
Effect of JOIN Type on Query Performance

Andrea Meleková, Michal Kvet
University of Zilina

Žilina, Slovakia
Andrea.Melekova@uniza.sk,Michal.Kvet@uniza.sk

Abstract—Optimal query performance is crucial for database
systems that operate in real-time or process large volumes of
queries. In this paper, we present a comparative study of
different SQL JOIN operations in an Oracle environment, with
an emphasis on comparing INNER, LEFT, RIGHT and FULL
OUTER JOIN, as well as the impact of using ON and USING
clauses. We employ a cost-based optimizer method and measure
query execution times for different dataset sizes and different
indexing strategies, while also tracking CPU utilization, I/O
operations, and memory consumption. Our findings indicate that
INNER JOIN benefits most from indexing. These findings can
help database administrators and developers choose an
appropriate table join strategy, thereby reducing query latency
and making resource utilization more efficient in a high-load
environment.

I. INTRODUCTION

SQL query optimization is critical for both research and
practical applications, particularly in high-load environments
where execution speed directly impacts system performance
[1]. In the case of the Oracle database, which is one of the
commercial systems with extensive optimization possibilities,
even small differences in syntax or type of JOIN used often
make a difference [1]. If two different query formulations
return an identical set of records, it does not necessarily mean
that they will be executed equally fast or that the cost-based
optimizer will use the same table join method. This study
analyzes how INNER, LEFT, RIGHT, and FULL OUTER
JOIN types affect execution time and optimizer decisions,
considering index usage and query structure.

Interest in this area is also growing because most modern
databases offer multiple ways to write the same join logic. The
presence or absence of indexes, the size of the dataset, and the
setting of the cost-based optimizer are other factors that can
affect the final query execution plan. With this paper, we aim to
contribute to a better understanding of the behavior of Oracle
databases under different variants of JOINs, to highlight
different optimization approaches, and to offer an empirical
comparison that can serve as a practical guide for
administrators and developers.

In this study, we selected Oracle as the database system for
our experiments due to its advanced cost-based optimizer and
extensive indexing capabilities, which make it a suitable
environment for analyzing the impact of different JOIN
strategies. Additionally, Oracle is used as a partner in our
research project. However, the techniques and insights
presented in this paper are generally applicable across
relational database systems, as modern SQL optimizers in other

DBMSs, such as PostgreSQL and MySQL, use similar
principles for query execution planning and optimization.

II. STATE OF THE ART

SQL query optimization plays a crucial role in database
performance, particularly when processing large datasets under
high concurrency. Modern database systems use cost-based
optimizers (CBOs) that analyze different possible execution
plans and select the one with the lowest estimated performance
[2] . As reported by Mehta et al. [3], cost-based optimizers rely
on statistical data on tables and indexes and aim to minimize
the number of operations required to process a query. In Oracle
databases, the optimization process is highly sophisticated and
involves various factors such as selectivity of constraints,
cardinality of result sets, and the use of indexes.

Before CBO became the dominant approach, database
systems primarily relied on Rule-Based Optimization (RBO),
where predefined heuristics determined the execution plan,
rather than cost estimates derived from table statistics [2]. RBO
prioritized specific access paths (such as indexed scans over
full table scans) based on fixed rules rather than dynamically
adjusting to data distribution. While CBO is now the standard
in modern databases, RBO remains relevant in certain
scenarios, such as when statistics are unavailable or outdated,
or when database administrators need deterministic query
execution plans. For example, in some legacy Oracle systems,
RBO is manually enforced to ensure consistent performance
when dealing with static workloads or predefined indexing
strategies [2]. Understanding RBO is essential for performance
tuning, as it highlights cases where cost-based decisions might
lead to suboptimal execution paths due to incorrect cardinality
estimates or unpredictable optimizer behavior.

CBO determines query execution plans by analyzing table
statistics, index availability, and estimated row retrieval costs.
It calculates the total execution cost based on factors such as
I/O operations, CPU usage, and memory consumption.

