
Early Detection of Malicious Activity in Log Event
Sequences Using Deep Learning

Andrej Ralbovský, Ivan Kotuliak
Slovak University of Technology

Bratislava, Slovakia

{andrej.ralbovsky,ivan.kotuliak}@stuba.sk

Abstract—The increasing frequency and severity of security
incidents, particularly those involving previously unknown mali-
cious activity, highlight the urgent need for innovative approaches
to improve the cybersecurity posture of the organization. Early
detection of these activities is essential for preventing security
breaches and minimizing data loss. This paper deals with
application of deep learning techniques for the detection of
malicious activities within network log data. Our methodology
involves utilizing logs obtained from prior security incidents
detected by Security Information and Event Management (SIEM)
to construct a model adept at identifying patterns within user-
system connection sequences. In particular, benign activity logs
were collected from Elastic stack during periods devoid of
reported incidents to establish a baseline for normal activities.
Central to our approach is the prioritization of minimizing false
positives, a crucial aspect for building trust in the system among
security analysts. Our model is able to detect malicious activity by
analyzing only about a quarter of the sequence length, compared
to detection by SIEM using manually defined detection rules. By
reducing the occurrence of irrelevant alerts, our model aims to
provide a high-fidelity detection system that empowers analysts
to focus their attention on genuine threats and not be subjected
to alert fatigue, ultimately enhancing an organization’s overall
cybersecurity.

I. INTRODUCTION

Every modern organization relies on a vast network of

electronic devices and information systems connected to the

internal network and the Internet. They typically process

significant amounts of information that, due to their value,

is at risk of attack. Therefore, organizations must implement

appropriate measures as part of risk management to eliminate

or minimize the impact of a successful attack. A large portion

of these measures are technical in nature.

What many of these devices and systems have in common

is their ability to generate logs. A log is a digital record of

events from a device or application, like a journal entry [1].

Logs can be collected from existing devices and applications.

However, analysing the collected information requires experi-

enced administrators and security specialists [2].

As the number of data sources for analysis grows with

addition of new devices and systems, so does the demand on

human resources. Due to the shortage of specialists in this

area, automating as many processes as possible is crucial for

shortening the response time to security incidents.

Artificial intelligence (AI) is a powerful tool for creating

automated security solutions. Traditional log analysis relies

heavily on manual effort from security specialists, who are

increasingly stretched thin due to the ever-growing volume of

data generated by modern IT environments.

Anomaly detectors using AI can analyze vast amounts of

log data much faster and more efficiently than humans. These

models can learn from past security incidents and benign

activity logs to identify patterns that might indicate a potential

attack. By automating the detection of these patterns, AI em-

powers security teams to focus their expertise on investigating

and responding to genuine threats, ultimately improving an

organization’s overall cybersecurity.

In our research we propose a method of detecting malicious

activity from log data earlier than using traditional means

such as manually defined rules in SIEM. We created a model,

that can detect malicious activity by using, on average, only

about a quarter of the log event sequence, thus enabling rapid

reaction on such activity. While rule-based detection systems

are widely used, writing rules is time consuming and prone

to human errors. Compared to rule-based methods, our model

needs just log data of known malicious activity to train on.

A. Log data

Log data is a vital source of information for security and

system analysis. It consists of chronological records generated

by devices and systems [1]. These records capture specific

system states at a particular point in time, serving as a

valuable resource for debugging and forensic analysis in case

of failures, security incidents, or unexpected behavior. Logs

typically exist in textual form and can vary in structure –

from unstructured messages written in natural language (e.g.,

”File transfer failed due to network timeout.”) to structured

objects with attributes represented by key-value pairs (e.g.,

rule action=Accept srcPort=41272).

Logs therefore require parsing to extract meaningful in-

formation [3]. While some parsing tools focus solely on ex-

tracting attributes from individual messages, others categorize

them into these broader event types. These event types are

also referred to as log keys, log signatures, log events, or

simply events. For consistency, this paper will simply refer

to them as events. Depending on the structure of the log,

log type can be decided by single attribute, multiple attributes

for structures objects or by identifying constant and variable

parts in unstructured messages. Despite the lack of a universal

log format, a timestamp indicating when the log occurred can

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 246 --

usually be extracted. This timestamp is a key attribute when

it comes to extracting sequences of events for analysis [4].

