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Abstract—Emotion recognition based on electroencephalogra-
phy (EEG) has gained significant attention due to its potential
applications in human-computer interaction, affective computing,
and mental health assessment. This study presents a convolutional
neural network-based approach to emotion valence prediction
model development using 4-channel headband EEG data as well
as its evaluation based on computer vision emotion valence
recognition. We train a model on the publicly available FACED
dataset and tested it on a newly collected dataset recorded using
a wearable BrainBit headband. The model’s performance is
evaluated using both standard train-validation-test splitting and a
leave-one-subject-out cross-validation strategy. Additionally, the
model is evaluated on computer vision-based emotion recognition
system to assess the reliability and consistency of EEG-based
emotion prediction. Experimental results demonstrate that the
CNN model achieves competitive accuracy in predicting emotion
valence from EEG signals, despite the challenges posed by limited
channel availability and individual variability. The findings show
the usability of compact EEG devices for real-time emotion
recognition and their potential integration into adaptive user
interfaces and mental health applications.

I. INTRODUCTION

Emotion recognition is a rapidly evolving field with sig-

nificant implications for human-computer interaction, affec-

tive computing, and mental health assessment. Accurately

detecting and interpreting emotional states can enhance user

experiences in various applications, including personalized

content delivery, adaptive user interfaces, and intelligent vir-

tual agents. Traditionally, emotion recognition has relied on

external cues such as facial expressions, speech, and body

language. These methods, however, are subject to limitations,

including their dependence on visual or auditory stimuli, which

can be affected by lighting conditions, background noise, or

cultural differences in emotional expression.

EEG is a non-invasive method that directly measures elec-

trical activity in the brain, providing a real-time and objective

window into neural processes. EEG signals reflect the brain’s

cognitive and emotional responses to various stimuli, making it

a powerful tool for understanding underlying emotional states.

Compared to other physiological signals, such as heart rate

variability or skin conductance, EEG has the advantage of

being highly time-sensitive and capable of capturing rapid

emotional shifts in response to external stimuli.

Recent advances in wearable EEG devices and signal pro-

cessing techniques have paved the way for smaller, more

comfortable headsets. However, this adapting for real life

comes with reduced spatial resolution. Overcoming this trade-

off is a key challenge for widespread adoption in real-life

emotion recognition tasks.

The paper presents a continuation of our research in the

topic of 4-chanels EEG data analysis for human psychophys-

iological state monitoring [1], [2], [3]. In the paper we

present an approach to emotion valence prediction as well

as its evaluation. We develop a machine learning model that

utilizes EEG data to classify emotional valence — whether the

emotion is positive, negative, or neutral. Valence is a critical

dimension of emotion that reflects the subjective pleasantness

or unpleasantness of an emotional experience. Understanding

the valence of emotions provides valuable insights into the

emotional tone of an individual’s state and has applications in

personalized emotional support systems, mental health diag-

nosis, and adaptive technologies that respond to user emotions.

For evaluatuion of emotion valence predition based on EEG

data we propose to compare the performance of developed

model with traditional computer vision-based emotion recog-

nition techniques, which analyze facial expressions and visual

cues. By comparing the two approaches, we can assess the

strengths and limitations of EEG-based emotion recognition

and highlight its potential as a standalone solution for emotion

detection.

One of the key advantages of using EEG for emotion

recognition is its non-invasiveness and ease of use. EEG-based

emotion recognition systems can be integrated into wearable

devices with minimal user interference, making them suitable

for continuous monitoring in real-world settings. Additionally,

EEG allows for the detection of emotions that may not

be externally visible, such as internal emotional states, thus

providing a deeper level of insight into an individual’s feelings.

The compact 4-channel EEG setup used in this study is an

important step toward developing more accessible and cost-

effective emotion detection systems. Despite the limited num-

ber of channels, the model is designed to extract meaningful

patterns from the EEG signals that can accurately predict the

emotional valence of an individual.