In a study by Mehta et al. [3] was investigated how the
order of processing JOIN operations and how they are written
using ON and USING clauses affect the performance of SQL
queries. Experimental comparisons showed that even small
syntactic differences can affect the choice of execution plan
and thus the overall query processing time. Leis et al. [4]
demonstrated that cost-based optimizers often misestimate
cardinality, leading to inefficient JOIN execution plans. Their
findings highlight the optimizer's difficulty in accurately
predicting result set sizes, particularly for complex queries.
Cardinality estimates play a crucial role in choosing between
different JOIN strategies, and their incorrectness can lead to

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 179 --

inadequate utilization of the available indices and a significant
increase in query execution time.

Theoretical insight into the optimization of JOIN operations
was provided by Atserias et al. [5], who addressed the problem
of estimating the size of result sets when performing multiple
JOIN operations. Their research showed that the size of the
result set of a JOIN operation is closely related to the
hypergraph models of the database schema and that proper
selection of the order of JOIN operations can significantly
reduce the computational cost [6]. They also addressed the
maximum hypergraph density as a metric that can help predict
the difficulty of executing complex SQL queries. These
theoretical models are important in the design of efficient
optimization strategies and can help in the development of new
heuristic approaches for scheduling JOIN operations.

Indexing is another key aspect of optimizing SQL queries,
especially when joining large datasets. Proper index selection
can dramatically impact query performance, as it enables faster
retrieval of relevant rows without the need to perform full table
scan operations. As shown in the study by Atserias et al. [5],
the use of efficient indexing strategies can reduce the number
of scanned rows and minimize I/O operations. A study by
Mehta et al. [3] pointed out that the use of semi-joins in
specific cases can be more efficient than standard JOIN
operations. In the case of FULL OUTER JOIN, indexing is less
efficient since this operation requires processing entire tables,
but the use of index scan techniques can at least minimize the
negative impact on performance.

Research in SQL optimization shows that they influence the
choice of execution plan in JOIN operations. The accuracy of
the cost-based optimizer is a key factor, while inaccurate
cardinality estimates can lead to inefficient plans and
unnecessarily high system resource utilization [7]. The choice
of the order of JOIN operations can be optimized using
theoretical models such as hypergraph analysis and methods for
predicting the size of result sets. Proper choice of indexing
strategies can significantly speed up the processing of JOIN
operations, but for some types of joins, such as FULL OUTER
JOIN, additional techniques must be used to minimize the
performance impact [8]. Although there is a large body of
research on SQL optimization, there are still open questions
regarding the efficient scheduling of JOIN operations in Oracle
databases, especially for different indexing strategies. This
work seeks to contribute a better understanding of these aspects
through a detailed experimental analysis of the performance of
INNER, LEFT, RIGHT and FULL OUTER JOIN in an Oracle
environment.

III. METHODOLOGY AND EXPERIMENTAL DESIGN

A. Dataset description and table structure

For an experimental comparison of different SQL JOIN
operations, we prepared a dataset in the Oracle 19c
environment. We use a real-world dataset of traffic accidents in
the Czech Republic to provide a more accurate picture of the
experimental conditions, we selected three representative tables
from the full dataset of 71 relational tables. The table CISI
contains approximately 250,000 rows and stores accident
records with a primary key on id and a foreign key on id_okres.
The reference table OKRESY_TAB holds around 80 rows and

is indexed on the id_okres column, while KRAJE_TAB stores
about 15 rows and is indexed on id_kraj. The tables vary in
number and types of attributes, including numeric, string, and
date fields. We used default B-tree indexes on primary and
foreign keys, but in selected experiments, we temporarily
removed or added indexes to simulate real-world conditions
with varying levels of optimization. This diversity in table size,
attribute structure, and indexing allowed us to observe JOIN
performance under realistic and scalable conditions.

Tables differ not only in name, but also in the number and
type of columns. Some contain only a few attributes, while
others may have dozens of columns, including numeric, string,
or date types. In terms of the number of records, they cover a
wide range - from tables with a few dozen rows to those that can
contain thousands of records, allowing us to observe the impact
of different dataset sizes on the performance of JOIN
operations. Another important aspect is the indexes.

