
Classification-Based Barrier Change Point Detection
Methods

Artemii Patov
Saint-Petersburg State University

Saint-Petersburg, Russia

patov.988@gmail.com

Viacheslav Gorikhovskii
Saint-Petersburg State University

Saint-Petersburg, Russia

v.gorikhovskii@spbu.ru

Vladimir Kutuev
Saint-Petersburg State University

Saint-Petersburg, Russia

v.kutuev@spbu.ru

Abstract—The change point detection problem in the time
series arises in a wide variety of fields. In some situations, we
lack the necessary resources to apply complex techniques, so
lightweight approaches are needed.

In this study, we consider lightweight approaches to the change
point detection problem, namely, classification-based barrier
methods. We want to investigate the use of various classifiers
and classification evaluation metrics for change point detection,
so we are creating a framework that makes it easy to build
methods from different components. To study a large number of
constructed methods, we create a flexible benchmarking system
that allows one to evaluate methods using different metrics.

We conduct an empirical study of the methods, present the
results and compare them with existing methods and with each
other. Our implementation of the KNN based method shows high-
quality results. However, we see potential in using at least one
more tested classifier as well.

I. INTRODUCTION

Change point detection in the sequence of observations is

an attempt to detect sudden changes in the incoming dataset,

where not only fundamental changes are possible but also

regular random fluctuations that should not be taken into

account. This problem arises in completely different areas:

finance [1], [2], where, for example, it is necessary to quickly

register changes in the exchange rate; tracking the spread of

epidemic diseases [3], where it is important to monitor the

dynamics of the spread of the epidemic; security [4] requires

an instant response to hacks.

A. Change point detection methods

There are many classifications of change point detection

methods based on their properties. For example, methods are

divided into two types by how completely they know the time

series:

• Offline approach supposes that the data is fully available

before processing it.

• Online approach does not assume knowledge of the entire

data set. Only a part of the data is known at the beginning;

new observations are loaded as the method proceeds.

Based on assumptions about the nature of the input data:

parametric and nonparametric. Parametric methods require

making distributional assumptions about the input data. Some

of them can extract certain properties from the data at the

training stage and change their work mode depending on them.

The behavior of the nonparametric methods does not depend

on the assumptions made about the input data, they are more

universal and often less resource-consuming. However, para-

metric algorithms can demonstrate higher quality in special

cases.

Based on the approaches used, for example:

• Bayesian [5] is a parametric online method based on

analyzing distributions of run lengths (time elapsed since

the last change point was detected) taking into account a

priori parameters and input observations.

• Graph-based are offline nonparametric approaches that

use graphs and algorithms to analyze them. For example,

in [6], [7], a distance graph is constructed based on given

observations.

• Classification-based approaches are based on ML algo-

rithms. These approaches are the focus of the current

study.

B. Study objectives

Our goal is to study one of the lightweight approaches for

the change point detection problem. Namely, classification-

based barrier change point detection methods. We want to be

able to quickly create a large number of methods that work

according to a single scenario. Therefore, we need to create

a template method that can be parameterized with various

classifiers and other parts used, implement these components,

and construct various methods from them. We also want to

automatically study the statistical properties of the constructed

methods. To do this, we need to create a flexible framework

capable of generating the necessary datasets and conducting

various measurements on them. The research is being con-

ducted within the algorithmic statistics project PySATL. It is

worth noting that we deliberately chose the Python language,

focusing not on the effectiveness of the implementations them-

selves, but on the possibility to quickly do a comprehensive

research of the statistical properties of the methods. We also

take into account performance of the methods, but we evaluate

it not absolutely but relatively to each other. In the end, we

want to provide recommendations for each of the methods,

defining their regions of applicability.

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 213 ----------------------------------------------------------------------------



C. Problem Statement

The change point is defined as follows. Consider a sequence

of independent random variables Y = {Y1, . . . , Yn} that take

their values in R
d (d ≥ 1). The sequence is identically

distributed as F0 until a time τ when the distribution changes

to F1:

Yi ∼ F0, i = 1, . . . , τ − 1,

Yi ∼ F1, i = τ, τ + 1, . . . , n,

where F0 �= F1. In the case of a detection problem, the task

is to say if such τ exists in the input sample. In the case of

localization, the task is to specify such a point.

