
ChunkFS: A Tool for Data Deduplication Methods
Comparison

Oleg Piletskii, Viacheslav Gorikhovskii
Saint Petersburg State University

Saint Petersburg, Russia

piletskii.oleg@gmail.com, v.gorikhovsky@spbu.ru

Abstract—The dramatic rise in amount of data worldwide
over the past years is a critical issue for storage and backup
systems with no obvious and simple solution available. One of
the main techniques to effectively store large amounts of data
is deduplication, based on eliminating redundant data, of which
there is a lot. The most expensive stage of deduplication process
is chunking, taking up to 90% of time. Many algorithms have
emerged in the recent years, with the goal to optimize space
savings and throughput of the process, stating better effectiveness
each time. Despite there being so many chunking algorithms,
there are very few systems that can be used to compare them
with each other.

In this paper we present ChunkFS, a tool to compare
deduplication techniques that allows to easily integrate different
chunking and hashing algorithms, as well as storage types, and
gather the necessary metrics to determine the most suitable one.
We use it to compare some of the best performing algorithms and
find out that SuperCDC outperforms every other one in speed,
but not in speed savings, although with many parameters that
can be tuned, it hints that with further research using the tool
better results can be achieved. Besides Content Defined Chunking
algorithms, other techniques can be compared using ChunkFS,
such as Frequency Based Chunking, but that is out of scope of
this paper.

I. INTRODUCTION

In the recent years the amount of data created and stored

has become exceedingly large. According to several sources

[1], [2], the global datasphere, which is the combination

of data generated, captured or replicated through the digital

content from all around the globe, contained 33 zettabytes of

data in 2018, and its size will increase to 175 zettabytes in

2025. As a result of that rapid increase storing all that data

becomes increasingly difficult and costly, especially for the

IT companies and industries, which also want to be able to

work on it and retrieve it quickly enough [3]. One of the main

scenarios for data storage are backups, which have to be made

regularly to protect the sensitive data and therefore take much

space. To fight that, many techniques that eliminate redundant

data are used, such as deduplication and compression [4].

A. Data Deduplication Methods

Data deduplication is a way of compressing information by

eliminating repeating blocks of data, usually at least a few

kilobytes in size. One flaw of this method is that it cannot

detect duplicates of less than minimal block size, but it is

a trade-off for the speed that can be achieved on the large

workloads. The main way it is done consists of 5 stages,

which are splitting the data stream into small chunks of

data, calculating their fingerprints, indexing the chunks and

removing repeated chunks, and saving them to the disk or

other underlying storage.

The most expensive stage by time and resources is chunking

since the whole file must be read byte-by-byte, performing

some calculations in the process. The easiest way to implement

it is by using Fixed Size Chunking [5], which splits data

evenly. This approach, although very fast, is not very good

at finding repeating data. Moreover, if there is just a single

byte added to the data somewhere in the middle, then all

chunks after it are considered new, even though they are

in fact unchanged. This is called boundary-shifting problem,

showcased on Fig. 1. Here, the data is almost unmodified, but

all chunks, starting from the second, are considered new.

To combat this problem, another approach is used. Most

chunking algorithms, published in the recent years, belong

to the Content Defined Chunking algorithm family, which

is based on splitting data in chunks based on the local

content of the data stream. If the local content is unchanged,

then the chunk boundaries are also unchanged, and the data

deduplication ratio does not suffer [6].

To determine chunk boundaries, in most algorithms sliding

window is used. Hash of the sliding window is calculated, and

if it satisfies some condition, the boundary is set and the chunk

is cut.

Fig. 1. Boundary shifting problem

B. Algorithms comparison

The main metrics by which CDC algorithms can be com-

pared are deduplication ratio, which shows how well the

algorithm finds duplicate data in the dataset, and the speed

with which it processes the data. Other metrics include average

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 221 ----------------------------------------------------------------------------



chunk size, chunk size distribution, and the deduplication ratio

which also includes the keys’ sizes.

However, there are still some questions which those metrics

cannot give an answer to. For example, how would a chunking

algorithm influence a whole file system? How do different

types of storage influence algorithm efficiency? Can it help

with faster writing or reading to the disk?

The main focus in the CDC comparison papers was the algo-

rithm effectiveness in some small environment, with the main

scenario being running the algorithm on some data stream a

single time and gathering some metrics. This approach does

not take into consideration the effects an actual system may

have, such as interaction of the chunking subsystem with other

subsystems.

