-
machine-learning/.

[53] Inside Machine Learning, Recall, Precision, F1 Score – Simple Metric 
Explanation Machine Learning, Web: https://inside-
machinelearning.com/en/recall-precision-f1-score-simple-metric-
explanation-machine-learning/.

[54] Kili Technology, Mean Average Precision: A Complete Guide, Web: 
https://kili-technology.com/data-labeling/machine-learning/mean-
average-precision-map-a-complete-guide.

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 270 ----------------------------------------------------------------------------