Popular datasets used in anomaly detection evaluation, such

as HDFS and BGL, consist of system logs. However, our

approach necessitates different log data to learn from past se-

curity events and identify patterns in user-system interactions.

Therefore, we created our own dataset in collaboration with

the GOV CERT SK unit of the National Agency for Network

and Electronic Services. The data obtained is sensitive and

subject to confidentiality.

B. Anomaly detection

Anomaly detection focuses on identifying instances in a

dataset that exhibit rare or unexpected characteristics, making

them stand out from the rest of the data. These instances are

often referred to as anomalies. When analyzing independent

data, identifying anomalies is often a matter of spotting out-

liers. Outliers, also known as point anomalies, are individual

data points or small groups of data points that deviate signifi-

cantly from the majority of the data. Ordered data, where data

points are interdependent, presents two additional anomaly

types: contextual and collective [1]. Contextual anomalies

appear benign individually but can become malicious due to

their surrounding context, especially the timing. Imagine a user

login that usually happens in the morning and during the day,

but once the user logs in at midnight. This deviation from

the expected timing makes the event a contextual anomaly.

Collective anomalies, on the other hand, involve groups of

events that aren’t individually suspicious. However, when

these seemingly benign events occur together in a specific

sequence, they might collectively indicate a potential issue.

For instance, in log data analysis, a sequence of ordinary logs

might collectively point towards a malicious activity.

Existing log anomaly detection approaches can be catego-

rized along two dimensions: the type of anomaly (sequential

or quantitative) and the learning approach (supervised or

unsupervised) [5] [6]. A core assumption for many anomaly

detection techniques is a significant class imbalance, where

normal data instances far outnumber anomalies. And since

anomaly labels are often scarce in real-world applications,

unsupervised methods receive more attention. However, the

common drawback of unsupervised learning is that it can result

in a high false positive rate by learning patterns of normal

logs and considering everything else as anomalous behavior.

This can make unsupervised approaches unsuitable for real-

world deployments prone to alert fatigue. On the other hand,

supervised approaches for anomaly detection are relatively rare

due to the challenge of acquiring sufficient labeled anomaly

data.

C. Related work

This section provides a brief overview of existing research

related to deep learning for anomaly detection in log data.

Deep learning has emerged as a powerful approach, overcom-

ing limitations of traditional machine learning methods like

inflexibility, inefficiency, and weak adaptability. This section

explores several prominent deep learning architectures used

for this purpose.

1) DeepLog: utilizes a Long Short-Term Memory (LSTM)

model to capture sequential relationships between log

events [3]. It predicts the next event based on the preceding

sequence and flags deviations from predictions as anomalies.

This approach achieved an F1 score of 0.96 on the HDFS

dataset.

2) LogAnomaly: also employs an LSTM model but utilizes

log count (quantitative) vectors as input [5]. Additionally, it

introduces ”template2vec” a method for representing log tem-

plates as semantic vectors based on synonyms and antonyms.

Similar to DeepLog, it predicts the next log event and consid-

ers deviations as anomalies. LogAnomaly achieves F1 score

of 0.95 and 0.96 on the HDFS and BGL datasets, respectively.

3) PLELog: tackles the challenge of limited labeled data

by employing probabilistic label estimation alongside an

attention-based Gated Recurrent Unit (GRU) neural network

for anomaly detection [7]. This approach classifies log se-

quences as normal or abnormal and outperforms existing semi-

supervised methods, achieving F1 score of 0.96 and 0.98 on

HDFS and BGL datasets, respectively.

4) LogRobust: incorporates pre-trained word embedding

models (FastText) with TF-IDF weights to represent log

templates. These vector representations are then fed into an

Attention-based Bi-LSTM model for anomaly detection [8].