D. Evaluation

Various studies consider different metrics for evaluating and

comparing change point detection methods [8], [9]. The most

of them are the derivatives of the confusion matrix calculation:

power, f-measure, accuracy and others. It also makes sense to

evaluate not only the fact of detection itself, but also the speed

and error of the detection. This gives rise to another class of

metrics, which includes metrics such as the Hausdorff metric,

the mean absolute error, and others.

II. RELATED WORK

The field related to solving the change point detection

problem is actively developing. Review articles significantly

simplify the process of entering the field. The articles [9],

[10] have a detailed description of the terminology used

throughout the subject area and, among other things, consider

possible ways to assess the quality of methods and suggest

their classification of change point detection methods. The

first focuses on the offline methods, the second one provides

a general classification.

Also, the authors of the second study suggest their change

point detection package ruptures1. However, it has a num-

ber of limitations: there is no functionality for processing

time series in parts; it supports only the offline change

point detection mode; there is no necessary infrastructure for

doing experiments. In addition, there is a well-known kats
package [11], which has exactly the same limitations. All

these gaps are filled in our pysatl-cpd2 package, within

which the methods in the current study are implemented and

evaluated.

Speaking of approaches that are closer to our subject, we

will mention several studies. The [12] is a fundament for the

current work: the method it proposes will be implemented and

then generalized. The empirical and analytic results obtained in

aforementioned research are very valuable, and a comparison

will be made with them. The [13] provides nonparametric and

parametric methods based on binary segmentation performed

over the entire time series. The method thus has a number of

limitations: firstly, the method is offline, secondly, it requires

a priori knowledge of the number of change points. Due to

1https://github.com/deepcharles/ruptures
2https://github.com/PySATL/pysatl-cpd

the scrubbing technique, the method we propose will be able

to get rid of the first limitation, and it does not use approaches

that impose the second.

III. METHODOLOGY

A. Scrubbing technique
In our work, the assumption is that change points do not

occur too often. That is, there is only one change point in the

input sample. However, we often deal with huge amount of

data with multiple change points. In this case, we can feed

the time series into the algorithm in small parts, assuming

that there is no more than one change point in each part. The

algorithm will quickly process each part, making a decision

whether there is a change point or not.
As we have seen earlier (Section I-A), the problem of

change point detection can be solved in different contexts:

either the entire data set may be known a priori (offline) or

only a part of it (online). Depending on the situation, the data

can be processed in multiple ways. In the first case, it can

be processed using a sliding window: a limited number of

consecutive observations are considered at a time (Fig. 1).

When processing of such interval ends, it shifts further along

the time series, capturing new points and forgetting about the

same number of old ones.

y1 y2 y3 y4 y5 y6 yn−3 yn−2 yn−1 yn

sliding window W

y1 y2 y3 y4 y5 y6 yn−3 yn−2 yn−1 yn

. . .

y1 y2 y3 y4 y5 y6 yn−3 yn−2 yn−1 yn

Fig. 1. Window sliding over a sample. A special case of Scrubbing technique

However, in many cases, the entire data set cannot be known

from the beginning. In such situations, the time series is

being processed using a scrubbing algorithm. Unlike a sliding

window, the scrubber, if there are not enough observations to

analyze, waits until a sufficient number of observations are

received, so that they can be analyzed.
The scrubber can have several sample processing scenarios:

for example, linear processing of available data and linear

forgetting of old points is the same as sliding window that

differs only in lazy loading of data. This scenario is used in

the current study.
The scrubber can be configured to logarithmically forget

data and to load new points linearly. In this case, the number

of processing points will increase with each step. In addition,

the observations considered by the scrubber may not be

consecutive: it is possible to take completely different parts

of the time series, and so on.

B. General classification-based barrier method
As mentioned earlier, the ideas from the [12] served as the

basis for the concept of the generalized method. To be more

specific, the two-step approach:

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 214 ----------------------------------------------------------------------------



1) Splitting the input sample into two classes by selecting a

barrier

2) Assessing the quality of the partitioning using a quality

metric.