In this paper we present ChunkFS, a simple in-memory

file system. Its main purpose is to provide a unified way to

compare different deduplication methods, most notably CDC

algorithms, in an integrated environment with many additional

features. It is written in Rust programming language, utilizing

its modern ideas and memory safety.

II. RELATED WORKS

In this section we analyze some of the existing chunking

algorithms and show their advantages and disadvantages.

1) RabinCDC: RabinCDC [7] is one of the first content

defined chunking algorithms, based on calculating sliding

window’s polynomial Rabin hash. It is quite simple in imple-

mentation, but the hash calculation is inefficient and expensive.

2) GearCDC: GearCDC [8] provides another way to cal-

culate sliding window hash that uses only a single operation of

bit shift, one array indexing operation and one addition. This

allows for 3x speed increase and no loss in deduplication ratio.

It is also used as a base for other optimized algorithms.

3) LeapCDC: LeapCDC [9] shows another way of generat-

ing chunks that also provides a performance boost, although it

is slightly harder to modify than GearCDC, and uses slightly

different technique than the usual sliding window. For every

byte there is a check for some number of so-called windows

of the same size located before said byte, each shifted by a

single byte. If all windows satisfy a preset condition, then the

chunk is cut. If not, the bytes corresponding to number of

checked windows can also be skipped, since those windows

certainly will not satisfy the condition. Window check is 5

index operations and 4 XOR operations.

4) RapidCDC: RapidCDC [10] uses the fact that the similar

chunks are very likely to be located next to each other, forming

repeating groups of chunks. With the hash of the next chunk

it also records the size of the next chunk, which serves as a

hint for finding a possible border in order to not skim through

the known chunk using the sliding window. And if it does not

find a single group of chunks, its performance only decreases

by 10 percent compared to GearCDC. This algorithm uses the

idea of storing additional information besides the chunk border

itself.

5) FastCDC: FastCDC [11] is an improved and heavily

modified version of GearCDC and is one of the fastest CDC

algorithms to date. It fixes the following problems:

• Small size of the sliding window, which negatively im-

pacts the deduplication ratio, since the chunk border

depends on less number of bytes.

• Even though hash is calculated very fast, the process of

checking hash takes up to 60% of time that the algorithm

takes to complete.

In order to fix those problems the window is increased by

padding the mask with zeroes. The fingerprint is then chal-

lenged against the mask, and if it satisfies a simple condition,

then the chunk is cut. To reach higher deduplication ratio

normalized chunking is used, which is a technique that helps to

distribute chunk sizes more evenly: for chunk positions which

correspond to chunks smaller than 8 kilobytes more significant

bits in mask are used which causes hash judgment to be more

strict. When the chunk is bigger than 8 kilobytes, less signifi-

cant bits in mask are used. It causes chunk size distribution to

be normalized around a specified region. Another optimization

is rolling two bytes each time, one odd and one even. This

causes a 30-40 percent increase in speed compared to rolling

by a single byte.
6) QuickCDC: QuickCDC [12] utilizes similar strategy to

RapidCDC but doesn’t require similar chunks to be present

in succession which allows it to work on isolated repeating

chunks, whereas RapidCDC cannot do that. The main idea

behind QuickCDC is to find repeating chunks using the first

and last three bytes, storing this information in the tables along

with chunk sizes, to find the corresponding chunks easily.
7) SuperCDC: SuperCDC [13] combines the ideas of

FastCDC and RapidCDC. It takes calculation-efficient process-

ing with a stream informed design, meaning that it incorpo-

rates fast rolling hash, smart chunking judgment and chunk

size normalization from FastCDC. It builds upon its ideas,

utilizing 3 chunking masks to reduce number of max size

chunks. SuperCDC also utilizes a lightweight chunking map

which is maintained in memory and provides next chunk size

hints which allows skipping whole sequences of chunks.
8) UltraCDC: UltraCDC [14] is an algorithm that excels on

strings with low entropy, the type of data that other algorithms

struggle on. It differs from other algorithms in a sense that it

doesn’t compute hash of the sliding window but instead uses

Hamming distance from the symmetric predefined pattern as a

chunking condition. To find low entropy strings, it incorporates

jumping, which is achieved by having two windows as buffers.

