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Abstract—Goodness-of-fit testing is a statistical methodology
used to assess whether a dataset conforms to a hypothesized
theoretical distribution or model. This process is critical across
scientific and industrial domains — from validating normality
assumptions in medical research to evaluating financial risk
models — as it ensures the reliability of subsequent analyses and
conclusions. However, the effectiveness of such testing depends
on the choice of criteria, which vary in their sensitivity to sample
size, significance level, and alternative hypotheses.

To address this challenge, we propose a flexible, open-source
framework designed for systematic comparison of goodness-of-
fit criteria. The framework enables researchers to configure
experiments by adjusting parameters such as sample size, signifi-
cance level, and alternative distributions, while offering modular
integration under any criterion. Its architecture decouples data
generation, criterion application, and result analysis, ensuring
reproducibility and scalability.

Using this framework, we provide a comprehensive compar-
ison of normality criteria, evaluating their performance under
varying sample sizes and alternative distributions. The results
demonstrate significant differences in criterion power and robust-
ness, underscoring the importance of context-aware methodology
selection. This work advances statistical practice and supports the
development of new criteria.

I. INTRODUCTION

Trying to describe the main tasks of mathematical statistics

in one sentence, we can say that we want to draw conclusions

about the world around us based on observations. Various

methods help us draw these conclusions, one of which is

goodness-of-fit testing. This method is used to assess how well

a given data set matches theoretical models or distributions.

This type of testing plays an important role in various sci-

entific disciplines and industries, including biology, medicine,

physics, economics, engineering, marketing, and psychology,

where verification of data compliance with a theoretical model

is necessary to obtain reliable conclusions and ensure the

correctness of subsequent analysis. [1] [2] [3]

To conduct such testing, goodness-of-fit criteria are used.

They represent some rules, which become a base for a decision

of rejecting the hypothesis. The criteria are based on the

sample data statistics calculation. Statistics always have a

limit distribution, but its analytical representation is not always

known.

For example, there are many developed criteria for

goodness-of-fit testing for a normal distribution. [4] The main

question is which criterion is better to use in a particular

situation, since they all give different results, depending on the

parameters of the experiment, such as the significance level,

the size of the input data, the alternative hypothesis and its

parameters. In this regard, comparative studies are conducted

with different lists of criteria.

Currently, there are several tools for goodness-of-fit testing,

such as SciPy, R packages and others. [5] [6] Their main

problem is the lack of flexibility in testing and the lack of

functionality for comparing criteria. We will talk about this in

detail in Section 2.

In addition, new criteria are developed over time. Conse-

quently, it makes sense to compare them with well-known cri-

teria in order to obtain information about the appropriateness

of their application.

All of the above led us to the idea of creating a framework

for conducting statistical experiments comparing the goodness-

of-fit criteria. Designing the framework, the following require-

ments were highlighted:

1) Configurability of the experiment, taking into account

the parameters mentioned above.

2) Easy adding a new criterion to the framework.

3) An option to execute criteria independently.

In this article, we present an open-source framework1 for

conducting statistical experiments based on goodness-of-fit

criteria, as well as the results of a comparison of goodness-

of-fit criteria powers for normal distribution carried out using

the framework.

II. RELATED WORK

The following section provides a structured overview of

existing tools and frameworks related to goodness-of-fit testing

and criterion comparison. This review highlights the limita-

tions of current solutions, which the proposed framework aims

to address.

1) Classical Statistical Packages
• R (stats, goftest, fitdistrplus)

The R programming language offers packages such

as stats, which includes functions for common

goodness-of-fit tests (e.g., Pearson’s chi-square via

chisq.test, Kolmogorov-Smirnov via ks.test, and

Shapiro-Wilk for normality via shapiro.test). Pack-

ages like goftest and fitdistrplus extend functionality

by implementing tests such as Anderson-Darling

and providing visualization tools. However, these

tools lack built-in functionality for criterion com-

parison or customizable experimental configurations

(e.g., variable sample sizes, significance levels).