This approach demonstrates robustness against unstable log

events and achieves an F1 score of 0.99 on the original HDFS

dataset and 0.89-0.96 on synthetic datasets.

5) Convolutional Neural Networks: has been shown to be

a feasible approach for log anomaly detection [9]. Logs are

grouped into sessions and transformed into a trainable matrix,

which is fed into a CNN model to classify log sequences as

normal or abnormal. This approach achieves an F1 score of

0.98 on the HDFS dataset.

6) LogBERT: is based on transformer architecture. Despite

its name it does not incorporate BERT language model,

authors were just inspired by it and the model is trained from

scratch [10]. This approach achieved an F1 score of 96.64 on

Thunderbird dataset.

7) LogFit: uses fine-tuned BERT model to detect anomalies

in logs [11]. It achieved precision of 99.78 and F1 score 94.97

on HDFS dataset.

II. METHODOLOGY

Our research benefited from access to sources containing

logs from both malicious and benign activities. This unique

resource allowed us to develop a novel approach for training

anomaly detection models. Rather than employing traditional

anomaly detection techniques, we opted to train a model that

can recognize patterns indicative of malicious activity based on

previous security incidents. This approach acknowledges the

inherent nature of cyberattacks, which often progress through

various phases, with some not being reflected in log data [12].

Nonetheless, any captured logs associated with security in-

cidents provide valuable training material. Consequently, we

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 247 --

categorized logs from past investigations under the umbrella

term ”malicious activity” to train our model on recognizing

these specific patterns.

A. Data collection

To create a comprehensive dataset, we collected logs from

two primary sources: Elastic stack and SIEM. We focus on

logs from IPS – representing the entry point for potential

attackers into the organizational network.

1) Benign activity: To obtain logs for benign activities, we

queried Elastic stack via its API after verifying through SIEM

that no security incidents occurred during the corresponding

time period. Since Elastic stack stores parsed logs, syntactic

analysis was unnecessary. However, working with parsed logs

introduced the additional step of associating each log with a

template. This mapping requires manually defining attributes,

identified through exploratory data analysis, that can be used

to pair logs with their corresponding template. These attributes

vary depending on the log type.

2) Malicious activity: To obtain data on malicious ac-

tivities, we directly extracted logs from security incidents

identified and confirmed (marked as true positives) within the

SIEM system. This targeted selection ensures the model trains

on malicious behavior. However, it’s important to acknowledge

that not all security incidents exhibit sequential patterns (such

as identifying signatures). SIEM, by design, aggregates logs

from diverse sources, which means that logs have a wide range

of attributes. To address this, we filtered the IPS logs that

have a well-defined set of common attributes. Furthermore, we

opted to extract these logs in their raw format, allowing for

feature engineering during the data preprocessing stage. This

stage involved extracting critical features like actions and IP

addresses, ultimately transforming the raw data into a format

suitable for model training.

B. Data cleaning and preprocessing

For data cleaning and preprocessing, we perform several

steps (as illustrated in Fig. 1). First, we parse the logs to extract

relevant attributes such as timestamps, source and destination

IPs, and potentially other relevant information. This process

transforms the raw logs into a structured format suitable for

further analysis. Next, mapping is required to group related

events together. Finally, a grouping strategy is chosen, and

valid features are extracted for building the detection model.

This approach is common in deep learning for anomaly de-

tection applied to log data [3], [5], [7]. Extracting informative

features that incorporate contextual information can further

enhance model explainability.

1) Parsing: Once logs are collected from the two sources,

they undergo preprocessing. This initial stage begins with

an organized set of logs, denoted as l1, l2, l3, Portion of

these logs requires parsing, a process that extracts relevant

information and transforms each log pli for each log li. Parsed

logs typically contain key-value pairs representing extracted

parameters, structured like [ki : vi, kj : vj , ...].

Fig. 1. Preprocessing steps for sample firewall log

TABLE I
MAPPING BETWEEN LOGS AND EVENTS BASED ON THE ACTION

ATTRIBUTE.