Low entropy strings are then identified by the number of jumps

exceeding a predefined value. Other optimizations such as

normalized chunking are used.
9) Speculative Jump: Jump-based chunking [15] is an

approach that is an improvement of the LeapCDC. It is

an optimization that can be inserted into any other CDC

algorithm. The approach is based on the idea that sliding the

window byte-by-byte is often unnecessary and the portions of

the input can be skipped by jumping, but unlike LeapCDC, it

suggests infrequent jumps that don’t break the continuity of

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 222 ----------------------------------------------------------------------------



data. Another key design is embedded masks, i.e. constructing

a bigger mask to overlap both mask that determines the jump

condition and the mask that determines chunk cut point.

10) SeqCDC: SeqCDC [16] is an algorithm that is geared

towards chunks with larger sizes. It operates in a different

way from the other algorithms, not using hash and looking for

the sequences of monotonically increasing/decreasing bytes,

depending on the mode of operation. It can also skip certain

regions of data if it detects a byte that breaks the sequence, e.g.

a smaller byte if the increasing mode of operation is chosen.

Once a sequence of the set length that corresponds to the mode

of operation is found, the chunk is cut.

A. Algorithms comparison

There is a large amount of different chunking algorithms,

some of which were not present in this paper. Their description

can be found in other review papers, such as [17].

Despite there being such a big number of different algo-

rithms which state comparable effectiveness and speed to each

other, there is very few comparison systems. Most of them

emerged in the recent years, for example DedupBench [18].

It is a set of scripts written using C++ which let the user

deduplicate a single data stream, with configurable chunking

and hashing algorithms. New algorithms can be quite easily

integrated with the DedupBench and tested. It can collect the

metrics listed, such as deduplication ratio and throughput.

Another one is cdc-algorithm-tester [19], written using Rust

and R. It is a CLI app which allows gathering the same metrics

as before and contains implementations of many different

algorithms.

Those tools allow comparing algorithms and gathering

metrics for a simple scenario which consists solely of running

an algorithm on a data stream. They try to get rid of other

factors that may influence the results, for example by putting

the whole file in RAM and not writing anything to disk in

the process. This approach doesn’t take into account how a

file system may actually influence the chunking throughput

and the effects it may have on algorithm effectiveness. This is

fixed by ChunkFS.

III. CHUNKFS DESCRIPTION

ChunkFS is a simple file system with a single directory

storing all the files. It allows writing and reading to the files,

files are accessed by their names. When the user wishes to

create a file, a name and a chunker must be provided, with

which the data in the file will be deduplicated. After that a file

handle is received to the said file, using which write and read

operations can be performed. After the process has finished,

the handle can be closed, then re-opened in read-only mode

allowing to read the contents, verifying that they are correct.

Inside, ChunkFS is divided into two main parts, ChunkStor-

age and FileLayer. The first one is responsible for storing

the data, the chunks, as the name says, and is common for

all the files in the system. The second one is responsible for

storing file metadata and it provides access to the content of the

files to the user. Those systems communicate using segment

hashes and are united in a structure called FileSystem, which

is accessible by the user and defines the main operations that

can be conducted.

Fig. 2. ChunkFS architecture

The architecture of the file system in shown on Fig. 2 using

pseudo UML. To provide variability in storing data and using

different algorithms, ChunkFS provides three main traits:

• Database is an abstraction over a key-value storage that

provides main operations: inserting, getting, checking and

deleting a key-value pair. This allows using different data

structures as a chunk storage, e.g. a hash map, a B-Plus

tree, or a simple file storage.

There is also a further abstraction over a database that

can be iterated, provided using the IterableDatabase trait.

It is useful for cases such as collecting information about

chunk distribution, or performing some analysis on the

chunks.

• Chunker is an abstraction over a chunking algorithm. An

object that implements that trait is used within an open

file session, but is assumed to only store information

about the algorithm it encapsulates, and maybe some

other information, such as QuickCDC table. That enables

reusing it with different files and reusing its stored

contents.

Its main method receives a data slice as an input and an

empty allocated vector, and returns a vector of chunks

as an output. Chunk in this case is information about the

start position and the length of the chunk, hence it only

provides information about the given slice, and does not

store actual data.

