
Design of Almostperfectly Secure Stegosystems
for Video Files

Valery Korzhik, Ekaterina Gerling
korzhikvalery11@gmail.com, gerlingeu@gmail.com

Aleksei Zhuvikin
zhuvikin@gmail.com

Abstract—We propose a new approach to design of
stegosystems without embedding of secret information directly
into cover objects. However, it is not, strongly speaking,
steganography without any embedding, but rather steganography
with minimal modification. The cover objects are either video
films or photo sessions. Algorithms of minimized embedding
procedure and secret data extraction are presented. A number of
conventional and “unusual” stegosystem detection attacks are
considered, and methods to mitigate them are proposed. The
complexity of cover objects transforms as well as “embedding”
rates for video films are estimated through simulation. The use of
error-correcting codes is also implicitly addressed.

Keywords—steganography, hash function, error correcting
codes, vulnerability to detection, embedding rate, video films.

I. INTRODUCTION

It is well known that steganography (SG) plays a crucial
role in providing information security in the digital world. In
fact, although cryptography (CR) is the primary means of
ensuring information security with strong guarantees–
especially when considered in a broad sense, including
authentication, digital signatures and cryptographic protocols–it
does have limitations. As metaphorically described as a
'mongrel' in the book [1], CR has one major drawback—it
reveals the presence of additional hidden information, which
should often be concealed. To close this “gap” in information
security, users are nudged to implement SG. The latter
technique hides even a presence of an added information in
some digital cover objects (CO), such as, printed text, data, still
images, movies, source codes and so on. By the way, all SGs
can be divided into two classes: either those with CO given in
advance or those where CO is generated freely by the source
originator of stegosystems.

In the current paper we are dealing with the design of SG
from the first class. In this case CO should be looking as
completely innocent one. For example, it can be a short video
film with children, architecture of some beautiful city, or
pictures of nature and wild animals during a travelling in
Africa. At a single glance, the creation of steganograms
requires making small changes—either in the spatial (pixel)
domain for images or in the domain of certain pixel transforms,
such as after Fourier or Walsh transforms. Of course, such
changes must not be visually noticeable, and even after the
application of various steganalytic methods, detecting the
existence of an SG should remain difficult with a high
probability.

Methods of embedding, extraction and detection of SGs are
presented in the well-known book [2]. The simplest embedding
method is based on replacing the least significant bits (LSB)
either in the pixel domain or in the transformed areas with the
bits of a secret information. This makes it impossible to detect
the SG presence with the naked eyes, but it remains susceptible
to reliable SG detection based on histogram analysis or on the
most effective method known as “Sample Pair Analysis” [3].
To prevent the compromise of SG security by the
aforementioned or similar methods, many more sophisticated
methods of embedding have been proposed, as presented in the
book [1] and in many other papers [4].

But, in contrast to CR, for which encryption and decryption
algorithms exist that provides so-called perfect cryptographic
security–where even for the best breaking of a cipher, the
information leakage about encrypted messages, given the
cryptogram but unknown key, is zero. We remark, however,
that such ciphers necessarily require the key length to be equal
to the length of the plaintext.

Unfortunately, similar perfect SG belonging to the class of
given in advance CO are known only for scenarios when
steganalysis can detect SG over the noisy channels [5], which
are not very common in practice. It is worth noting that a new
concept, GAN-steganography (Generative Adversarial
Network), was proposed in recent times. In this framework a
novel technique for hiding arbitrary binary data in images using
generative adversarial networks which allows to optimize the
perceptual quality of the images produced by such model was
proposed. But unfortunately, such SGs are far from achieving
perfect security, although provide an effective payload of
around 4.4 secure bits per pixel [6,7]. It may seem like an
oxymoron, but recently, so called coverless stegosystems that
provide perfect detection security also have been proposed [8].
Let us briefly explain this approach, as it is very close to the
one proposed in the current paper.

Imagine that a very large database of images is freely
accessible. If you want to hide additional data with perfect
security, we can encrypt it in advance and divide it into blocks
(portions) of “m” bit length each. Next, you take a
cryptographic hash function with a hash length equal to “m”
and extract images randomly from the database one by one
until the hash of a chosen image matches the first portion of the
ciphertext. In a positive case, we keep such an image as the
first part of the stegotext. By repeating comparison procedure
for all ciphertext portions, you form the full stegotext and then
transmit or store it. It is clear that such SG is perfectly secure,

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 129 --

but it has one significant defect–it looks highly suspicious if an
innocent photo session between ordinary network users
consists of randomly chosen images taken from a huge
database. Moreover, it is SG system that hides a secret message
not in a given in advance CO, but in a randomly chosen one.

By the way, in some publications [9] it was proposed to
apply so-called “Latent Dirichlet Allocation Algorithm”, which
allows for the automatic identification of content-similar
objects in a database. But of course, it does not provide a very
strong content correlation between the CO chosen from the file.