This diversity provides realistic conditions for exploring
INNER, LEFT, RIGHT, and FULL OUTER JOIN, as well as
different notations of join conditions (ON vs. USING). In the
following subsections, we describe the specific queries
constructed to measure performance, in which scenarios we the
presence or absence of indices varied, and what type of metrics
(execution time, CPU utilization, cost in the execution plan)
tracked in our experiments. In this way, we will be able to
evaluate to what extent the choice of a particular JOIN type and
the syntax details of the notation are important factors in query
optimization in a high-load, high-volume environment with
large volumes of accident data from the Czech Republic.

B. Experimental setup

To ensure consistent benchmarking of SQL JOIN
performance, all experiments were conducted in an Oracle
Database 19c environment running on Windows 10 Home 64-
bit. The hardware setup included an Intel Core i5-8300H
processor (4 cores, 8 threads) with 16 GB of RAM. The
dataset used in this study is publicly available at
https://nehody.cdv.cz/.

C. Preparation of test queries

In designing the test queries, our goal was to obtain
multiple scenarios in which we could observe the impact of
changing the JOIN type (INNER, LEFT, RIGHT, and FULL
OUTER) and the way the JOIN condition is formulated (ON
vs. USING) on performance. We selected table pairs and
triples where JOIN operations return sufficiently large non-
zero result sets, ensuring realistic performance evaluation.
Each query variant was tested with INNER, LEFT, RIGHT,
and FULL OUTER JOIN, maintaining identical filtering
conditions to isolate the impact of JOIN type. We then created
a simple INNER JOIN query for each group of tables,
specifying what columns and filters we would use in the
WHERE clause. For performance comparison, we rewrote the
same query into variants with LEFT, RIGHT, and FULL
OUTER JOIN, keeping the filtering logic identical so that
each version potentially returned the same result set. In this
way, we were able to eliminate factors other than the
difference in JOIN type.

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 180 --

To ensure the reliability and objectivity of our
measurements, each query variant was executed ten times
consecutively under the same conditions. The first execution
was discarded to reduce the influence of cold cache effects,
and the remaining nine measurements were averaged. This
approach minimized the impact of transient background
processes and system-level optimizations that could skew
single-run results. Furthermore, before each new batch of
experiments, we manually flushed the Oracle buffer cache and
shared pool using the commands ALTER SYSTEM FLUSH
BUFFER_CACHE and ALTER SYSTEM FLUSH
SHARED_POOL to reset internal memory structures and
ensure a fair baseline for each measurement.

Figure 1 shows the execution plan for an INNER JOIN
query without indexes, where the optimizer defaults to a
HASH JOIN strategy, leading to a full table scan.

Fig. 1. INNER JOIN without Indexes

In the next phase, we extended the test queries with USING
clauses if both joined tables contained a matching named
column. In cases where the column names in the two tables
differed, we stuck to the traditional form with the ON clause
so as not to violate the basic join conditions. We followed the
same procedure for queries with three or more tables, adding
smaller tables to the from clause, to which we associated the
main table TC_FORM_TAB. In these more complex queries,
we also observed the extent to which the cost-based optimizer
changes the order of joins or the preferred JOIN method
(Hash, Nested Loop, Merge) as the number of tables processes
increased.

Figure 2 presents the execution plan before introducing an
index. The execution plan for an INNER JOIN query without
indexes demonstrates how the optimizer selects the HASH
JOIN strategy. Since no indexes are available, the optimizer
performs a full table scan on both tables, leading to higher I/O
operations and buffer usage.

Fig. 2. Execution Plan for INNER JOIN without Indexes

During the preparation of the test queries, we varied the
presence of indices in several variants too. First, we
experimented with a situation where only basic indexes were
created on the primary key of each table. Later, we

temporarily removed some of these indexes or added new
indexes specifically on foreign keys to simulate real database
scenarios that may have varying degrees of optimization. The
resulting query set thus included all four JOIN types in
different indexing configurations, and we were able to record
the extent to which these factors affect execution time, cost,
CPU and I/O load, or other aspects of the execution plan.
Thus, this range of test queries provided us with a
comprehensive view of how individual changes to JOIN and
join condition writes affect performance in a real Oracle
database environment.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section evaluates how indexing influences SQL JOIN
performance based on execution plans, execution time, and
resource consumption. We compare optimizer decisions for
INNER, LEFT, RIGHT, and FULL OUTER JOINs using
different indexing strategies. Results are measured in terms of
execution time, buffer usage, and CPU utilization to
understand when indexing improves performance and when it
introduces additional overhead.