Another method returns an estimate chunk count for the

given slice, so that the vector which will store the chunks

can be pre-allocated before the chunking process. This is

used to get rid of the allocation time when measuring

chunking speed.

• Hasher is an abstraction over a hashing algorithm, and it

is used to hash the chunks, before putting them into the

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 223 ----------------------------------------------------------------------------



database.

Files in FileLayer are stored as a collection of spans, using

which the file can be reconstructed and returned to the user.

The span represents a segment of the file, containing its hash

and offset.

Some of the content defined chunking algorithms were im-

plemented for ChunkFS, such as Leap-based CDC, SeqCDC,

SuperCDC, UltraCDC, RabinCDC. They can be found in

a separate crate cdc-chunkers on crates.io, with the source

code available on GitHub1. To create them, the minimum,

average and maximum chunk sizes must be provided as

parameters. FastCDC implementation that can be found on

crates.io was integrated with ChunkFS. It was made possible

by implementing Chunker trait for all of them, allowing their

usage within the file system.

ChunkFS also allows for further analysis and deduplication

of chunks by having a trait that processes chunks from the

source database and sends the modified data into another

database. This is a process called scrubbing that can be ran at

any time.

Benching tools are also bundled with ChunkFS, available

via the bench module. It contains a structure called CDCFix-

ture that contains a file system. It provides some basic opera-

tions to collect the most necessary metrics, such as measuring

write time, read time, chunk time and hash time on a single

write and on a repeated write, calculating deduplication ratio

on a dataset using some specified chunker, and calculating

information about the data that’s already in the file system,

such as chunk size distribution or average chunk size. Those

operations, except for the last one, take a chunker and a dataset

as an input.

Dataset is a separate structure that only stores the name, size

and path of the dataset file. It is then opened using a separate

method that gives out a File instance that can be used to read

the contents, only reading the necessary portions into RAM

and not the whole file.

To collect metrics, the user can write a simple Rust script

that provides a dataset and feeds it into the fixture to then

gather the information. Multiple examples are provided in the

root directory in the crate.

Another option is to use the bundled command-line tool

that allows either inputting all necessary parameters by hand,

such as path to dataset, chunk sizes, chosen algorithms and

database, or to run from a predefined configuration file. The

information on how to use it is provided in the repository. It

supports the scenarios of writing a dataset to the storage, it can

be chosen to clean up all the existing data in the storage, or to

write over and over again. It can be specified to run the script

several times. Data can be written to the database before the

measurements start. After the tool has finished, all collected

metrics are saved to the table, path to which is specified by

the user.

Besides gathering metrics, ChunkFS provides ways to gen-

erate datasets. The methods are

1https://github.com/Piletskii-Oleg/rust-chunking

• Generating a dataset using fio tool with the set size and

deduplication percentage, i.e. the percentage of repeating

buffers.

• Generating a dataset with the set size based on some

distribution.

• Generating a dataset from some other that is already

written to the file system, by rearranging the segments

and reaching the desired deduplication ratio.

ChunkFS is available on GitHub2 and crates.io3.

IV. EVALUATION

1) Datasets: For complex evaluation, multiple datasets

sources are used that resemble common backup data. Those

include

• Virtual Machine images [20]

• OpenStreetMaps backups [21]

• Linux kernel [22]

• Enron, the set of emails and messages [23]

• Docker images from the official website, e.g. WordPress

[24] and nodejs [25]

• Website snippets

Those datasets provide a wide variety of real world data that

contains lots of repeating information and hence can be used

to compare different algorithms.

For the current evaluation, the following datasets have been

chosen:

• Arch Linux images dated 1st December 2024 and 15th

December 2024

• Linux kernel version 6.12, different release candidates

• OpenStreetMaps data for Russia, two full backups

We use some of the dataset snippets for our current eval-

uation. Since chunking algorithms work on single files, those

workloads were put in tarballs.

2) Evaluated algorithms: The following algorithms have

been evaluated: RabinCDC, LeapCDC, FastCDC, UltraCDC,

SuperCDC, SeqCDC. The minimum, average and maximum

chunk sizes were chosen to be 4, 8 and 16 KB respectively. For

hashing SHA-256 implementation provided by sha2 crate [26]

was used. RAM was used as a storage in order to minimize

effects of the disk on the throughput.