In the current paper we propose to eliminate these defects.
The remainder of our paper is organized as follows:

 Section II describes the proposed SG system.

 Section III presents estimates for the required number of
iterations, obtained both theoretically and through
simulation.

 Section IV evaluates the efficiency of different detection
attacks on the proposed SG.

 The last section briefly discusses the main results and
outlines directions for the future research for
almostperfectly secure SG.

II. DESCRIPTION OF THE PROPOSED ALMOSTPERFECTLY SECURE

STEGOSYSTEM

We select video files (or films) as COs for the proposed SG.
The reason for this lies in the possibility of embedding more
secret data than in still images. But as a future work (see our
conclusion), we believe it is important to also consider photo
(image) sessions. In Fig. 1, the block scheme of secret
“embedding” is presented. More accurately, it would be correct
to call it a block-scheme of CO transformation in such a way
that hidden data can be correctly extracted. This is why we
sometimes put the word “embed” in the quotation marks.

The secret data intended to be “embedded” should first be
encoded by an error-correction code, then encrypted with a
strong stream cipher using a secret key K known only to
legitimate users, and finally divided into portions, each of “m”
bit length. Note that the use of stream cipher, rather than a
block cipher, is recommended in order to avoid error spreading
after decryption, which is typical for block cipher [10]. After
that, the frames of video file should be hashed one by one to
obtain m-bit hashes for each frame. Next, the hashes of the
frames and the portions of the ciphertext are compared to one
another. In the case of an exact match, the processed frames are
stored as a part of the stegotext (stegoimages). Otherwise, a
procedure of truly random selection among the frame pixels is
performed, followed by the inversion of their LSBs.

These transformations are repeated until a hash match
occurs or until a predefined threshold for the number of
iterations is exceeded. In the latter case, the iteration algorithm
should be stopped, and the process moves on to the next
frame.

Extraction of the hidden information is shown in Fig. 2.

Fig. 1. Block scheme of secret data “embedding” into video file frames

Fig. 2. Block scheme of secret data extraction.

In order to extract hidden data from the stego video file, it is
necessary to first perform frame-by-frame hashing using the
same hash function that was used for “embedding”. Next, the
extracted data should be decrypted using the secret decryption
key K, known to legitimate users. Finally, any errors that may
occur due to the absence of hash matches for some frames
should be corrected using the chosen error-correcting code.

Let us consider some requirements for the parameters of the
proposed SG. First, the number of hash comparisons
(iterations) should not be too large. In fact, the number of
iterations is upper bounded by the total number of pixels in
each frame. Moreover, the number of iterations corresponds to
the complexity of the “embedding” procedure and the required
processing time for each frame.

The next restriction involves an upper bound on the
probability of iteration process blocking–otherwise, the errors
in frames cannot be reliably corrected. Both theoretical and
simulated estimates of the required number of iterations are
presented in the next section.

It is important to emphasize that in contrast to conventional
LSB-based SGs, where there is a tradeoff between SG
detection security and embedding rate, the proposed scheme
has a tradeoff between embedding procedure complexity and
embedding rate.

EncryptionHidden data Error correction
code

K

Dividing of
ciphertext on
m-bit portions

Hashing of
frames

Comparison of
hashes

Random
changing of

LSB

Video file
(frames)

Counter of
iterations

Yes No

Storing of
stegotext

Trully random
generator

Decryption of
ciphertext

Error
correcting code

Stego video
file

Hashing of
frames

Secret data

K

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 130 --

III. ESTIMATES FOR THE REQUIRED NUMBER OF ITERATIONS

Let us initially consider an idealized hash function that,
after each iteration with LSB inversion of a truly randomly
chosen pixel, produces any hash of length “m” with equal
probabilities 2-m.

Then, it is obvious that the probability of obtaining any
given hash of length “m” after at most “l” iteration is equal to

2 1
(,) 1

2

lm

m
P m l

 
   

 
. (1)

In Table I the results of calculation by (1) for different
parameters “m” and “l” are given.

TABLE I. THE PROBABILITY OF HASH COINCIDENCE AT “l” ITERATIONS AND

HASH LENGTH “m” FOR IDEALIZED HASH FUNCTION

m
l

1 5 10 20 30 40 50

1 0.500 0.031 0.001 10-6 10-9 10-12 10-15
5 0.969 0.147 0.005 5x10-6 5x10-9 5x10-12 5x10-15
10 0.999 0.272 0.009 10-5 10-8 10-11 10-14
50 1 0.796 0.048 5x10-5 5x10-8 5x10-11 5x10-14
100 1 0.958 0.093 10-4 10-7 10-10 10-13
1000 1 1 0.624 0.001 10-6 10-9 10-12
5000 1 1 0.992 0.005 5x10-6 5x10-9 5x10-12
10000 1 1 0.999 0.009 10-5 10-8 10-11

Since the proposed scheme was implemented using the real
keyless hash function CRC32, in Table II we present the same
probabilities as in Table 1, but for real hash function, obtained
through simulation.