A. Influence of Indexing on SQL JOIN Performance

The performance of SQL JOIN operations in Oracle
databases varies significantly based on factors such as
indexing, execution plan selection, table size, and query
structure. Our experimental results show that the optimizer's
choice of join strategy depends on the availability of indexes,
the selectivity of the filtering conditions, and the number of
records involved in the join operation. The primary join
strategies observed include HASH JOIN, MERGE JOIN, and
NESTED LOOPS, each with distinct performance
characteristics.

After adding indexes, the optimizer switches to MERGE
JOIN, taking advantage of sorted access paths. However,
while this reduces full table scans, it may introduce sorting
overhead, potentially increasing execution time depending on
data distribution.

Fig. 3. Execution Plan for INNER JOIN with Indexes

This is particularly beneficial for large datasets, as hash
joins allow efficient in-memory processing without requiring
index lookups. In contrast, when indexes are present, the
optimizer tends to favor MERGE JOIN or NESTED LOOPS,
depending on the query structure. MERGE JOIN is often
selected when both tables are sorted on the join key, whereas
NESTED LOOPS is used when an indexed lookup can

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 181 --

efficiently retrieve matching rows. However, in cases where
the dataset is large, indexed lookups can introduce additional
overhead, leading to slightly higher execution times compared
to hash joins.

In relational databases, a buffer refers to a memory
structure used to store data blocks retrieved from the disk. The
number of buffers required for query execution indicates how
efficiently the database accesses data. Higher buffer usage
generally implies increased I/O operations, which can impact
query performance. While indexing typically improves query
efficiency, its effect on buffer usage varies depending on the
execution plan chosen by the optimizer. The following figure
illustrates how buffer consumption changes for INNER JOIN,
FULL OUTER JOIN, and COUNT() aggregation when
indexes are present.

This figure illustrates how indexing affects buffer usage in
different JOIN operations and aggregation queries. Oracle
measures buffer usage by counting the number of database
blocks that a query accesses during execution. While
aggregation queries like COUNT() benefit from indexing,
reducing buffer reads significantly, JOIN queries exhibit
mixed behavior depending on the chosen execution plan.

Fig. 4. Buffer usage comparison

Applying an index to the aggregation query COUNT(*)
reduced buffer usage from 26 buffers to 10 buffers, a 61.54%
improvement. This confirms that indexed access paths
significantly reduce memory consumption for aggregate
functions. However, for INNER JOIN, buffer usage increased
from 14 to 18 buffers (+28.57% overhead) due to sorting
operations introduced in MERGE JOIN. FULL OUTER JOIN
showed no change in buffer usage (11 buffers in both cases),
indicating that indexing has minimal impact when all records
must be processed.. However, for INNER JOIN, the number of
buffers slightly increases, suggesting that while indexing
enables efficient lookups, it may also introduce additional
processing steps, such as sorting for MERGE JOIN.
Meanwhile, FULL OUTER JOIN exhibits minimal differences
in buffer usage, reinforcing that indexing has limited benefits
in scenarios where all records, including unmatched rows,
must be retained. These findings suggest that indexing should
be applied selectively, depending on the query type and
workload characteristics. By analyzing buffer usage alongside

execution time, database administrators can make more
informed indexing decisions to optimize overall performance.

A detailed comparison of INNER JOIN performance
highlights these differences. Without indexes, the optimizer
consistently selects HASH JOIN, resulting in full table scans
but allowing for efficient bulk processing. The recorded
execution time for this approach was 0.365 seconds. When
indexes were introduced, the optimizer switched to MERGE
JOIN, utilizing an index scan on the joined column.
Surprisingly, the execution time increased slightly to 0.375
seconds, indicating that the cost of sorting and merging
indexed results did not always yield a performance gain. This
suggests that for large tables with high cardinality, full table
scans with hash joins can outperform indexed lookups,
particularly when the query is designed to retrieve a significant
portion of the data.