3) Testbed: Algorithms were evaluated on a machine with

40 GB of RAM and 12th Gen Intel Core i5-1240P. Ubuntu

24.04 was used as an operating system, code was compiled

using rustc 1.84.0.

4) Metrics: The following metrics were calculated for each

workload:

• Deduplication ratio: it is calculated as ratio of dataset size

to size of the data after it was written to the file system.

• Full deduplication ratio: it also includes key sizes used

to access the chunks.

• Average chunk size: average size of all chunks in the

storage.

2https://github.com/Piletskii-Oleg/chunkfs
3https://crates.io/crates/chunkfs

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 224 ----------------------------------------------------------------------------



TABLE I DATASETS CHOSEN FOR CURRENT
EVALUATION

Dataset Size Description
LNX 12.8 GB Linux kernel version 6.12, different release candidates
OSM 8.2 GB OpenStreetMaps data for Russia, two full backups
VM 4.2 GB Arch Linux images dated 1st December 2024 and 15th December 2024

• Chunk sizes distribution: it is plotted on a graph, showing

how many chunks there was of roughly the same size.

• Chunking throughput: it shows time taken for the algo-

rithms to chunk the entire dataset.

• Hashing throughput: it shows time taken for the algo-

rithms to hash the resulting chunks.

• Write and read speed of the file system: how much time

was taken for writing the dataset into the file system and

then reading it into a byte vector from the file system.

The main scenario which was evaluated and for which

metrics were collected is writing a file to the file system and

reading it back.

A. Space Savings

One of two main characteristics of the algorithm is how well

it can save space on the disk, measured using deduplication

ratio and full deduplication ratio. Those values do not differ

that much, as can be seen from Fig. 3, and the algorithms

achieve comparable deduplication ratio to each other, although

it can be seen that for Linux kernels LeapCDC and SeqCDC

are slightly better at finding duplicates, while for Arch Linux

images SuperCDC and UltraCDC show slightly worse results

than other algorithms.

B. Average Chunk Size

Average chunk size is shown on Fig. 5. Although the

parameter was set to 8 KB in all scenarios, that value is only

achieved by LeapCDC, with other algorithms either having too

big or too small chunks. But the value is notably preserved

across all datasets, which shows consistency of the algorithms.

C. Algorithmic Throughput

Another very important characteristic of the CDC algorithm

is its throughput, and how it impacts the overall system

efficiency. As seen on Fig. 4, chunking throughput differs

drastically for each algorithm, where the clear winner is

SuperCDC algorithm. Despite being a bit weaker than other

algorithms in deduplication ratio, it reaches speeds 3 and 4

times higher than other ones on OpenStreetMaps and VM

datasets, although it doesn’t show that good of results on Linux

kernels dataset.

Other algorithms unfortunately do not perform as well

as SuperCDC, with FastCDC being the second fastest and

LeapCDC and UltraCDC being comparatively equal, but that

can be attributed to chunk sizes, and it’s possible that with

other parameters results could be better.

RabinCDC is the slowest algorithm of them all, which is

due to inefficient inner hash calculation to determine the chunk

boundary, which other algorithms handle in a different, more

efficient way.

D. Chunk Distribution

Chunk distribution is shown on Fig. 7 for SuperCDC as an

example. It shows that for LNX dataset there is quite a lot of

chunks with maximum allowed size, which impacts the overall

performance of the algorithm, while for two others most

chunks are very small, which leads to frequent 4 KB jumps

which help traverse the dataset much faster. This may also

lead to the deduplication ratio being slightly lower compared

to other algorithms.

E. ChunkFS Throughput

Fig. 6 shows the write speed and read speed of different

datasets into and out of ChunkFS respectively. Differences in

throughput between different chunking algorithms are seen

in write speed into ChunkFS, although SuperCDC doesn’t

outperform other algorithms as much as it did in clean form,

and its impact on the speed is not as severe. Even then it is a

clear winner.

Overall, the speed has fallen from around 1 GB/s for most

algorithms down to 300-400 MB/s for all of them, with

RabinCDC only reaching 200 MB/s. The decrease in speed

can be attributed to there being other long operations such

as hashing the chunks, cloning some values and memory

allocation.

Read speed is basically independent of an algorithm, al-

though that can be due to how it is calculated: all file spans and

then the corresponding chunks are continuously read into the

memory, while writing is done in 1 megabyte blocks. Another

interesting difference is that on VM dataset the throughput is

approximately 20% faster than for the other ones, probably

due to its smaller size.