The concept of the generalized method is that the classifier,

as well as the function for assessing classification quality, can

be varied. Specifically, KNN, SVM, Decision Tree, Random

Forest will be used in our work. As for the quality assessment

function, we will try F1, MCC. The pseudocode of the

algorithm can be seen in 1.

Algorithm 1 Classifier-Based Barrier CPD Method

1: Input: sample y1, . . . yn, classifier, quality metric, thresh-
old, left indent, right indent

2: Output: Detected change points
3:

4: Split sample into train sample and test sample
5: change points ← []
6:

7: for barrier ← left to right do
8: classifier.fit(barrier, train sample)
9: classes ← classifier.predict(test sample)

10: statistics ← quality metric(barrier, classes)
11:

12: if statistics > threshold then
13: change points.append(i)

14: return change points

The algorithm tests each point of the sample for a change.

It does not consider observations, that are too close to the

boundaries of the sample, because in this case we have a strong

imbalance between the number of points on the left and on the

right, and therefore accurate analysis is not possible. So, it is

reasonable to consider barriers located at some distance from

the ends (Fig. 2). In pseudocode 1 these indents are denoted

as left and right.

y1 y2 y3 y4 y5 y6 y7 y8

left indent barriers right indent

Fig. 2. An example of input sample of size 8. The length of indents is 2.
The workspace consists of 4 central elements

The algorithm splits the input sample into train and

test parts (Line 4). The algorithm iterates over the central

part (workspace) of the input sample. Each element of the

workspace is considered as a barrier. The classifier is

being fitted with the points that are not considered as the

barriers (Line 8), and then it predicts the classes of the

test sample elements (Line 9). The classification is being

evaluated using the quality metric (Line 10). On line 12 the

quality assessment is being compared to the threshold. If it is

greater than the threshold, then the barrier is a change point.

As we see, all parts are parameterizable.

C. Quality Metrics

As for the metrics for assessing the quality of classification,

we can choose the usual metrics based on confusion matrix,

only in this case negative values will correspond to class 0,

positive values to class 1. Three of them were chosen for

implementation. As in the case of classifiers, they have their

own regions of applicability.

1)

Accuracy(W, τ) =
TP + TN

P +N

is the simplest metric symmetric with respect to classes. Its

disadvantage is that in case of unequal number of elements

in classes, the influence of smaller class decreases with de-

creasing number of elements in it. So, in case of a strong

quantitative preponderance of one of the classes, the result is

very likely to be faulty. It is used when its main property,

symmetry, is required.

2)

F1(W, τ) =
2TP

2TP + FP + FN

is a metric that is non-symmetric with respect to classes. It

means it may change its value when labeling is changed. Also,

F1 does not take true negatives into account.

3)
MCC(W, τ) = (1)

TP ∗ TN − FP ∗ FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(2)

like F1, is non-symmetric, but it takes into account true and

false positives and negatives. And it does not depend on the

varying number of elements in a class. Each class is assessed

relative to the total number of elements in the class. Thus,

MCC can be used even if the classes are of very different sizes.

In many cases, it can give an informative assessment [14], [15]

and can be more truthful than F1.

D. Classifiers

Since the method is supposed to be used in conditions

of having a small amount of resources, only lightweight

classifiers were considered: SVM3, Random Forest4, Decision

Tree5, KNN [12]. They have a sufficient sensitivity not to

miss the change point in a small window. All of them have

their individual regions of applicability. One of our goals is to

specify the regions.

IV. IMPLEMENTATION

A. Methods

Scikit6 module supplies all the necessary classifiers (Sec-

tion III-D). It is actively used in the implementation. As for

classifier configurations, the default ones were mostly retained.

3https://scikit-learn.org/stable/modules/svm.html
4https://scikit-learn.org/1.5/modules/ensemble.html#random-forests
5https://scikit-learn.org/1.5/modules/tree.html
6https://github.com/scikit-learn/scikit-learn

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 215 ----------------------------------------------------------------------------



However, for some of the methods, small experiments have

also been made in order to select optimal hyperparameters.

Currently, the default configuration of classifiers is the fol-

lowing:

• KNN: k = 7
• Decision Tree: nodes are expanded until all leaves are

pure or until all leaves contain less than 2 samples

• Random Forest: 100 trees; for a single tree, the configu-

ration is exactly the same as for Decision Tree classifier.