Action Event
Drop E0
Deny E1
Accept E2
Prevent E3
Detect E4
Bypass E5

2) Mapping: This step focuses on extracting events from

logs. An event represents the type of log. The parsed log

(pli) is therefore mapped to one of events (Ej). During our

experiments we identified relevant attributes to the type of

log as typical actions with values like ”Allow,” ”Deny,” and

”Inline.” etc. Illustration of the principle of mapping between

logs and their corresponding events is shown in Table I.

3) Grouping: The subsequent step involves logical orga-

nization of events into groups for individual analysis. There

are several common strategies for grouping logs, each with its

own advantages and disadvantages. These are:

• Fixed-length window – Logs are grouped in the order

they were generated into windows with a fixed length.

For example every 100 consecutive logs are considered

a window. This strategy is simple to implement and

interpret and has very good performance. However, the

disadvantage is that it’s not suitable for every dataset

(such as ours) and can also lead to information loss.

• Sliding window – Logs are grouped in the order they

were generated into fixed windows with a step size. Step

size defines the shift between consecutive windows, in

other words, their overlap. This strategy can eliminate

information loss; however, like the previous one, it is

also not suitable for every dataset.

• Session-based window – Logs are grouped based on

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 248 --

unique session identifier and it is not bound by time

intervals or predefined sizes. This results in windows of

varying lengths corresponding to duration of individual

sessions. It can be computationally expensive, but enables

precise analysis of behaviour for individual flows.

In our approach, we decided to group logs based on IP

address. This grouping allows for individual analysis of user

connections based on a unique identifier. From each group of

events (parsed logs related to a specific IP), event sequences

can be extracted. These sequences represent the chronological

order of events associated with a particular user.

To minimize information loss for individual connections,

we utilize sliding windows with a constant step of a single

log. This ensures thorough analysis for each connection while

retaining identified session boundaries [3].

C. Feature extraction

Feature extraction involves transforming pre-processed

events into numerical representations suitable for anomaly

detection models. We considered primarily sequential and

quantitative vectors:

• Sequential vectors capture the sequential patterns within

event sequences. They preserve the temporal relationships

between events by encoding their order and timing. This

approach relies on the assumption that legitimate program

execution or user activity follows consistent event se-

quences and deviations from these patterns might indicate

anomalies [5].

• Quantitative vectors focus on extracting quantitative at-

tributes from events. It leverages the assumption that cer-

tain statistical properties remain consistent during normal

program execution [5]. Features might include counts

of specific event types, along with relevant statistical

information like means and variances.

In our approach, we primarily focused on extracting sequen-

tial vectors and a combination of sequential and quantitative

vectors. We acknowledge that while quantitative vectors offer

insights into statistical properties of logs, our experiments

indicated limited additional effectiveness in detecting mali-

cious activities. This suggests that the effectiveness of feature

extraction techniques can depend on the specific characteristics

of dataset or mapping granularity.

D. Development of model

The detection of malicious activity is defined as a multi-

class classification problem, where all events E serve as

classes. The model is trained to predict the upcoming event

based on the input sequence of preceding events. The actual

event is compared with the most probable candidates for the

next event template obtained using the probability distribution

function. Our approach is based on [3], which has been shown

to be suitable for detecting sequential anomalies, but instead

of training on normal non-anomalous sequences, we trained it

on sequences containing malicious activity.

The input to the model is a vector which contains the last

h events.

w = Ei−h, Ei−h+1, ..., Ei−2, Ei−1 (1)

This is used to predict the next event Ei. The output of the

model is the probability distribution

Pr(Ei = ki|w) (2)

for all possible events E. The threshold of how many most

probable candidates to consider is determined by the parameter

we denote as k. This parameter represents the number of most

probable events with which the actual event is compared. If

the actual event does not match any of the predicted events,

the sequence is evaluated as malicious activity.

III. EVALUATION

A. Dataset

In our experiment we use a dataset containing a total of

17 272 630 logs. These logs are labelled into two classes:

malicious activity and benign activity. The dataset breakdown

is as follows:

• Malicious activity: 4 550 022 logs (26.34% of the dataset)

• Benign activity: 12 722 608 logs (73.66% of the dataset)

The dataset was collected in partnership with GOV CERT

SK unit of the National Agency for Network and Electronic

Services. They were collected from two systems – SIEM and

Elastic stack.