V. CONCLUSION

In this paper we presented ChunkFS, a tool specifically de-

signed for benchmarking and analyzing different deduplication

methods, such as Content Defined Chunking algorithms. We

show the main metrics which determine how well algorithms

behave in comparison to each other. We introduce the most

commonly used data sources which can be used to run the

algorithms on, that resemble real backup data.

One of the main drawbacks of existing comparison tools

is that they only analyze the raw algorithm efficiency, not

considering how a file system can impact the results. This

is taken into consideration in ChunkFS, which is, in itself, a

file system, albeit a simple one. It allows for analysis on an

integrated scenario with different storages and the interaction

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 225 ----------------------------------------------------------------------------



Fig. 3. Deduplication ratio and full deduplication ratio

Fig. 4. Algorithmic throughput

Fig. 5. Average chunk size

between file system components. Another improvement over

existing tools is being able to collect all the necessary metrics

using a simple command and a configuration file, and and

easy-to-parse result.

We have conducted an experiment using ChunkFS, utilizing

6 different chunking algorithms on several datasets, and saw

that SuperCDC is the most effective algorithm in terms of raw

throughput, while other algorithms perform better when it is

needed to save as much space as possible. This data is more or

less consistent with what is seen on an integrated environment

in ChunkFS, in terms of reading and writing speed.

It follows that the ChunkFS tool can be used to effectively

compare different chunking algorithms and collect the neces-

sary metrics by using simple Rust scripts or command-line

interface with configuration files. It was only tested on RAM

storage, but it supports other kinds of key-value storage types

such as databases based on LSM or other kinds of trees, which

can themselves introduce many side effects and change the

evaluation outcome. That should be studied in the future, for

example effects of sled [27] or rocksdb [28], which are most

prominent databases for rust.

There are some Content Defined Chunking algorithms that

were not evaluated in this study, but should be. Besides

these, other deduplication techniques include Similarity Based

Chunking, based on delta coding and finding similarities in

chunks, and Frequency Based Chunking. Those are some of

the yet unexplored but very promising fields, which can also

be analyzed using ChunkFS, as it provides the necessary

machinery for them.

ACKNOWLEDGMENT

This work was supported by St. Petersburg State University

(Pure ID 116636233).

REFERENCES

[1] P. Prajapati and P. Shah, “A review on secure data deduplication: Cloud
storage security issue,” Journal of King Saud University - Computer
and Information Sciences, vol. 34, no. 7, pp. 3996–4007, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1319157820305140

[2] W. Xia, L. Pu, X. Zou, P. Shilane, S. Li, H. Zhang, and X. Wang,
“The design of fast and lightweight resemblance detection for efficient
post-deduplication delta compression,” ACM Trans. Storage, vol. 19,
no. 3, Jun. 2023. [Online]. Available: https://doi.org/10.1145/3584663

[3] H. B. Jehlol and L. E. George, “Big data backup deduplication: A
survey,” Int. J. Sci. Res. Sci. Eng. Technol., pp. 174–191, 2022.

[4] X. Zou, W. Xia, P. Shilane, H. Zhang, and X. Wang, “Building a high-
performance fine-grained deduplication framework for backup storage
with high deduplication ratio,” in 2022 USENIX Annual Technical
Conference (USENIX ATC 22), 2022, pp. 19–36.

[5] P. Krishnaprasad and B. A. Narayamparambil, “A proposal for improving
data deduplication with dual side fixed size chunking algorithm,” in
2013 Third International Conference on Advances in Computing and
Communications, 2013, pp. 13–16.

[6] D. Feng, Data deduplication for high performance storage system.
Springer, 2022.

[7] A. Muthitacharoen, B. Chen, and D. Mazières, “A low-bandwidth
network file system,” vol. 35, 12 2001, pp. 174–187.

[8] W. Xia, H. Jiang, D. Feng, L. Tian, M. Fu, and Y. Zhou,
“Ddelta: A deduplication-inspired fast delta compression approach,”
Performance Evaluation, vol. 79, pp. 258–272, 2014, special Issue:
Performance 2014. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0166531614000790

[9] C. Yu, C. Zhang, Y. Mao, and F. Li, “Leap-based content defined
chunking — theory and implementation,” in 2015 31st Symposium on
Mass Storage Systems and Technologies (MSST), 2015, pp. 1–12.