• Kernel SVM: linear kernel.

The methods implemented in our change point detection

framework have been published on GitHub. It is worth noting

that the implementations of SVM, Decision Tree and Random

Forest are separate from the Accuracy, F1, MCC metrics.

Therefore, they can be freely combined, and in this case, the

resulting methods are the Cartesian product of classifiers and

metrics. As for the KNN-based method: we took the scikit

KNN classifier and combined it with aforementioned metrics.

We also implement an approach [12] that utilizes the classifier

and the combinat orial metric monolithically. Their separation

is fraught with performance loss.

B. Framework for benchmarking

A flexible framework7 has been developed to make various

measurements. The pipeline is built on the basis of workers in

which algorithms are run and the necessary artifacts are saved.

This design allows users to easily expand the framework by

adding new workers with their own algorithm launch order

and storing only the necessary benchmarking information.

An algorithm has been developed to automatically calculate

the threshold for the given significance level. The change

point detection algorithm runs once, saving statistics for each

point of the sample. Next, the optimization problem is solved:

the threshold is calculated using binary search, bringing the

significance level closer to the required value.

V. EVALUATION

The objectives of the study were to evaluate scrubbing clas-

sification methods using various statistical and performance

measures and to compare them with each other and, where

possible, with related studies. For each of the constructed

methods, the following tasks were completed:

• Threshold calculation.

• Power analysis based on trivial datasets.

• Performance benchmarking based on synthetic datasets

with many change points.

A. Experiment setup

The following methods were constructed from the imple-

mented parts for benchmarking:

• KNN with combinatorial metric (CM).

• KNN with F1 metric.

• KNN with MCC metric.

• Decision Tree with MCC metric.

7https://github.com/PySATL/pysatl-cpd/tree/scrubbing-methods-bench

• Random Forest with MCC metric.

• SVM with linear kernel and MCC metric.

• SVM with RBF kernel and MCC metric.

In all cases, the default configurations of the classifiers

were taken (Section IV-A). The length of the scrubber window

was 48 elements. The length of indents on both sides of the

window was 12 elements, so the workspace consisted of 24

central elements. These scrubber hyperparameters proved to

be optimal in general, but for particular cases and specific

methods, they can be selected more individually.

B. Datasets for Monte-Carlo simulation

The purpose of the Monte Carlo simulation was to evaluate

the quality of the methods on the same datasets. Each of

the datasets consists of 10,000 samples with a size of 200,

containing one change point at position 100. Within a single

dataset, samples have the same pair of distributions: the first

one is before the change point, the second one is after it. The

descriptions of the univariate datasets taken can be found in

Table I

We test the hypothesis that there is a change point in the

sample. A lot of different distributions were taken; mostly,

three situations were considered: shift of deviation, mean shift,

and distribution support change.

TABLE I UNIVARIATE
DISTRIBUTIONS

Notation Type Parameters

N 1 normal μ = 0.0, σ = 1.0
N 2 normal μ = 0.0, σ = 3.0
N 3 normal μ = 2.0, σ = 3.0
N 4 normal μ = 2.0, σ = 1.0
U1 uniform min = 0.0, max = 1.0
U2 uniform min = 0.0, max = 2.0
U3 uniform min = −1.0, max = 2.0
U4 uniform min = 0.25, max = 1.0
U5 uniform min = 1.0, max = 1.25
B1 beta α = 1.0, β = 1.0
B2 beta α = 0.5, β = 0.5
B3 beta α = 2.0, β = 2.0
W1 weibull shape = 0.5, scale = 1.0
W2 weibull shape = 1.0, scale = 1.0
W3 weibull shape = 2.0, scale = 1.0

Due to the fact that each method has its own region of

applicability, a qualitative evaluation based only on univariate

datasets is impossible: it is assumed that random forest and

decision tree classifiers work well in the context of multivariate

distributions, where it is possible to select more than one

feature. The description of multivariate distributions can be

found in Table II. The distribution before the change point is

multivariate standard normal. After the change point, there is

a mean shift. The shifts can be found in the Table II. 1000

samples were generated for each of the distributions.