B. LEFT and RIGHT JOI and tndexing trade-offs

LEFT JOIN operations exhibit a similar trend. Without
indexes, Oracle relies on HASH JOIN RIGHT OUTER, which
ensures that unmatched rows from the left table are preserved.
The observed execution time for this approach was 0.362
seconds, with full table scans on both participating tables.

After introducing an index on the join key, the optimizer
shifted to MERGE JOIN, but the performance did not improve
significantly, with execution times averaging around 0.372
seconds. This is because LEFT JOINs inherently involve
additional processing overhead to retain non-matching records,
which can offset the benefits of indexed lookups. The best
performance gains from indexing in LEFT JOIN scenarios
occur when the right-side table is large and highly selective
queries are used to filter results.

For RIGHT JOIN operations, the observed behavior closely
mirrors that of LEFT JOINs, with hash joins being the
preferred strategy when no indexes are present. However, in
practical applications, RIGHT JOIN is often replaced by LEFT
JOIN with reversed table order, as many SQL developers
prefer this structure for readability and consistency.

FULL OUTER JOIN remains the most expensive operation
due to its requirement to retain unmatched rows from both
tables, leading to full table scans and large hash table
operations even with indexing. Since FULL OUTER JOIN
must retain unmatched records from both tables, it often
results in full table scans and large hash table operations. Even
when indexes were available, the optimizer's execution plan
remained inefficient due to the necessity of retrieving and
combining all records.

C. Aggregation queries and indexing

Aggregation queries further highlight the impact of
indexing on performance. Table 1 presents the execution time
changes for different JOIN types when indexing is applied.
Table 1 shows that INNER JOIN, LEFT JOIN, and RIGHT
JOIN benefit significantly from indexing, achieving execution
time reductions of over 47%, while FULL OUTER JOIN
remains unaffected. This method efficiently groups records in
memory while processing the join in a single pass. However,

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 182 --

after introducing indexes, the optimizer opted for MERGE
JOIN instead of HASH JOIN, improving performance due to
reduced full table scans. The impact of indexing is especially
noticeable in aggregation queries like AVG and COUNT,
where indexed lookups reduce execution time by up to 52.4%.

As shown in Table I, the introduction of indexes generally
results in significant performance gains for most JOIN
operations, except for FULL OUTER JOIN, where indexing
does not provide any measurable benefit. Index scans improve
access to individual rows and significantly reduce execution
time for INNER, LEFT, and RIGHT JOINs. Additionally,
indexing enhances aggregation queries like AVG and
COUNT, reducing execution time by over 40%. These
findings highlight the importance of selecting the appropriate
execution plan and indexing strategy based on query type and
workload characteristics.

TABLE I. EXECUTION TIME FOR JOIN OPERATIONS

JOIN
Type

Execution
Time without

Indexes (s)

Execution
Time with
Indexes (s)

Performance
Change

INNER
JOIN

0.021 0.010 -52.4%

LEFT
JOIN

0.022 0.011 -50.0%

RIGHT
JOIN

0.023 0.012 -47.8%

FULL
OUTER

JOIN
0.030 0.030 No Change

AVG 0.021 0.010 -52.4%
COUNT 0.032 0.019 -40.6%

Table II highlights the impact of indexing on execution plan
selection, where MERGE JOIN is typically used with indexes,
but FULL OUTER JOIN consistently incurs high cost.