We adopted a following splitting strategy. We specifically

split the malicious logs into two sets: 80% designated for

training and 20% reserved for validation. The training set

allows the model to learn the patterns present within normal

malicious session sequences. The validation set serves to

monitor the model’s performance on unseen malicious data

during the training process, helping to prevent overfitting. The

remaining portion of the dataset, consisting entirely of benign

sessions is used for testing. This approach ensures a thorough

evaluation of the model’s ability to differentiate benign activity

from potentially anomalous malicious sessions during the final

assessment.

B. Models

We experimented with two anomaly detection models in-

spired by DeepLog [3] and LogAnomaly [5]. From DeepLog,

we adopted the concept of using sequential vectors to cap-

ture the order of events within a session. Similarly, inspired

by LogAnomaly, we investigated combining both sequential

and quantitative vectors in feature extraction. DeepLog and

LogAnomaly were originally designed to detect anomalies

in program execution paths within system logs [3]. In our

approach, we adapted these models to a different task: finding

similarities between IPS logs and previous security incidents

to identify malicious activity.

We also experimented with RobustLog [8], which utilizes

semantic vectors and relies on NLP. However, we discovered

that our dataset, containing structured objects with attributes, is

not a suitable data structure for incorporating semantic vectors.

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 249 --

For our experiments, we built upon LogDeep [13], a

publicly available reimplementation of both DeepLog and

LogAnomaly models. Utilizing LogDeep as a foundation

allowed us to efficiently leverage these approaches due to

its existing implementation. We made necessary modifications

to LogDeep to accommodate our specific data format and

experiment. First, we unified the input format for both training

and prediction stages and replaced hardcoded values with pa-

rameters, streamlining the workflow and improving efficiency.

Second, we enhanced the contextual information provided

during prediction by incorporating timestamps, session IPs

and related logs. We also added a softmax function to obtain

probability distribution for each predicted event. All these

things matter to security analysts when responding to threat

and it allows for better interpretability of the model’s outputs,

which helps operators prioritize potential security incidents.

Finally, we extended the set of evaluated metrics to include

EDR (explained in section III-D2), specificity and accuracy

to gain deeper insights into the model’s performance in the

context of malicious activity detection of security incidents

within IPS logs. These modifications not only enhance the

interpretability of the model’s outputs but also lay the ground-

work for establishing a future feedback loop. Additionally,

these changes support the implementation of online detection

capability for real-time analysis of IPS logs.
It’s important to note that while we drew inspiration from

DeepLog and LogAnomaly, we did not directly modify their

core architectures. We explored alternative approaches such as

attention networks and BiLSTMs (Bidirectional Long Short-

Term Memory) to potentially enhance anomaly detection.

However, in our experiments, these approaches did not provide

any significant additional value compared to the core function-

alities offered by DeepLog and LogAnomaly, as implemented

in LogDeep.

C. Parameters
There are two important parameters to consider when con-

figuring our anomaly detection models – window size h and

most probable candidates k [3].
The window size h parameter determines the number of

preceding events considered to predict the next event in

a session. This parameter influences the model’s ability to

capture temporal patterns within session data. A larger window

size means that we will discard shorter sessions until they

reach required amount of events.
Most probable candidates k represent the most probable

events identified by the model for the next event in the se-

quence. The selection of the appropriate number of candidates

to consider for detection is crucial.
In our approach, we utilize a constant step size of 1

for the sliding window within each session. This minimizes

information loss by ensuring that every single event within a

session is considered by the model.

D. Evaluation metrics
1) Core evaluation metrics: Our core metrics are based

on sessions (not on individual windows within sessions). We

define core evaluation metrics as following:

True Positive (TP) represents a session that was correctly

classified as malicious. This occurs when the model identifies

any window within the session as malicious, consequently

classifying the entire session as malicious.

False Positive (FP) represents a benign session that was in-

correctly classified as malicious. This happens when the model

identifies a window within a benign session as anomalous,

leading to the entire session being misclassified as malicious.