However, the use of EEG in emotion recognition presents

several challenges. EEG signals are inherently noisy and

prone to artifacts caused by muscle movements, blinking,

and environmental factors. Moreover, individual variability

in brain patterns makes it difficult to develop a model that

generalizes across different people. In this study, we employ a
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convolutional neural network (CNN), a deep learning approach

known for its ability to extract hierarchical features from data,

to address these challenges. CNNs are particularly effective

for processing time-series data like EEG, as they can capture

both spatial and temporal dependencies within the signals. By

applying this model to a dataset of 4-channel EEG recordings,

we aim to achieve high classification accuracy for emotion

valence recognition while minimizing the impact of noise and

individual differences.

The rest of the paper is divided as follows: Section II

explores related works on the similar emotion valence predic-

tion approaches. Section III describes the proposed approach,

including data collection and reprocessing, model architecture,

training procedures, evaluation metrics, and encountered chal-

lenges. Section IV concludes the study and discusses future

directions for research.

II. RELATED WORK

Emotion recognition involves several theoretical and tech-

nological approaches. One theoretical view treats emotions as

discrete categories. For example, Plutchik proposes a “wheel

of emotions” with eight basic emotional states that differ

in intensity and polarity [4]. Another approach places emo-

tions on continuous dimensions, usually valence (pleasant–

unpleasant) and arousal (high–low). Lang’s framework fits this

idea, showing that each emotional experience can be placed

on these two main axes [5].

Emotion recognition has been widely explored in both

computer vision and physiological signal processing, with

EEG-based emotion classification gaining increasing attention

due to its potential for detecting internal emotional states.

Various datasets have been collected to facilitate research in

this field, each employing different methodologies for emotion

elicitation, recording modalities, and labeling strategies.

Various methods have been used to induce emotional states

in participants while recording their brain activity. The choice

of stimuli depends on the desired emotional responses. A

common approach to eliciting emotions is through audiovi-

sual stimuli, where participants are shown preselected video

clips or images designed to trigger specific emotional states.

Carefully curated film segments or standardized image sets can

evoke positive, negative, or neutral emotions, while music can

further amplify emotional responses. Another method involves

self-referential or autobiographical recall, where individuals

are asked to remember past experiences associated with strong

emotions. This technique taps into personal memories and

can evoke emotions that are more representative of real-world

affective states.

Emotion labeling in EEG-based datasets typically relies

on self-reported assessments using scales such as the Self-

Assessment Manikin, which measures valence, arousal, and

dominance. Participants provide their subjective ratings imme-

diately after stimulus exposure, ensuring that the reported emo-

tions reflect their immediate experience. In contrast, video-

based emotion datasets often employ facial expression recog-

nition frameworks combined with expert annotations or crowd-

sourced labeling.

In earlier research on EEG-based emotion recognition, many

studies used traditional machine learning methods. These

methods relied on hand-selected features, such as power spec-

tral density (PSD) in the alpha, beta, gamma, delta, and theta

bands, and various statistical measures derived from time-

domain signals. Algorithms like support vector machines, k-

nearest neighbors, discriminant analyses, or ensemble methods

were then used for classification. Rahman et al. combined

principal component analysis and a statistical test to refine

features before training a support vector machine. Their system

effectively separated neutral, positive, and negative emotional

states [6]. While these methods can work well with clear data

and carefully chosen features, they may not always capture

complex patterns in EEG signals and often need a lot of

domain knowledge to find the most useful features.

Deep learning methods have become popular in recent years

because they can learn features directly from raw or slightly

preprocessed EEG data. Convolutional neural networks are

especially common for detecting local patterns across space

(channels) and time. CNNs can learn robust representations

of the data without extensive human-lead feature engineering.

Yang et al. showed that a multi-column CNN could improve

performance in valence and arousal classification on public

EEG datasets [7].

Recurrent neural networks (RNNs) are another form of deep

learning suited to sequential data like EEG. RNNs keep track

of a hidden state that changes over time, which is useful

for capturing the changing nature of emotional responses.

Advanced types of RNNs, such as long short-term memory

(LSTM) networks and gated recurrent units (GRUs), can re-

duce problems with vanishing or exploding gradients. Algarni

et al. achieved high accuracy (96–99%) with a bidirectional

LSTM model for classifying valence, arousal, and liking,

which shows the importance of modeling temporal changes

in EEG signals [8].