1https://github.com/PySATL/pysatl-experiment
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• Python (SciPy, statsmodels)
Libraries such as scipy.stats (Kolmogorov-Smirnov,

chi-square criteria and others) and statsmodels (nor-

mality criteria like Lilliefors) enable goodness-of-

fit testing but focus on individual tests rather than

systematic criterion evaluation. For instance, com-

paring criteria for normality requires manual result

aggregation and analysis, as no infrastructure exists

for automated benchmarking.

2) Commercial Platforms
• MATLAB (Statistics and Machine Learning

Toolbox) Provides functions such as chi2gof, kstest,
and lillietest, but similar to R/Python, it lacks native

support for criteria comparison within a unified

framework. Users must manually program loops to

analyze criterion sensitivity.

• SAS (PROC UNIVARIATE)
Offers normality tests (e.g., Shapiro-Wilk,

Kolmogorov-Smirnov) but is constrained by

its proprietary interface and limited customization.

• JMP (Distribution Platform)
A graphical interface for distribution analysis with

automated test applications. However, criterion

comparisons require manual data export and post-

processing.

3) Research Tools
• Minitab, SPSS

Commercial GUI-based software with basic

goodness-of-fit tests (e.g., chi-square, Anderson-

Darling). Their limitations include the absence of

APIs for experiment automation and poor support

for new criteria.

• HypothesisTests.jl (Julia)
A Julia package for goodness-of-fit testing with

extensibility features. However, Julia’s ecosystem is

less widespread, and the tool lacks infrastructure for

criterion benchmarking.

A. Drawbacks of existing solutions

1) Lack of unified frameworks
Most tools implement individual criteria but there is

no infrastructure for systematic comparison. Users must

manually configure experiments and aggregate results.

2) Limited flexibility
Even in robust environments like R or Python, inte-

grating new criteria demands custom code development,

pipeline integration, and validation.

3) Insufficient support for experimental parameters
Many tools do not allow to variate following parameters

easily:

• Significance levels;

• Sample sizes;

• Alternative distribution parameters;

• Data generation and visualization configuration.

B. How the proposed framework addresses these drawbacks
As outlined in the introduction, the proposed framework

resolves the above issues through:

• Modular architecture: decoupled components for data

generation, criteria, and analysis.

• Configurability: experiment parameters defined by user.

• Extensibility: simplified addition of new criteria via

standardized interfaces.

• Comparative analysis: built-in functionality for evaluat-

ing power and result visualization.

III. FRAMEWORK

In this section we describe the PYSATL Experiment frame-

work.

A. Workflow, Architecture, and Implementation
The architecture of the proposed solution is illustrated in

Fig. 1. The system is developed using Python and employs

the following technical stack: SQLAlchemy as the ORM

framework, Matplotlib for creating visualizations, Scipy for

fundamental statistics algorithms, Pandas for data manipula-

tion, and Numpy for scientific computing and optimizations.

The core of the application is a pipeline-based experiment

mechanism, with the start point interface. The system includes

three primary modules:

1) Data Generator: This module is designed to synthesize

datasets with diverse statistical properties and distribu-

tions. This module is responsible for generating syn-

thetic data that adheres to specified probability distribu-

tions. The module supports the generation of data from a

wide range of probability distributions, including but not

limited to: Gaussian, Uniform Distribution, Exponential

Distribution, Log-Normal Distribution.

2) Worker: This module calculates metrics using generated

data obtained from the Data Generator. This module is

designed to handle large-scale datasets efficiently and is

a critical component in the data pipeline, enabling it to

calculate actionable information from synthetic data.

3) Report Generator: This module is a comprehensive tool

designed to automate the creation of detailed, structured,

and visually appealing reports from raw data, obtained

in worker. The module supports the use of customizable

generators to ensure consistency in report formatting and

styling.