True Negative (TN) represents a benign session that the

model correctly classified as normal. This signifies the model’s

ability to identify entirely benign sessions without raising false

alarms.

False Negative (FN) represents a malicious session that the

model missed and classified as normal. This occurs when

the model fails to identify any anomalous windows within

a malicious session, resulting in the entire session being

misclassified as benign.

2) Derived evaluation metrics: We also calculate derived

evaluation metrics, such as precision, recall, specificity, F1

score and accuracy.

Since we are working with sessions that were previously

captured, we also propose another metric, EDR. Early De-

tection Rate measures the proportion of the sequence length

(denoted by SL) that the model needs to analyze (denoted by

A) before making an accurate prediction. In other words, it

indicates how much of the sequence the model needs to see

on average to correctly detect malicious activity.

EDR =
A

SL
(3)

To calculate the EDR for the entire dataset, we first compute

the EDR for each TP instance. Then, we sum these individual

EDR values for all TP instances and divide by the total number

of TP instances.

EDRdataset =

∑TP
i=1 EDRi

TP
(4)

Where:

• EDRdataset is the Early Detection Rate for the entire

dataset.

• EDRi is the Early Detection Rate for the i-th true

positive instance.

• TP is the total number of true positive instances.

Precision reflects the proportion of identified sessions that

were truly malicious. In simpler terms, it tells us how much we

can trust the model’s positive predictions (malicious activity).

A high precision indicates that the model is generating a low

number of false alarms and mostly identifying real malicious

activities.

Precision =
TP

(TP + FP)
(5)

Recall (sensitivity) reflects the model’s ability to identify

malicious activity. It tells us how good the model is at

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 250 --

capturing all the malicious activities present in the data. A

high recall indicates that the model is successfully identifying

most of the attacks, minimizing the number of missed threats.

Recall =
TP

(TP + FN)
(6)

Specificity focuses on the model’s effectiveness in correctly

classifying benign activity. It tells us how good the model

is at avoiding false alarms. A high specificity indicates that

the model is not prone to misclassifying benign activity as

malicious, reducing unnecessary investigations.

Specificity =
TN

(TN + FP)
(7)

The F1 score combines Precision and Recall into a single

score, providing a balanced view of both metrics. It considers

both the model’s ability to identify true positives while avoid-

ing false positives. A high F1-score indicates that the model

is performing well in terms of both precision and recall.

F1 score = 2 ∗ (Precision ∗Recall)

(Precision+Recall)
(8)

Accuracy measures the overall proportion of correctly clas-

sified sessions. It tells us how often the model makes the right

prediction, regardless of class (malicious or benign). While

a high accuracy might seem ideal, it can be misleading in

imbalanced datasets.

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

E. Environmental setting

Our experiments are conducted on a server with Intel®

Core™ i7-9700 CPU @ 4.70 GHz 8 cores CPU with 32GB

memory. All experiments were performed on CPU.

IV. RESULTS AND DISCUSSION

In this section, we present the results obtained from our

experiments with the proposed models on the dataset described

in the previous chapter. We begin by outlining the process

of generating sequences and the configuration of the models

used. Subsequently, we delve into a detailed analysis of the

experimental results, focusing on the performance metrics and

comparisons between different model variations.

A total of 202 723 sequences were constructed from the

dataset. Among these, only around 12 000 are used in experi-

ments depending on minimum window size. Malicious activity

was represented in around 83% sequences. We ended up using

8000 sequences for training and remaining 2000 for validation

of malicious activity and 2000 for testing benign activity.

We first tried to estabilish a baseline for what an optimal

window size might be. As shown in Fig. 2, models tended to

perform better with smaller window size, but that can be a side

effect of removing sequences shorter than minimum window

size, thus changing ratio for classes. In general, models’

performance was very similar.