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 216 ----------------------------------------------------------------------------



TABLE II MULTIVARIATE DISTRIBUTIONS WITH IDENTITY COVARIANCE
MATRIX

Notation Shift Dimension

MN −MN1 0.7 10

MN −MN2 1.8 100

MN −MN3 2.7 1000

C. Threshold calculation

Before starting benchmarking, it is necessary to choose the

optimal thresholds. To do this, we fix the significance level,

generate the datasets without change points, and calculate

the threshold at which the significance level will be less

than the set values. A standard set of significance levels of

0.5%, 1%, and 5% was taken. The goal was to calculate

the optimal threshold values for I datasets; the distributions

before the change point were taken; 10,000 samples without a

change point were generated based on them. The threshold was

calculated individually for each triple algorithm-distribution-

significance level. The calculated thresholds can be seen in III.

Comparing the thresholds for the KNN based method calcu-

lated in the framework of the current work with the threshold

from the original study [12], we can see that they are not

very different, there may be a small error due to different

significance levels, different distributions and generation ran-

domness.

As for other methods, it is worth noting that for them the

thresholds are in the range from -1 to 1; this is a property of

the MCC metric. For F1, the threshold would be in the range

from 0 to 1.

D. Power analysis

Let us compare the implemented methods based on uni-

variate datasets using the thresholds shown in Table III.

We calculate the statistical power for each pair algorithm-

distribution. The results are shown in Table IV. The values

are sorted by column 7-NN CM.

Let us start the analysis from the lowest power values. The

algorithms detect almost no change point in the data with B1−
B2 distribution. This can be explained by the similarity of the

beta distributions with the parameters taken. Their similarity

can be tested by calculating the likelihood functions for the

sample points. In most cases, the values of likelihood functions

for each of the distributions will be very close.

Within the distribution of U1−U4, the support changes, but

the change is not strong enough for the algorithms to detect

it.

As for the Weibull distributions, three configurations and

their symmetries were used. One trend is visible: algorithms

perform worse if the distribution with a heavier tail goes before

the change point. In the case of 7-NN, this is most clearly seen:

the difference is approximately 7%.

The meaningful comparison of algorithms begins with the

distribution N 1 − N 2. Two facts are worth noting. The first

is that 7-NN with combinatorial is the only one who has

done a good job of detecting. The second is that changing

the core in SVM from Linear to RBF significantly increases

the probability of detection. It is easy to explain why Decision

Tree performs better than Linear SVM: in the one-dimensional

case, DT is able to divide the support into several small

intervals, classifying each into one of two classes. Linear SVM

divides the whole support into two intervals, and therefore its

accuracy is worse.

In the case of U1 − U2 and U1 − U3 a significant support

change occurs. Using 7-NN, we see that the more the support

changes, the more likely it is to detect a change point. But

since expansion in the case of the second distribution occurs

in both directions, it becomes more difficult for Linear SVM to

find the central point, and the power decreases. The flexibility

of RBF in this case greatly corrects the situation and increases

the power by 50%. Some visual analysis of the samples plots

was made, and it was noted that there may not be much

difference in some local area around the change point, if only

the deviation changes. In this case, it is reasonable to increase

the window size.

As expected, the Random Forest classifier performed better

than Decision Tree in all cases. But such a minor improvement

is hardly worth the resources spent (Section V-F).

Next, let us move on to the analysis of multivariate dis-

tributions. The calculated statistical powers can be found in

Table V. The motivation for choosing such distributions was

the desire to compare with [12]. The results of statistical

benchmarking of our implementation are much better than the

results from the article. It turned out that to get closer to an

absolutely accurate detection of the change point, it is enough

to take k = 7. In the article, k > 10 was used to achieve a

power of 0.8 in much more obvious situations.

If we look at Table V horizontally, we can see that the 7-

NN with the combinatorial metric performed the best. Random

Forest has significantly improved the results of Decision Tree.

RBF SVM has improved the results of Linear SVM.

E. Change of quality metric

We demonstrate the use of various classification quality

assessment metrics based on the 7-NN classifier. 7-NN was

combined with the combinatorial metric described in [12].