Recent work by Du et al. [9] further expands the applica-

tion of deep learning in emotion recognition by focusing on

music-induced emotions. In their study, a hybrid 1D-CNN-

BiLSTM model was proposed to classify valence and arousal

from EEG signals evoked by Chinese ancient-style music.

Their approach, validated on both public datasets (DEAP and

DREAMER) and a self-acquired EEG dataset from Chinese

college students, demonstrated high classification accuracies –

especially in negative valence detection.

Another trend in emotion recognition research focuses on

making EEG recording more user-friendly by using wearable

or low-channel devices. Wu et al. reached 75–76% accuracy

for valence detection with only two frontal channels [10].

Moontaha et al. used wearable devices with four or eight chan-

nels and reported F1 scores of 82–87% for binary valence and

arousal classification [11]. These results suggest that smaller

EEG headsets can still support practical emotion recognition,

especially if signal quality is managed well. However, they

offer less spatial detail, so more research is needed to see
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how they perform in varied real-world conditions.

III. AN APPROACH

The section includes data collection and reprocessing, model

architecture, training procedures, evaluation metrics, and en-

countered challenges.

A. General Description

This study focuses on emotion recognition by utilizing EEG

data and video-based emotion recognition models. A public

dataset (FACED) containing 30-channel 250 Hz EEG data

from 122 participants is used to train a convolutional neural

network for emotion valence prediction. Since the recorded

dataset consists of only 4-channel EEG data, a preprocessing

step is applied to extract relevant features and align the data

structure with the trained model.

The trained CNN model is then used to predict emotion

valence for the recorded dataset based on EEG signals. In par-

allel, a video-based emotion recognition model from another

study is used to analyze emotions from the recorded video

data. The predictions from both approaches, EEG-based and

video-based, are synchronized and compared to assess their

consistency and reliability in emotion classification. Perfor-

mance is evaluated to determine the effectiveness of EEG-

based emotion recognition in comparison to the video-based

model. General overview of methodolgy is shown in Figure 1.

B. Our Dataset Collection

For this study, two primary devices were employed. The

first device was the BrainBit Headband, shown in Figure 2,

a wearable EEG device equipped with four dry electrodes

that recorded raw EEG signals at a sampling rate of 250 Hz,

providing data in volts. The second device was a standard web

camera, which recorded video of the participant’s face in 720p

resolution. Data collection setup is shown in Figure 3.

The BrainBit Headband follows the international 10-20

electrode placement system and is equipped with four active

electrodes positioned at O1, O2, T3, and T4. The reference

electrode for the BrainBit device is positioned on the forehead.

The study involved 7 participants who were selected without

specific criteria regarding age or gender.

Data collection was performed during computer-based ses-

sions in which participants were seated in front of a laptop.

Each session lasted approximately three hours and involved a

variety of tasks designed to elicit a range of eye movements.

These tasks included reading passages displayed on the screen,

completing standardized Landolt C tests, and playing simple

computer games.

C. Public Dataset

The FACED dataset [12] comprises recordings from 123

participants, each subjected to a series of emotion-eliciting

stimuli. EEG signals were captured using a 30-channel system

at a 250 Hz sampling rate, and is stored in volts.

Participants were exposed to 28 distinct video clips, each

selected to evoke one of nine specific emotional states: amuse-

ment, inspiration, joy, tenderness, anger, fear, disgust, sadness,

and neutrality. After viewing the stimuli, participants provided

self-assessments of their emotional experiences. These subjec-

tive ratings were then used to label the EEG data in terms

of valence (positive, negative, neutral) and discrete emotional

categories. Record overview is shown in Figure 4.

Since the EEG recordings in this dataset were captured

using a high-density 30-channel system, a subset of four

channels was selected to match the electrode placement of the

BrainBit headband used in our study. The selected channels

were O1 and O2, located over the occipital lobe, and C3 and

C4, positioned over the central region of the scalp. These

channels were chosen based on their proximity to the BrainBit

electrodes, ensuring that the signal characteristics remained as

similar as possible between the two datasets. The occipital

electrodes (O1 and O2) primarily capture visual cortex activity,

which is relevant given that the emotion-eliciting stimuli were

presented in video format. The central electrodes (C3 and C4)

are associated with motor and sensorimotor processing, which

can be linked to emotional responses that involve physiological

and muscular changes.