TABLE II. COMPARISON OF EXECUTION PLANS FOR JOIN TYPES

JOIN
Type

Without Indexes
(Plan Used)

With Indexes (Plan
Used)

INNER
JOIN

HASH JOIN (Full
Table Scan)

MERGE JOIN (Index
Scan)

LEFT
JOIN

HASH JOIN RIGHT
OUTER

MERGE JOIN

RIGHT
JOIN

HASH JOIN RIGHT
OUTER

MERGE JOIN

FULL
OUTER
JOIN

HASH JOIN (High
Resource Cost)

HASH JOIN (Minimal
Change)

A similar trend was observed in AVG(kodc1) calculations,
where indexed queries were slightly slower than their full scan
counterparts. The AVG(kodc1) function calculates the average
value of the column 'kodc1', which represents accident code.
In this case, the optimizer’s decision to use MERGE JOIN
with indexed lookups introduced unnecessary complexity,
making the indexed query less efficient. This highlights an
important consideration: indexes do not always improve query

performance, particularly when aggregation functions require
scanning a sizable portion of the table. Instead, hash joins with
full scans can provide better performance in such scenarios.

The choice between ON and USING clauses had a
negligible impact on execution performance. While USING
simplifies query syntax when column names match both
tables, it does not influence the optimizer’s execution plan in a
meaningful way. The optimizer still evaluates the same set of
conditions for join selection, meaning that query performance
remains identical whether ON or USING is used.

D. Practical recommendations for optimizing SQL queries

Our experimental findings lead to several practical
recommendations for optimizing SQL JOIN performance in
Oracle databases. INNER JOIN works best with indexes when
filters are highly selective, but for large datasets with low
selectivity, avoiding indexes and relying on HASH JOIN often
yields better performance. LEFT JOIN benefits from indexing
the right-hand table, especially when filtering is applied, while
indexing the left table has limited effect. FULL OUTER JOIN
remains the most resource-intensive join type and should be
avoided whenever possible—preferably replaced with a
combination of LEFT JOIN, RIGHT JOIN, and UNION
operations. Aggregation functions such as COUNT and AVG
show significant gains when using indexes on filtered
columns, but may also introduce buffer overhead due to
sorting. Finally, using ON or USING clauses has no impact on
execution plans and should be chosen based on code
readability rather than performance.

V. DISCUSSION

The experimental results confirm that the choice of JOIN
type and indexing strategy significantly influences query
performance in Oracle databases.

LEFT JOIN performs better when the right-side table is
large and selective filtering is applied. RIGHT JOIN often
mirrors the behavior of LEFT JOIN and can be rewritten in
reverse order to improve readability without affecting
performance. FULL OUTER JOIN, being computationally
expensive, should be avoided whenever possible, particularly
when an equivalent result can be achieved using a combination
of LEFT JOIN, RIGHT JOIN, and UNION operations.Future
work should investigate the impact of semi-joins and anti-joins
on performance, as well as the effects of parallel execution
plans in distributed database environments.

Although the experiments in this study were conducted
using Oracle 19c, the observed performance trends can be
partially generalized to other relational database management
systems. Both PostgreSQL and MySQL use cost-based
optimizers that evaluate execution plans based on table
statistics and indexing, similar to Oracle. However, internal
implementation details, such as index types, planner heuristics,
and join algorithm preferences, can result in different
behavior. For example, PostgreSQL supports additional join
methods like parallel hash join and adaptive join strategies,
while MySQL may prefer nested loop joins in simpler queries
even when indexes are present.

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 183 --

In PostgreSQL, the query planner often relies heavily on
up-to-date statistics and may be more sensitive to data
distribution. This could affect JOIN type selection, especially
for skewed datasets. On the other hand, MySQL's optimizer is
generally simpler and may not perform as aggressively with
regard to join reordering or indexing strategies. Unlike Oracle,
which tends to favor hash joins for larger datasets without
indexes, PostgreSQL may favor merge joins if sorted data or
bitmap indexes are available.

While a direct experimental comparison is outside the scope
of this paper, future work may involve replicating the current
setup on open-source platforms to measure the differences
empirically. Such a comparison would provide a more
comprehensive understanding of JOIN performance across
systems and help validate the generalizability of the results.

VI. CONCLUSION

The optimizer selects different execution plans based on
table size, available indexes, and filtering conditions, leading
to variations in execution time, CPU usage, and buffer
consumption. Without indexes, the optimizer selects HASH
JOIN, which allows efficient memory processing but requires
full table scans. With indexes, the optimizer shifts towards
MERGE JOIN or NESTED LOOPS, depending on the query
structure. In the case of INNER JOIN, indexing led to the
selection of MERGE JOIN, but execution time slightly
increased due to additional sorting overhead. For FULL
OUTER JOIN, indexing provided minimal improvement, as
this join type inherently requires processing entire tables,
limiting the optimizer's ability to leverage indexes.