[10] F. Ni and S. Jiang, “Rapidcdc: Leveraging duplicate locality to accelerate
chunking in cdc-based deduplication systems,” in Proceedings of the
ACM Symposium on Cloud Computing, ser. SoCC ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 220–232.
[Online]. Available: https://doi.org/10.1145/3357223.3362731

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 226 ----------------------------------------------------------------------------



Fig. 6. ChunkFS throughput

Fig. 7. SuperCDC Chunk Distribution for LNX, OSM and VM datasets

[11] W. Xia, X. Zou, H. Jiang, Y. Zhou, C. Liu, D. Feng, Y. Hua, Y. Hu,
and Y. Zhang, “The design of fast content-defined chunking for data
deduplication based storage systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, no. 9, pp. 2017–2031, 2020.

[12] Z. Xu and W. Zhang, “Quickcdc: A quick content defined chunk-
ing algorithm based on jumping and dynamically adjusting mask
bits,” in 2021 IEEE Intl Conf on Parallel Distributed Pro-
cessing with Applications, Big Data Cloud Computing, Sustain-
able Computing Communications, Social Computing Networking
(ISPA/BDCloud/SocialCom/SustainCom), 2021, pp. 288–299.

[13] B. Wan, L. Pu, X. Zou, S. Li, P. Wang, and W. Xia, “Supercdc:
A hybrid design of high-performance content-defined chunking for
fast deduplication,” in 2022 IEEE 40th International Conference on
Computer Design (ICCD), 2022, pp. 170–178.

[14] P. Zhou, Z. Wang, W. Xia, and H. Zhang, “Ultracdc:a fast and sta-
ble content-defined chunking algorithm for deduplication-based backup
storage systems,” in 2022 IEEE International Performance, Computing,
and Communications Conference (IPCCC), 2022, pp. 298–304.

[15] X. Jin, H. Liu, C. Ye, X. Liao, H. Jin, and Y. Zhang, “Accelerating
content-defined chunking for data deduplication based on speculative
jump,” IEEE Transactions on Parallel and Distributed Systems, vol. 34,
no. 9, pp. 2568–2579, 2023.

[16] S. Udayashankar, A. Baba, and S. Al-Kiswany, “Seqcdc: Hashless
content-defined chunking for data deduplication,” in Proceedings of the
25th International Middleware Conference, 2024, pp. 292–298.

[17] A. H. Adhab and N. A. Hussien, “Techniques of data deduplication for
[22] The Linux Kernel Archives. [Online]. Available: https://www.kernel.org/

cloud storage: A review,” International Journal of Engineering Research
and Advanced Technology, vol. 8, no. 04, pp. 07–18, 2022.

[18] A. Liu, A. Baba, S. Udayashankar, and S. Al-Kiswany, “Dedupbench: A
benchmarking tool for data chunking techniques,” in 2023 IEEE Cana-
dian Conference on Electrical and Computer Engineering (CCECE).
IEEE, 2023, pp. 469–474.

[19] M. Gregoriadis, L. Balduf, B. Scheuermann, and J. Pouwelse, “A
thorough investigation of content-defined chunking algorithms for data
deduplication,” arXiv preprint arXiv:2409.06066, 2024, unpublished.

[20] OpenStack. Virtual Machine Images. [Online]. Available: https:
//docs.openstack.org/image-guide/obtain-images.html

[21] OpenStreetMaps backups. [Online]. Available: https://wiki.
openstreetmap.org/wiki/Backup

[23] Enron Email Dataset. [Online]. Available: https://www.cs.cmu.edu/
∼enron/

[24] Wordpress Docker official images. [Online]. Available: https://hub.
docker.com/ /wordpress

[25] nodejs Docker official images. [Online]. Available: https://hub.docker.
com/ /node

[26] The Rust community’s crate registry. Crate sha256. [Online]. Available:
https://crates.io/crates/sha2

[27] High-performance embedded database. [Online]. Available: https:
//docs.rs/sled/latest/sled/

[28] High-performance embedded database. [Online]. Available: https:
//docs.rs/rocksdb/latest/rocksdb/

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 227 ----------------------------------------------------------------------------