By extracting data from only these four channels, the

FACED dataset was effectively adapted to the hardware con-

straints of the BrainBit headband, allowing the trained model

to generalize better to real-world applications where compact

EEG devices with a limited number of electrodes are com-

monly used. This channel selection also reduced computational

complexity while preserving critical information relevant to

emotion recognition.

D. Data Preprocessing

To ensure the quality of the EEG data, preprocessing steps

were implemented to remove noise. A bandpass filter was

applied, allowing frequencies between 0.5 and 40 Hz to pass

through, filtering out muscle and higher-frequency noise. This

filtering ensured that the EEG data retained the most relevant

signal components for subsequent analysis.

The continuous EEG signals were segmented into epochs

with no overlapping. For the FACED dataset, each epoch

ranged inside the onsets of each video clip with 1 second

window. Similarly, for our recorded dataset, we segmented

signals into 1-second windows.

Consistency of data between different dataset was achieved

by applying same normalization and filtering steps. Also we

ensured that both datasets have equal sampling rate.

E. Model Architecture and Training

The classification tasks were performed using TSCep-

tion [13], a deep learning model specifically designed for

EEG-based time-series classification. TSCeption utilizes both

temporal and spatial convolutional layers to extract multi-scale

features from EEG signals, effectively capturing both short-

term and long-term dependencies in the data. The model archi-

tecture consists of multiple convolutional layers that process

EEG signals at different temporal resolutions, followed by

feature fusion layers that integrate spatial information across

channels. A final fully connected layer maps the extracted
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Fig. 1. Proposed Emotion Valence Classification Methodology

Fig. 2. The BrainBit Headband, Wearable EEG Device with 4 Dry Electrodes

features to the output classes. Model architecture is shown

in Fig 5.

We used the Adam optimizer with a maximum of 100

training epochs. PyTorch was used for implementing TS-

Ception. The number of temporal and spatial convolutional

kernels was 15 each, with hidden layer channels set to 512.

A dropout rate of 0.5 was used to mitigate overfitting, while

the learning rate was set to 0.001 with a weight decay of

1e−4 to introduce regularization. The loss function for training

was cross-entropy, given the multi-class nature of the emotion

valence classification task.

Because the dataset valence labels were unbalanced, a

weighted data loader was used to adjust the sampling fre-

quency of each class. This approach helps the model see more

examples from underrepresented classes.

Two training strategies were employed to evaluate the

model’s generalizability. In the first approach, the dataset was

randomly split into training, validation, and test sets with an

80/10/10 ratio, ensuring that data from all participants con-

tributed to model training. Early stopping was applied based

on validation performance to prevent overfitting and optimize

model convergence. In the second approach, a leave-one-

subject-out cross-validation (LOSO-CV) scheme was used,

where the model was trained on data from 122 participants

and tested on the remaining participant. This process was re-

Fig. 3. Data collection setup

Fig. 4. FACED dataset record overview

peated for each participant, allowing the evaluation of subject-

independent performance and robustness across individuals.

F. Evaluation Metrics

Assessment of the performance of the TSCeption model

was done by accuracy and F1 score as the primary evaluation

metrics. These metrics were calculated for the emotion valence

classification task, comparing the model’s predictions against

ground truth labels.

Performance evaluation was conducted on FACED dataset

under two training scenarios. In the first c ase, w here a ll par-

ticipants’ data were mixed and split into training, validation,

and test sets, accuracy and F1 scores were averaged across

multiple runs to ensure stability in results. The metrics are

shown in Table I. In the second case, leave-one-subject-out

cross-validation (LOSO-CV) was performed, where the model

was trained on 122 participants and tested on one, with results

aggregated across all iterations to evaluate subject-independent

performance. The metrics are shown in Fig 6.