The workflow of the application is structured as follows:

1) The experiment creation process begins with the config-

uring pipeline (threads count, sample sizes, goodness-

of-fit tests, alternatives).

2) Then, data is generated according to the experiment

configuration. This phase ensures that the data is rep-

resentative, high-quality, and suitable for addressing the

research question.

3) Generated data is processed by Worker, which calculates

statistics of interest to the researcher.

4) Based on calculated results, a detailed report is gener-

ated.
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Fig. 1. The architecture of the PYSATL Experiment framework

B. Framework features

The PYSATL Experiment framework encompasses the fol-

lowing features, designed to enhance user experience and

efficiency in conducting an experiment:

1) Pipeline customization: The framework allows users to

customize every stage of the pipeline to meet their

specific needs. This flexibility is essential for addressing

the diverse requirements of modern data-driven research

and applications. The framework’s modular architecture

enables users to design, modify, and optimize their

analysis pipelines, ensuring that they can adapt to vary-

ing data types, research questions, and computational

constraints.

2) Progress Monitoring: A progress bar is integrated into

the framework, providing users with detailed informa-

tion on the remaining workload. This feature displays

the number of generated data left to process and the

average time required per generating data, enabling users

to accurately estimate the total time needed to complete

the task.

3) Different databases support: Robust support for multiple

data sources and databases, enabling users to seamlessly

integrate and analyze data from diverse origins. The

framework natively supports popular relational database

management systems (RDBMS) such as MySQL, Post-

greSQL, Oracle, SQLite and others.

4) Parallelization: The framework incorporates a special-

ized generation and calculation parallelization technique.

Users can specify the number of threads for each step of

the pipeline. This approach enables users to parallelize

the generation and calculation process.

5) Efficiency Considerations: A key innovation in the pro-

posed framework is the introduction of a shared store

feature, which enables multiple users to collaboratively

access and utilize precomputed critical values, signifi-

cantly reducing computation time and resource usage.

This feature is particularly valuable in scenarios where

goodness-of-fit testing involves repeated calculations of

critical values for large datasets or complex models,

as it eliminates redundant computations and promotes

efficiency across teams and projects.

IV. POWER COMPARISON EXPERIMENT

In this work 36 goodness-of-fit tests of normality are used.

Among these, some criteria are universal and can be applied

to test not only normality but also other distributions, such as

exponentiality, weibullness and others. Others are specifically

designed for evaluating normality.

1) Chi-Square Test (CHI2) [7]

2) Kolmogorov–Smirnov (KS) [8]

3) Anderson–Darling (AD) [9]

4) Cramer–Von Mises (CVM) [10]

5) Shapiro–Wilk (SW) [11]

6) Skew (SKEW) [12]

7) Kurtosis (KURTOSIS) [12]

8) Lilliefors (LILLIE) [13]

9) D’Agostino (D) [14]

10) Shapiro–Francia (SF) [15]

11) D’Agostino–Pearson (DAP) [16]

12) Filliben (Filli) [17]

13) Martinez–Iglewicz (MI) [18]

14) Epps-Pulley (EP) [19]

15) Jarque-Bera (JB) [20]

16) Hosking (HOSKING1−HOSKING4) [21]

17) Cabaña-Cabaña (CC1) [22]

18) Chen-Shapiro (CS) [23]

19) Modified Shapiro-Wilk (SWRG) [24]

20) Doornik-Hansen (DH) [25]

21) Zhang Q (ZQ) [26]

22) Zhang Q∗(ZQS) [26]

23) Glen-Leemis-Barr (GLB) [27]

24) Bonett-Seier (BS) [28]

25) Bontemps-Meddahi (BM1, BM2) [15]

26) Zhang-Wu (ZWC,ZWA) [29]

27) Gel-Miao-Gastwirth (GMG) [30]

28) Robust Jarque-Bera (RJB) [30]

29) Looney-Gulledge (LG) [31]

30) Ryan-Joiner (RJ) [32]

31) Coinβ2
3 (COIN) [33]

A. Experiment organization
In this section the experiment is discussed. Experiment

consists of 5 steps:

1) Forms alternative hypothesis. Three distribution

groups are considered: symmetric distributions, asym-

metric distributions and modified normal distributions.