We can experiment with different metrics by combining the

implementation of the scikit KNN classifier and the metrics

implemented in our project. The results can be seen in Ta-

bles IV and V.

Changing the classification quality assessment metric wors-

ened the results. The combinatorial metric is the most appro-

priate of the metrics used. F1 performed the worst, missing

a change point, where other metrics would have been more

likely to find it.

F. Performance analysis

To limit the region of applicability of the methods, an

analysis of the spent resources is necessary. We measure the

operating time of each of the methods on the same samples.

We generate three samples of size 1000 with different number

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 217 ----------------------------------------------------------------------------



TABLE III CALCULATED

THRESHOLDS. α= 5%

CM F1 MCC

Distr. 7-NN 7-NN 7-NN Lin. SVM RBF SVM RF DT

N 1 3.25 0.859 0.5 0.414 0.453 0.516 0.516

U1 3.25 0.859 0.5 0.344 0.453 0.516 0.516

B1 3.25 0.859 0.484 0.344 0.453 0.516 0.516

W1 3.25 0.859 0.5 0.391 0.406 0.516 0.516

W2 3.25 0.859 0.5 0.406 0.438 0.516 0.516

W3 3.25 0.859 0.5 0.375 0.453 0.516 0.516

MN1 2.813 0.878 0.5 0.531 0.484 0.563 0.57

MN2 2.625 0.878 0.484 0.52 0.344 0.516 0.578

MN3 2.625 0.878 0.5 0.486 0.34 0.488 0.578

TABLE IV POWER. UNIVARIATE

DISTRIBUTIONS

CM F1 MCC

Distribution 7-NN 7-NN 7-NN RF DT Lin. SVM RBF SVM

B1 − B2 0.1681 0.055 0.128 0.1022 0.1017 0.0587 0.1427

U1 − U4 0.2362 0.066 0.153 0.1361 0.1357 0.1479 0.206

W2 −W3 0.2674 0.075 0.22 0.1474 0.1467 0.1053 0.2479

W1 −W2 0.2871 0.051 0.182 0.1502 0.1499 0.1527 0.2036

W3 −W2 0.3426 0.058 0.147 0.1648 0.1644 0.1446 0.2494

W2 −W1 0.3440 0.073 0.209 0.1572 0.1561 0.1322 0.1527

N 1 −N 2 0.7858 0.081 0.417 0.3749 0.373 0.2945 0.6974

W1 −W3 0.8761 0.131 0.549 0.4281 0.427 0.2607 0.5427

U1 − U2 0.9003 0.11 0.657 0.4253 0.4227 0.922 0.8617

W3 −W1 0.9057 0.105 0.457 0.4986 0.4962 0.3393 0.5212

N 1 −N 3 0.9518 0.136 0.796 0.515 0.5134 0.8552 0.8675

U1 − U3 0.963 0.124 0.574 0.6572 0.6549 0.55 0.9503

N 1 −N 4 0.9976 0.452 0.94 0.7529 0.7516 0.9898 0.9667

U1 − U5 1.0 0.98 1.0 1.0 1.0 1.0 1.0

TABLE V POWER. MULTIVARIATE

DISTRIBUTIONS

CM F1 MCC

Distribution 7-NN 7-NN 7-NN RF DT Lin. SVM RBF SVM

MN −MN1 0.994 0.225 0.841 0.799 0.349 0.757 0.976

MN −MN2 1.0 1.0 1.0 1.0 0.986 1.0 1.0

MN −MN3 1.0 1.0 1.0 1.0 0.999 1.0 1.0

of change points. The samples include random combinations

of distributions from Table I. We ran each of the algorithms

100 times on each of the samples. We run our benchmarks

on a machine running Ubuntu 22.04 with an Intel Core i7-

4790 CPU at 3.60 GHz, using pytest-benchmark python

package. The results can be found in Table VI.

We see that it is not possible to establish a special correla-

tion between the number of change points and the time spent.