G. Video-Based Emotion Recognition Comparison

In this study, a video-based emotion recognition system

EMO-AffectNetModel [14] was used as a benchmark for eval-

TABLE I. PERFORMANCE METRICS FOR TRAIN/VALIDATION/TEST 
SPLIT

Accuracy F1
75.31 72.68
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Fig. 5. TSCeption model architecture

Fig. 6. Performance Metrics for LOSO-CV

uating the performance of the EEG-based model. This model

analyzes facial expressions to classify emotional states. The

system processes each video frame independently, extracting

facial features and mapping them to an emotional category

using a deep learning model trained on a large-scale facial

expression dataset.

The video data of our dataset was recorded simultaneously

with EEG signals, capturing the participants’ facial expres-

sions in real-time. Since both video and EEG recordings

were obtained using the same device, no additional time

synchronization adjustments were necessary. However, as the

recordings were manually started and did not begin at exactly

the same moment, a common timeline was established based

on the overlapping duration of both data sources. Only time

segments where both EEG and video data were available were

used for further analysis to ensure consistency in emotion

classification.

The recorded data was divided into non-overlapping one-

second windows to allow a direct comparison between EEG-

based and video-based predictions. For EEG-based recogni-

tion, a single emotion valence prediction was generated per

one-second window. In contrast, video-based recognition pro-

vided frame-level predictions, meaning multiple classifications

were obtained within each second. To create a comparable

output, the most frequently occurring valence prediction within

a one-second interval was used as the final classification

for that window. This aggregation method ensured that both

models produced a single, comparable prediction per time

window.

To assess the consistency and reliability of EEG-based

emotion recognition, its predictions were compared with those

obtained from the video-based model. The analysis was

conducted on a per-window basis, where each one-second

segment of data contained both EEG and aggregated video-

based emotion predictions. This direct comparison allowed for

an evaluation of agreement between the two methods.

Performance evaluation was based on accuracy and F1-

score, computed for each participant. Results are shown in

Table II.

IV. CHALLENGES AND SOLUTIONS

One of the main challenges encountered in this study

was the need to address the variability in EEG patterns

across different individuals. Each participant’s brain activity
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is unique, which leads to differences in the EEG signals even

when exposed to the same emotional stimuli. Moreover, our

dataset and public dataset have in-dataset and between-dataset

differences in participants’ age, gender, culture. Our dataset

consist of 7 European males aged 20-41 years. Public dataset

consist of 123 Chinese males and females (75 females) aged

17-38 years. This variability posed a challenge for training

a generalized model that could effectively classify emotion

valence across all participants. To mitigate this, a leave-one-

subject-out cross-validation strategy was employed, allowing

to train the model on data from multiple participants and

tested on individual subjects to assess its ability to generalize

across different neural patterns. Transfer learning from big

public dataset ensures model generalization and stable model

performance in case of expanding our dataset.
Another challenge in comparing EEG-based and computer

vision-based emotion recognition methods was the imbalance

in the dataset. Most participants predominantly showed neutral

emotions, which could lead to inflated accuracy due to class

imbalance rather than the model’s actual ability to distinguish

between different emotional states.
Additionally, computer vision-based emotion recognition

does not achieve 100% accuracy and can not be used as 100%

ground truth. Factors such as lighting conditions, facial occlu-

sions, and individual differences in expressiveness can impact

its performance. This further complicates direct comparisons

between EEG-based and video-based recognition models, as

inaccuracies in the video-based model could influence the

evaluation of EEG-based classification.
Furthermore, our EEG-based approach have signal quality

limitation. The preprocessing stage includes signal filtering

using bandpass filter, but in situations were muscle activity

or other artifacts highly presented in recording, this filtering

may not be enough and model will fail due to highly noisy

data.
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VI. CONCLUSION

The study demonstrates the potential of using CNN-based

models for emotion valence recognition from 4-channel EEG

data. Despite challenges related to individual variability and

TABLE II. PERFORMANCE METRICS FOR EEG-BASED AND VIDEO-BASED 
EMOTION RECOGNITION COMPARISON

Subject Accuracy F1
1 92.46 95.45
2 91.98 95.75
3 63.57 67.95
4 88.50 92.30
5 86.75 90.50
6 89.30 93.40
7 87.80 91.60

noise in the EEG signals, the proposed model showed promis-

ing performance in classifying emotions based on the valence

dimension. Employment of a compact EEG setup offers a non-

invasive and efficient approach to emotion detection, which

can be beneficial in real-time applications such as adaptive

user interfaces and mental health monitoring systems.