2) Data generation. Generating 1000 samples of alterna-

tive hypothesis distributions with sample sizes 30, 40,

50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700,

800, 900, 1000.

3) Power calculation. Calculate power for each alternative

and significance levels 0.1, 0.05 and 0.01.

4) Estimate performance. Performance for each test is es-

timated and calculated mean, standard deviation, median

and 0.95 percentile. To achieve this result each test was

run 10000 times.

5) Analyze results. The obtained data was analyzed and

recommendations of criteria usage were formed.

Symmetric distributions considered in this research are:

• three cases of the Beta(a, b) distribution Beta(0.5; 0.5),
Beta(1; 1), and

Beta(2; 2), where a and b are the shape parameters;
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• three cases of the Cauchy(t, s) distribution

Cauchy(0; 0.5), Cauchy(0; 1), and Cauchy(0; 2),
where t and s are location and scale parameters;

• one case on the Laplace(t, 5) distribution Laplace(0; 1),
where t and s are location and scale parameters;

• one case on the Logistic(t, s) distribution Logistic(2; 2),
where t and s are the location and scale parameters;

• four cases on the Student(v) distribution Student(1),
Student(2), Student(4), and Student(10), where v is

the number of degrees of freedom;

• five cases of the Tukey(A) distribution Tukey(0.14),
Tukey(0.5), Tukey(2), Tukey(5), and Tukey(10),
where A is the shape parameter;

• one case of the standard normal N(0; 1) distribution.

Asymmetric distributions considered this research are:

• four cases of the Beta(a, b) distribution Beta(2; 1),
Beta(2; 5), Beta(4; 0.5), and Beta(5; 1);

• four cases of the Chi − squared(v) distribution χ2(1),
χ2(2), χ2(4), and χ2(10), where v is the number of

degrees of freedom;

• six cases of the Gamma(a, b) distribution Gamma(2; 2),
Gamma(3; 2),
Gamma(5; 1), Gamma(9; 1), Gamma(15; 1), and

Gamma(100; 1), where a and b are the shape and scale

parameters;

• one case of the Gumbel(t, s) distribution Gumbel(1; 2),
where t and s are the location and scale parameters;

• one case of the Lognormal(t, s) distribution LN(0; 1),
where t and s are the location and scale parameters;

• four cases of the Weibull(a, b) distribution

Weibull(0.5; 1), Weibull(1; 2), Weibull(2; 3.4),
and Weibull(3; 4), where a and b are the shape and

scale parameters.

Modified normal distributions considered in this research

are:

• six cases of the standard normal distribution truncated

at a and b Trunc(a; b) Trunc(−1; 1), Trunc(−2; 2),
Trunc(−3; 3), Trunc(−2; 1), Trunc(−3; 1), and

Trunc(−3; 2);
• nine cases of a location-contaminated standard

normal distribution, hereon termed LoConN(p; a)
LoConN(0.3; 1),
LoConN(0.4; 1), LoConN(0.5; 1), LoConN(0.3; 3),
LoConN(04; 3),
LoConN(0.5; 3), LoConN(0.3; 5), LoConN(0.4; 5),
and LoConN(0.5; 5), which are referred 10 as

NORMAL2;

• nine cases of a scale-contaminated standard

normal distribution, hereon termed ScConN(p; b)
ScConN(0.05; 0.25), ScConN(0.10; 0.25),
ScConN(0.20; 0.25), ScConN(0.05; 2),
ScConN(0.10; 2), ScConN(0.20; 2),
ScConN(0.05; 4),
ScConN(0.10; 4), and ScConN(0.20; 4);