Fig. 2. Model performance with different window sizes. [sequential, k = 1]

Fig. 3. Model performance with different top k. [sequential, window size =
4]

Having established a baseline, we experimented with differ-

ent top k values for next event prediction. As shown in the plot

in Fig. 3, using lower values for k results in very high false

positives (manifested as low specificity). Even with k = 2
the specificity remains low. However using k = 3 results in a

model that can very well identify benign activity and achieves

perfect precision and specificity. The trade-off for this is a

very low recall, meaning the model misses a lot of malicious

activity.

In a production environment, operators are prone to alert

fatigue. Models that generate excessive false positives will

erode their trust in the system over time. From this perspective,

false positives are highly undesirable. Additionally, malicious

activity in this dataset originates from alerts created by inte-

grated security systems and devices. Therefore, for this model

to detect everything, it would only make sense in an edge case

where it’s the sole security appliance in the entire network.

But our model is just additional method of detection, so any

missed malicious activity shall be detected by SIEM, albeit

later. Finally, a security incident doesn’t inherently guarantee

a sequential pattern that this model can capture. Determining

such patterns would require a non-trivial amount of time, such

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 251 --

TABLE II
BEST MODEL PERFORMANCE ACROSS DIFFERENT FEATURES AND WINDOW SIZES.

Features Window size Top k Precision Recall Specificity F1 Accuracy EDR Time [s]

seq 3 3 1.0000 0.0725 1.0000 0.1352 0.5098 0.21 540
seq 4 3 1.0000 0.0714 1.0000 0.1332 0.5085 0.25 540

seq+quan 4 3 1.0000 0.0714 1.0000 0.1332 0.5085 0.23 960
seq+quan 5 3 1.0000 0.0709 1.0000 0.1324 0.5074 0.26 1020

seq 5 3 1.0000 0.0705 1.0000 0.1316 0.5071 0.19 584
quan 15 4 1.0000 0.0361 1.0000 0.0697 0.4992 0.46 640

Fig. 4. Model loss curve during first 20 training epochs. [sequential, window
size = 4]

as hours of manual investigation. Because of these factors, we

believe that a low False Positive Rate (FPR) is significantly

more important than a high recall.

Our experiments revealed that the model learns sequential

patterns very quickly within a few epochs, as shown in

Fig. 4. This rapid convergence could indicate either low event

granularity in the data or a dataset with limited complexity.

Each training epoch takes approximately 3 minutes on average,

with larger window sizes leading to longer training times.

Consequently, training a model with window size 4 for 30

epochs requires roughly 1.5 hours.

To explore the impact of different feature sets, we trained

models using both sequential and quantitative features. Sum-

mary of their performance is shown in Table II. Overall,

the performances are very similar when using sequential

(DeepLog) and a combination of sequential and quantitative

(LogAnomaly) features. The most significant difference lies

in processing time – using both features requires roughly

double the processing duration. For instance, predicting 4,000

sequences with a window size of 4 takes approximately 960

seconds for the combined features model, compared to 540

seconds for the sequential-only model. We also trained a model

using solely quantitative features, which exhibited slightly

lower performance compared to the other approaches.

Afterwards, we investigated the Early Detection Rate (EDR)

of these models. The results were promising, with the models

achieving an average EDR between 0.19 and 0.46. This

translates to detecting malicious activity within the first quarter

of the sequence length. In simpler terms, the models can

identify suspicious behavior relatively early during an attack

phase, allowing for a faster response and potentially mitigat-

ing the entire cyberattack. This early detection capability is

particularly valuable when it comes to security, where prompt

intervention can significantly minimize damage.

V. CONCLUSION

This research explored a novel approach for training deep

learning anomaly detection models by leveraging access to

logs from past security incidents. These logs, categorized as

”malicious activity” provided valuable data to train a model

that recognizes patterns indicative of such activities. This

approach acknowledges the limitations of log data, as it may

be incomplete or lack specific details about attackers’ other

actions.

The successful training of the deep learning model demon-

strates the viability of this approach. The results suggest that

the model can effectively detect malicious activity with a focus

on minimizing false positives, even achieving early detection

within attack sequences requiring just as little as quarter of the

sequence. However, the cost for minimizing false-positives is a

significant decrease in recall to less than 10%. But whereas our

method is just additional detection system alongside SIEM,

specificity metric is much more important than recall.