Future work will focus on several directions. First, the

model’s robustness and generalizability can be enhanced by

incorporating advanced data augmentation and domain adap-

tation techniques to better address class imbalance and inter-

subject variability. Additionally, integrating complementary

physiological signals—such, as heart rate variability and gal-

vanic skin response, or integration computer-vision approach

in the same time with EEG-based approach, —could provide

a more comprehensive understanding of emotional states.

Finally, extensive testing in diverse and ambulatory settings

will be essential to validate the system’s performance under

varied conditions.

REFERENCES

[1] V. Romaniuk and A. Kashevnik, “Eye movement assessment method-
ology based on wearable eeg headband data analysis,” in 2024 36th
Conference of Open Innovations Association (FRUCT), 2024, pp. 675–
680.

[2] V. Romaniuk and A. Kashevnik, “Intelligent eye gaze localization
method based on eeg analysis using wearable headband,” Informatics
and Automation, vol. 23, pp. 521–541, 2024.

[3] A. Kashevnik, E. Glekler, A. Stankevich, M. Stradina, and E. Kucheruk,
“Intelligent service for hybrid analysis of continuous mental processes
based on eeg and video data,” 11 2023, pp. 66–72.

[4] R. Plutchik, “The nature of emotions,” American Scientist, vol. 89, pp.
344–350, 2001. [Online]. Available: https://doi.org/10.1511/2001.28.344

[5] P. J. Lang, “The emotion probe: Studies of motivation and attention,”
American Psychologist, vol. 50, no. 5, pp. 372–385, 1995.

[6] M. A. Rahman, M. F. Hossain, M. Hossain, and R. Ahmmed, “Employ-
ing pca and t-statistical approach for feature extraction and classification
of emotion from multichannel eeg signal,” Egyptian Informatics Journal,
vol. 21, 2020.

[7] H. Yang, J. Han, and K. Min, “A multi-column cnn model for emotion
recognition from eeg signals,” Sensors (Switzerland), vol. 19, 2019.

[8] M. Algarni, F. Saeed, T. Al-Hadhrami, F. Ghabban, and M. Al-Sarem,
“Deep learning-based approach for emotion recognition using electroen-
cephalography (eeg) signals using bi-directional long short-term memory
(bi-lstm),” Sensors, vol. 22, 2022.

[9] R. Du, S. Zhu, H. Ni, T. Mao, J. Li, and R. Wei, “Valence-arousal
classification of emotion evoked by chinese ancient-style music using
1d-cnn-bilstm model on eeg signals for college students,” Multimedia
Tools and Applications, vol. 82, 2023.

[10] S. Wu, X. Xu, L. Shu, and B. Hu, “Estimation of valence of emotion
using two frontal eeg channels,” in 2017 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM), 2017, pp. 1127–1130.

[11] S. Moontaha, F. E. F. Schumann, and B. Arnrich, “Online learning for
wearable eeg-based emotion classification,” Sensors, vol. 23, 2023.

[12] J. Chen, X. Wang, C. Huang et al., “A large finer-grained affective
computing eeg dataset,” Scientific Data, vol. 10, p. 740, 2023. [Online].
Available: https://doi.org/10.1038/s41597-023-02650-w

[13] Y. Ding, N. Robinson, S. Zhang, Q. Zeng, and C. Guan, “Tsception:
Capturing temporal dynamics and spatial asymmetry from eeg for emo-
tion recognition,” IEEE Transactions on Affective Computing, vol. 14,
2023.

[14] E. Ryumina, D. Dresvyanskiy, and A. Karpov, “In search of a
robust facial expressions recognition model: A large-scale visual
cross-corpus study,” Neurocomputing, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231222012656

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 259 ----------------------------------------------------------------------------