TABLE I. COUNT TOP 5 MOST POWERFUL 
CRITERIA

Test n < 100 100 ≤ n < 500 500 ≤ n ≤ 1000
HOSKING1 66 65 63
CS 65 63 66
ZWA 65 61 63
GLB 65 60 63
DH 54 62 65
BM2 52 54 58
HOSKING2 44 46 55
BM1 43 56 62
CC1 43 47 56
GMG 36 32 35
BS 32 29 30
HOSKING4 27 37 43
MI 23 16 11
ZQS 21 11 11
D 17 17 18
SW 14 7 5
ZQ 11 7 5
SWRG 11 5 2
COIN 3 4 4
KS 1 1 0

• twelve cases of a mixture of normal distributions,

hereon termed MixN(p; a; b) MixN(03; 1; 0.25),
MixN(04; 1; 0.25), MixN(0.5; 1; 0.25),
MixN(0.3; 3; 0.25), MixN(0.4; 3; 0.25),
MixN(0.5; 3; 0.25), MixN(0.3; 1; 4), MixN(04; 1; 4),
MixN(0.5; 1; 4), MixN(0.3; 3; 4), MixN(0.4; 3; 4),
and MixN(0.5; 3; 4).

B. Experiment result analysis

The statistical power of each criterion is calculated and

aggregated in table2.

From the table of powers was selected the top most powerful

5 criteria for each sample size, and counted the number of

occurrences of each criterion in the list. Calculated number of

occurrences was divided into three groups 30–90, 100–400,

500–1000. The result is presented in Table I.

It can be easily seen that HOSKING1 stands out as the

most powerful criterion among the others in the range 30–

90 of sampling sizes. Additionally, CS, ZWA, and GLB

criteria exhibit considerable power, particularly when applied

to sample sizes ranging from 30 to 90. For sample sizes

ranging from 100 to 400, HOSKING1 continues to assert its

dominance as the most powerful criterion. Similarly, the CS,

ZWA, and GLB criteria maintain their status as formidable

contenders in terms of power within this sample size range.

In the context of sample sizes from 500 to 1000, a close

examination of Table I reveals that the CS test emerges as

the the most powerful criterion, closely followed by the DH

criterion.

Despite the statistical power of goodness-of-fit criteria, it

remains crucial for engineers to understand their practical

effectiveness in real-world applications. Let us take a look at

performance of the most powerful goodness-of-fit criteria from

2https://github.com/PySATL/pysatl-experiment/blob/result/normality/result/
normality/report.pdf
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Fig. 2. Performance of HOSKING1, CS, ZWA, GLB criteria

Fig. 3. Performance of CS and DH criteria

Table I: HOSKING1, CS, ZWA, GLB. Performance of these

criteria is shown in Fig. 2. It can be easily seen that HOSK-

ING1 criterion and CS criterion have better performance than

ZWA, GLB.

Our following analysis will be aimed at studying each group

of alternatives separately: symmetric distributions, asymmetric

distributions and modified normal distributions.

The comparison result for the group of symmetric distri-

butions is presented in Table II. It is evident that the criteria

BM2, GLB, CS, and ZWA demonstrate the highest statistical

power for sample sizes ranging from 30 to 90. Performance

of BM2, GLB, CS, and ZWA is presented in Fig. 4. It is

clear that BM2 and CS have better performance than GLB

and ZWA. For larger sample sizes between 100 and 400,

the criteria BM2, DH, and HOSKING1 emerge as the most

powerful. Benchmarking of this criteria is presented in Fig. 5.

Furthermore, the data presented in Table II indicate that BM2,

GLB, and CS are the most effective criteria for sample sizes

spanning 500 to 1000. Performance comparison for these

criteria is shown in Fig. 6. These findings highlight the varying

performance of goodness-of-fit criteria across different sample

Fig. 4. Performance of BM2, CS, ZWA, GLB criteria

Fig. 5. Performance of HOSKING1, BM2, DH criteria

sizes, underscoring the importance of selecting appropriate

criteria based on the scale of the dataset under analysis.