The absolute values are not significant because our imple-

mentation is not focused on computational efficiency; we con-

sider only the ratios. Comparing Decision Tree and Random

Forest-based algorithms, we see that there is almost a 140

times increase in spent time. Therefore, in the one-dimensional

case, it is almost pointless to use the Random Forest classifier;

we only get a slight improvement in detection quality. KNN-

based method with combinatorial metric turned out to be 56

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 218 ----------------------------------------------------------------------------



TABLE VI TIME. MEAN ± STDDEV IN MS

Alg.\CP 5 10 20

DT 668 ± 4 672 ± 1 667 ± 1

L. SVM 754 ± 1 755 ± 3 755 ± 3

7-NN CM 42,175 ± 122 42,268 ± 133 42,336 ± 126

RF 93,895 ± 218 93,961 ± 178 93,845 ± 283

times slower than Linear SVM and 63 times slower than

Decision Tree. However, the quality of detection has also

increased significantly compared to the other two classifiers,

as we have seen in Table IV. Linear SVM performed 1.1 times

slower than Decision Tree.

VI. DISCUSSION

A fairly large pool of heterogeneous distributions was sup-

posed to make it possible for all algorithms to show themselves

in different conditions. Despite this, in absolutely all cases, 7-

NN with combinatorial metric turned out to be statistically

better than others. However, it is quite slow.

In terms of Random Forest, experiments have shown that the

configuration that is used in the current study is not appropriate

for the contexts taken. It takes a long time to detect with very

low detection quality.

Choosing between Decision Tree and SVM at the moment,

it is worth giving the preference to SVM: its processing time

is almost similar to Decision Tree. However, the possibility

of using different kernels makes it very flexible. If in some

situations Decision Tree shows better results, changing the

Linear kernel to RBF will significantly improve the results.

It should be noted that on all the datasets used (except the

most obvious U1 −U4), the probability of detecting a change

point using Decision Tree was less than 63%. This indicates

that the method with its default configuration is insensitive.

The SVM results are much better: on some of the distributions,

it detects a change point with a probability of more than 75%.

Using the RBF kernel significantly improves the results, in

some cases, by more than 35%.

In the multidimensional case, the situation repeats itself:

7-NN shows incredibly good results. Kernel SVM performs

better than Random Forest and Decision Tree. And changing

the SVM kernel from Linear to RBF increases its power even

more.

The analysis shows that if a fast method is required, then

using the kernel SVM based method is worth considering.

However, if the task is not to quickly analyze the data, but to

achieve a high detection quality, one should take the sensitive

7-NN based method with combinatorial metric.

The analysis of applying various metrics for the 7-NN

classifier implies that different metrics should be tried for other

methods as well. Choosing the appropriate metric can greatly

improve the results; for example, the SVM-based method in

many cases gives better results than 7-NN with the MCC

metric (Tables IV and V). A kernel SVM with a good quality

metric can be a worthy competitor for 7-NN classifier with a

combinatorial metric.

VII. FUTURE WORK

The choice of the optimal metric to assess the quality of

the classification remains for the future.

In addition, we need a deeper study of classification-based

barrier change point detection methods. It is worth analyzing

other properties of the methods:

• Consumed memory

• How window size affects detection quality

• How workspace size inside the window affects detection

quality

In the current study, the entire analysis is dedicated to

the problem of change point detection. But the methods can

also solve the problem of change point localization. In such

a problem statement, we can study other properties of the

methods, for example, the speed of detecting a change point,

i.e. the minimum number of observations following the change

point, necessary to detect the change point itself. However,

in the case of scrubbing algorithms, this property needs to

be reformulated. Scrubbing algorithms analyze one window

completely and isolated from other parts of the time series. If

there is a change point in the window, then all the elements of

the window are used to detect it. Then the speed of detection

of a change point is controlled by the size of the window. So,

we need to look at how changing the window size affects the

quality of detection.

VIII. CONCLUSION

We proposed a generalized classification-based barrier ap-

proach to the problem of change point detection. Within this

approach, we implemented several methods. We also proposed

our approach to the study of such methods. We have created

a flexible benchmarking framework that allows us to generate

datasets with different distributions, to automatically conduct

empirical studies of methods, and to compare methods by their

various properties.

More specifically, 7 methods were constructed and evaluated

within the same set of different contexts. We have provided

some of the results obtained using our benchmarking system in

the current paper, but a large number of measurements remain

for the future. The results were analyzed, and we made some

judgments about the regions of applicability of each of the

methods. We also compared our methods with existing ones.