Building upon this research, further exploration into ad-

vanced data analysis techniques could be beneficial. This could

involve digging deeper into related logs, such as system logs

or web server logs, to analyze user behavior patterns. By

examining how users interact with different systems under

various circumstances (e.g. during a potential attack or under

normal operation), we can potentially gain valuable insights

into attacker behavior. This deeper understanding can further

bolster our deep learning detection model, leading to improved

accuracy and better real-world applicability.

In future work, we would like to evaluate the efficiency of

the model in detecting malicious activities it was not trained

on.

ACKNOWLEDGMENT

This research was supported by project KEGA No. 004ZU-

4/2024 ”Improving the quality of education in the field of

cyber security”.

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 252 --

REFERENCES

[1] M. Landauer, S. Onder, F. Skopik, and M. Wurzenberger, “Deep
learning for anomaly detection in log data: A survey,” Machine
Learning with Applications, vol. 12, p. 100470, Jun. 2023. [Online].
Available: http://dx.doi.org/10.1016/j.mlwa.2023.100470

[2] Q. Wang, X. Zhang, X. Wang, and Z. Cao, “Log sequence anomaly
detection method based on contrastive adversarial training and dual
feature extraction,” Entropy, vol. 24, no. 1, 2022. [Online]. Available:
https://www.mdpi.com/1099-4300/24/1/69

[3] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly
detection and diagnosis from system logs through deep learning,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 1285–1298. [Online].
Available: https://doi.org/10.1145/3133956.3134015

[4] X. Li, P. Chen, L. Jing, Z. He, and G. Yu, “Swisslog: Robust and unified
deep learning based log anomaly detection for diverse faults,” in 2020
IEEE 31st International Symposium on Software Reliability Engineering
(ISSRE), 2020, pp. 92–103.

[5] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun, and R. Zhou, “Loganomaly: unsupervised detection of
sequential and quantitative anomalies in unstructured logs,” in Proceed-
ings of the 28th International Joint Conference on Artificial Intelligence,
ser. IJCAI’19. AAAI Press, 2019, p. 4739–4745.

[6] V.-H. Le and H. Zhang, “Log-based anomaly detection with deep
learning: how far are we?” in Proceedings of the 44th International
Conference on Software Engineering, ser. ICSE ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 1356–1367.
[Online]. Available: https://doi.org/10.1145/3510003.3510155

[7] L. Yang, J. Chen, Z. Wang, W. Wang, J. Jiang, X. Dong, and W. Zhang,
“Semi-supervised log-based anomaly detection via probabilistic label
estimation,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), 2021, pp. 1448–1460.

[8] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li, J. Chen, X. He, R. Yao, J.-G. Lou, M. Chintalapati,
F. Shen, and D. Zhang, “Robust log-based anomaly detection on
unstable log data,” in Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ser. ESEC/FSE 2019. New
York, NY, USA: Association for Computing Machinery, 2019, p.
807–817. [Online]. Available: https://doi.org/10.1145/3338906.3338931

[9] S. Lu, X. Wei, Y. Li, and L. Wang, “Detecting anomaly in big data
system logs using convolutional neural network,” in 2018 IEEE 16th
Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl
Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big
Data Intelligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech), 2018, pp. 151–158.

[10] H. Guo, S. Yuan, and X. Wu, “Logbert: Log anomaly detection via bert,”
in 2021 International Joint Conference on Neural Networks (IJCNN),
2021, pp. 1–8.

[11] C. Almodovar, F. Sabrina, S. Karimi, and S. Azad, “Logfit: Log anomaly
detection using fine-tuned language models,” IEEE Transactions on
Network and Service Management, vol. 21, no. 2, pp. 1715–1723, 2024.

[12] P. Cichonski, T. Millar, T. Grance, and K. Scarfone, “Computer security
incident handling guide,” 2012-08-06 2012.

[13] D. Lee, “Logdeep,” Web: https://github.com/d0ng1ee/logdeep, 2020.

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 253 --