Another category of alternatives under investigation com-

prises asymmetric distributions. The results of the most pow-

erful tests for this group are summarized in Table III. Analysis

of the table reveals that HOSKING1, CS, ZWA, and DH

consistently exhibit the highest statistical power across all

sample sizes. Additionally, as illustrated in Fig. 2 and Fig. 3,

HOSKING1 and CS demonstrate the fastest computational

performance among the tested criteria. This combination of

high power and efficiency makes them particularly suitable

for researchers and engineers who require robust and rapid

goodness-of-fit assessments, especially in time-sensitive or

resource-constrained applications.

In certain scenarios, distinguishing between a standard nor-

mal distribution and a modified normal distribution is critical.

Table IV presents the occurrences of the top five most powerful

criteria, categorized by sample sizes, for this purpose. From

Table IV, it is evident that HOSKING1, GLB, and CS are the

most powerful tests for sample sizes ranging from 30 to 90,

and they maintain their dominance for sample sizes between
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Fig. 6. Performance of BM2, CS, GLB criteria

TABLE II. COUNT TOP 5 MOST POWERFUL CRITERIA FOR 
SYMMETRIC

Test n < 100 100 ≤ n < 500 500 ≤ n ≤ 1000
BM2 14 14 15
GLB 14 13 15
CS 14 12 15
ZWA 14 12 14
DH 13 14 15
HOSKING1 13 14 14
BS 12 12 12
BM1 11 13 15
GMG 12 12 12
HOSKING2 9 9 12
CC1 8 8 13
D 5 5 7
MI 5 5 3
HOSKING4 3 7 9
COIN 3 3 3
ZQS 2 1 2
ZQ 2 1 2
SW 2 1 2
SWRG 1 1 1
KS 1 1 0

TABLE III. COUNT TOP 5 MOST POWERFUL CRITERIA FOR 
ASYMMETRIC

Test n < 100 100 ≤ n < 500 500 ≤ n ≤ 1000
HOSKING1 20 20 20
CS 20 20 20
ZWA 20 20 20
DH 19 20 20
CC1 19 20 18
GLB 19 16 18
BM2 16 15 17
BM1 14 18 19
HOSKING2 9 12 16
ZQS 8 4 4
GMG 5 5 7
HOSKING4 4 7 10
D 3 3 2
BS 3 2 4
SW 3 1 0
SWRG 3 0 0
MI 1 2 1
ZQ 1 0 1
COIN 0 1 1

TABLE IV. COUNT TOP 5 MOST POWERFUL CRITERIA FOR MODIFIED 
NORMAL DISTRIBUTION

Test n < 100 100 ≤ n < 500 500 ≤ n ≤ 1000
HOSKING1 33 31 29
GLB 32 31 30
CS 31 31 31
ZWA 31 29 29
HOSKING2 26 25 27
DH 22 28 30
BM2 22 25 26
HOSKING4 20 23 24
GMG 19 15 16
BM1 18 25 28
BS 17 15 14
MI 17 9 7
CC1 16 19 25
D 9 9 9
ZQS 9 6 5
SW 9 5 3
ZQ 8 6 2
SWRG 7 4 1

TABLE V. RESULT TABLE

Alternative n < 100 100 ≤ n < 500 500 ≤ n ≤ 1000
Symmetric BM2, GLB, BM2, DH, BM2, GLB,

CS, ZWA HOSKING1 CS
Asymmetric HOSKING1, HOSKING1, HOSKING1,

CS CS CS
Modified HOSKING1, HOSKING1, ZWA,

GLB, CS GLB, CS DH

100 and 400. Upon closer examination of Table IV for the

sample size range of 500 to 1000, it becomes apparent that

these criteria, along with ZWA and DH, exhibit significantly

higher statistical power compared to other criteria. This high-

lights their effectiveness in distinguishing between standard

and modified normal distributions across a wide range of

sample sizes.