It turned out that our implementation statistically does a better

job of detecting a change point than the implementation from

the original study using nearest neighbors [12]. In addition,

it was concluded that there are other classifiers, even more

lightweight ones, which, if you choose the right metric, will

be able to compete with KNN in the quality of change point

detection.

The further development of the benchmarking system,

which takes place within the pysatl-cpd project, will make it

possible to compare different types of change point detection

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 219 ----------------------------------------------------------------------------



methods, such as Bayesian [5], Graph-based [6], [7], and

others, implemented in the framework.

ACKNOWLEDGMENT

This work was supported by St. Petersburg State University

(Pure ID 116636233).

REFERENCES

[1] H. Takayasu, “Basic methods of change-point detection of financial
fluctuations,” 06 2015, pp. 1–3.

[2] A. Pepelyshev and A. S. Polunchenko, “Real-time financial surveillance
via quickest change-point detection methods,” 2015. [Online]. Available:
https://arxiv.org/abs/1509.01570

[3] W. Yang, M. Lipsitch, and J. Shaman, “Inference of seasonal and
pandemic influenza transmission dynamics,” Proceedings of the National
Academy of Sciences, vol. 112, no. 9, pp. 2723–2728, 2015. [Online].
Available: https://www.pnas.org/doi/abs/10.1073/pnas.1415012112

[4] Y. Li, R. Qiu, and S. Jing, “Intrusion detection system using online
sequence extreme learning machine (os-elm) in advanced metering
infrastructure of smart grid,” PLOS ONE, vol. 13, p. e0192216, 02 2018.

[5] R. P. Adams and D. J. C. MacKay, “Bayesian online changepoint
detection,” 2007. [Online]. Available: https://arxiv.org/abs/0710.3742

[6] H. Chen and N. Zhang, “Graph-based change-point detection,” The
Annals of Statistics, vol. 43, no. 1, pp. 139 – 176, 2015. [Online].
Available: https://doi.org/10.1214/14-AOS1269

[7] Y. Zhang and H. Chen, “Graph-based multiple change-point detection,”
2021. [Online]. Available: https://arxiv.org/abs/2110.01170

[8] G. Burg and C. Williams, “An evaluation of change point detection
algorithms,” 03 2020.

[9] C. Truong, L. Oudre, and N. Vayatis, “Selective review of offline change
point detection methods,” Signal Processing, vol. 167, p. 107299, 09
2019.

[10] S. Aminikhanghahi and D. Cook, “A survey of methods for time series
change point detection,” Knowledge and Information Systems, vol. 51,
05 2017.

[11] X. Jiang, S. Srivastava, S. Chatterjee, Y. Yu, J. Handler, P. Zhang,
R. Bopardikar, D. Li, Y. Lin, U. Thakore, M. Brundage, G. Holt,
C. Komurlu, R. Nagalla, Z. Wang, H. Sun, P. Gao, W. Cheung,
J. Gao, Q. Wang, M. Guerard, M. Kazemi, Y. Chen, C. Zhou,
S. Lee, N. Laptev, T. Levendovszky, J. Taylor, H. Qian, J. Zhang,
A. Shoydokova, T. Singh, C. Zhu, Z. Baz, C. Bergmeir, D. Yu,
A. Koylan, K. Jiang, P. Temiyasathit, and E. Yurtbay, “Kats,” 3 2022.
[Online]. Available: https://github.com/facebookresearch/Kats

[12] H. Chen, “Sequential change-point detection based on nearest
neighbors,” The Annals of Statistics, vol. 47, no. 3, pp. 1381 – 1407,
2019. [Online]. Available: https://doi.org/10.1214/18-AOS1718

[13] M. Londschien, P. Bühlmann, and S. Kovács, “Random forests for
change point detection,” 05 2022.

[14] D. Chicco and G. Jurman, “The matthews correlation coefficient (mcc)
should replace the roc auc as the standard metric for assessing binary
classification,” BioData Mining, vol. 16, 02 2023.

[15] D. Chicco, “Ten quick tips for machine learning in computational
biology,” BioData Mining, vol. 10, 12 2017.

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 220 ----------------------------------------------------------------------------