One of the most notable findings concerns buffer usage. In
contrast, INNER JOIN with indexes exhibited a slight increase
in buffer usage, suggesting that while indexes optimize
lookups, they may introduce additional sorting steps. FULL
OUTER JOIN showed negligible differences in buffer
consumption, indicating that indexing is less effective for
operations that must retain unmatched records from both
tables. These results suggest that indexing should be applied
selectively, as its impact varies depending on query structure
and data distribution.

The results also highlight the trade-offs associated with
different JOIN types. INNER JOIN is most effective with
indexes when applied to datasets with high selectivity. LEFT
JOIN performs better when the right-side table is large and
selective filtering is applied. RIGHT JOIN often mirrors the
behavior of LEFT JOIN and can be rewritten in reverse order
to improve readability without affecting performance.

The most effective optimization strategies depend on
dataset size, the availability of indexes, and query complexity.
Large tables benefit from HASH JOIN due to its ability to
process large datasets in memory, whereas smaller tables are
better suited for MERGE JOIN or NESTED LOOPS.
Aggregation queries can suffer from increased buffer reads
when executed with indexed joins.

While our study provides insights into JOIN performance in
Oracle databases, it is important to note some limitations.
First, our experiments were conducted within Oracle 19c;
optimizations may differ in other database management
systems such as MySQL or PostgreSQL. Second, the dataset
used consists of 71 tables related to transport data, and
performance may vary in databases with different indexing
structures or data distributions. Finally, we focused on
INNER, LEFT, RIGHT, and FULL OUTER JOIN without
analyzing the impact of semi-joins or anti-joins, which may
present alternative optimization strategies.

ACKNOWLEDGMENT

This paper was supported by the VEGA 1/0192/24 project -
Developing and applying advanced techniques for efficient
processing of large-scale data in the intelligent transport
systems environment.

REFERENCES
[1] Oracle Documentation, Cost-Based Optimizer, Web:

https://docs.oracle.com/cd/E98457_01/opera_5_6_core_help/cost_ba
sed_optimizer.htm.

[2] J. Lewis, Cost-Based Oracle Fundamentals, 1st ed. Berkeley, CA:
Apress, 2006.

[3] S. Mehta, P. Kaur, P. Lodhi, and O. Mishra, “Empirical Evidence of
Heuristic and Cost Based Query Optimizations in Relational
Databases,” in Proc. 11th Int. Conf. Contemporary Computing (IC3),
Noida, India, 2018, pp. 1–3.

[4] B. Wagner, A. Kohn, P. Boncz, and V. Leis, “Incremental Fusion:
Unifying Compiled and Vectorized Query Execution,” in Proc. 40th
IEEE Int. Conf. Data Eng. (ICDE), Utrecht, Netherlands, 2024, pp.
462–474.

[5] A. Atserias, M. Grohe, and D. Marx, “Size Bounds and Query Plans
for Relational Joins,” in Proc. 49th Annu. IEEE Symp. Foundations
Comput. Sci. (FOCS), Philadelphia, PA, USA, 2008, pp. 739–748.

[6] S. Krishnan, Z. Yang, K. Goldberg, J. Hellerstein, and I. Stoica,
“Learning to Optimize Join Queries With Deep Reinforcement
Learning,” arXiv preprint arXiv:1808.03196, 2019.

[7] T. Neumann, V. Leis, and A. Kemper, “The Complete Story of Joins
(in HyPer),” in Proc. Datenbanksysteme für Business, Technologie
und Web (BTW 2017), Bonn, Germany, 2017, pp. 31–50.

[8] C. Ordonez and J. García-García, “Evaluating Join Performance on
Relational Database Systems,” J. Comput. Sci. Eng., vol. 4, no. 4, pp.
276–290, Dec. 2010, doi: 10.5626/JCSE.2010.4.4.276.

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 184 --