Let us discuss the summary Table V.

Based on the analysis of the symmetric distribution group,

the selection of the most appropriate goodness-of-fit criteria

depends significantly on the sample size, as evidenced by the

results presented in Table V. For small sample sizes (less than

100), the criteria BM2, GLB, CS, and ZWA demonstrate supe-

rior statistical power and are therefore recommended for use.

These criteria are particularly effective in detecting deviations

from symmetry in smaller datasets. For moderate sample sizes

ranging from 100 to 500, the tests BM2, DH, and HOSKING1

emerge as the most powerful. Their robust performance in this

range makes them well-suited for applications where sample

sizes are neither too small nor excessively large. For larger

sample sizes exceeding 500, the criteria BM2, GLB, and CS

are identified as the most effective. These criteria exhibit high

statistical power and reliability when applied to larger datasets,

ensuring accurate assessments of distributional symmetry.

For the asymmetric group of distributions, the analysis

of results presented in Table V indicates that the criteria

HOSKING1 and CS consistently demonstrate superior statis-
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tical power across all sample sizes. These criteria are highly

effective in detecting deviations from asymmetry, regardless of

whether the dataset is small, moderate, or large in size. The

robustness of HOSKING1 and CS makes them particularly

suitable for a wide range of applications, as they reliably iden-

tify distributional asymmetries even in challenging scenarios.

This consistency in performance underscores their utility as

preferred choices for goodness-of-fit testing when dealing with

asymmetric distributions.

Based on the analysis of the modified normal distribution

group, the optimal selection of goodness-of-fit criteria varies

depending on the sample size, as detailed in Table V. For small

sample sizes (less than 100), the criteria HOSKING1, GLB,

and CS exhibit the highest statistical power and are therefore

recommended for use. These criteria are particularly effective

in identifying deviations from the modified normal distribution

in smaller datasets. For moderate sample sizes ranging from

100 to 500, HOSKING1, GLB, and CS continue to demon-

strate strong performance, making them reliable choices for

this range. Their consistency in detecting deviations ensures

accurate results for datasets of intermediate size. For larger

sample sizes exceeding 500, the criteria ZWA and DH emerge

as the most powerful. These criteria are better suited for

handling the complexities of larger datasets, providing robust

and accurate assessments of deviations from the modified

normal distribution.

These findings, derived from Table V, offer clear guid-

ance for researchers and practitioners in selecting the most

appropriate goodness-of-fit criteria based on the scale of their

data. This ensures both accuracy and efficiency in evaluating

modified normal distributions across varying sample sizes.

V. CONCLUSION AND FUTURE WORK

This study presents a comprehensive framework for con-

ducting goodness-of-fit experiments in statistical analysis,

designed to evaluate how well observed data aligns with

theoretical models. The framework introduces a systematic

approach to assessing model adequacy, incorporating robust

statistical criteria and visualization tools to ensure accurate

and interpretable results. To the best of our knowledge, this

framework is uniquely tailored for flexibility and scalability,

making it suitable for both small-scale and large-scale datasets.

The framework is lightweight, customizable, and accessible,

enabling researchers to perform goodness-of-fit analyses with-

out relying on resource-intensive cloud solutions. Its modular

design allows users to adapt the framework to specific research

needs, including the selection of appropriate statistical criteria

and the integration of additional diagnostic tools.

In the future, we plan to expand the framework by in-

corporating advanced features such as automated criterion

selection, support for other state-of-art criteria, and enhanced

visualization techniques for better interpretation of results.

Additionally, we aim to integrate machine learning algorithms

to improve the detection of subtle deviations between observed

and expected data. These advancements will further solidify

the framework’s utility in a wide range of applications, from

academic research to industry-specific analyses.
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