TABLE II. THE PROBABILITIES SIMILAR TO ONES PRESENTLY IN TABLE 1, BUT

OBTAINED THROUGH SIMULATION FOR HASH FUNCTION CRC32.

m
l

1 5 10

1 0.500 0.031 0.001
5 0.970 0.125 0.005

10 0.999 0.250 0.010
50 1 0.781 0.045
100 1 0.969 0.090
1000 1 1 0.603
5000 1 1 0.984
10000 1 1 1

The simulation environment consisted of an 11th Gen
Intel(R) Core(TM) i7-1165G7 CPU @ 2.80 GHz, 16 GB
RAM, running Windows 10 (version 22H2), with Visual
Studio 2022 and Python.

 Comparing the results presented in Tables I and II, we can
see that they do not differ significantly from one another.
Therefore, it is possible to select the parameters of the
proposed SG system as follows: m = 10, l0 = 10000. However,
such computational complexity excludes SG formation in a
real-time. This means that, for the chosen parameters, the
probability of iteration procedure blocking, which in turn is
equivalent to an error in the processed frame, is approximately
Pe = 0.01. Since the errors spread across the hidden portion of
the length “m”, it is reasonable to apply a q = 2m-ary shorted

Reed Solomon error correcting codes (RS) to correct such
errors. It is well known [11] that such a code, with parameters
(n, k), q = 2m, satisfies n ≤ 2m-1 and has a minimal code
distance d = n-k+1. It is capable of correcting all q-ary errors
of multiplicity up to d/2. The probability of erroneous
decoding for such a code is

 
1

1
2

1
n

n ii
ed e e

d
i

n
P P P

i


    

 
  

 
 (2)

Substituting the previously chosen RS code parameters
n = 320, k = 300, d = 21 and symbol error probability
Pe = 0.01 into (2), we obtain Ped ≈ 0.00034. This value can be
considered sufficiently small for each frame.

IV. ATTACKS ON THE PROPOSED SG DETECTABILITY

Let us emphasize once more the main feature of the
proposed SG system: only one LSB for a randomly chosen
pixel in each frame of the video file is inverted.

It is important to note that the selection of pixels for
inversion should be performed randomly but not through a
regular selection process, e.g., from the first pixel of the frame
up to the last one. Otherwise, it may increase the efficiency of
SGA.

Let us recall some SG detection attacks on conventional
LSB-based SG, where the LSBs of all pixels are replaced with
bits of secret information. In this case, typical histograms of
CO and SG have the view shown in Fig. 3 where the histogram
V(i) =#{n, B(n) = i, B(n) is the brightness of n-th pixel.

Fig. 3. Typical histograms for CO (a) and for LSB-based SG(b)

By using closely located neighboring levels of the
histogram for SG, it is easy to establish a criterion for SG
detection:

2  , then SG is present, (3)

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 131 --

2  , then SG is absent,

where α is predefined threshold,

 
 

  21 /2
2

0

(2) (2 1)

2 (2) (2 1)

L

i

V i V i

V i V i






 


  . (4)

In fact, detection criteria (3) works satisfactory for detecting
of LSB-based SGs but it is practically useless for the proposed
SG because its histogram differs only slightly from the CO
histogram in each frame, as only one pixel per frame is
changed.

To verify this fact, a simulation was performed on typical
video frames. The results are presented in Table III. From this
table, we can see that even for an optimally chosen threshold,
the minimal SG detection error Pe= (Pfa +Pm)/2, (where Pfa is
the probability of false alarm, Pm is the probability of missing
SG detection in the proposed system), is very close to ½, which
is equivalent to random guessing.

TABLE III. THE PROBABILITIES OF ERRORS (PFA, PM, PE= (PFA+PM)/2) AGAINST

CHOSEN THRESHOLD FOR THE PROPOSED SG AND UNDER THE USE χ2 CRITERIA

Probability
Threshold

Pfa, % Pm, % Pe, %

0,002 0 100 50
0,006 8 92 50
0,010 29 71 50
0,014 31 69 50
0,022 36 64 50
0,030 39 61 50
0,034 50 50 50
0,038 53 47 50
0,054 59 41 50
0,062 60 40 50
0,066 77 23 50
0,070 80 20 50

0,0546 80 20 50
0,554 90 10 50
0,558 98 2 50
0,562 100 0 50

Another detection criterion that is widely used against LSB-
based SGs computes the difference between neighboring pixel
byte levels as

 
1

2

0
2

() (1)

2

L

i

n

n i n i








 



, (5)

where n(i) is the number of bytes with the value i among
the pixels in the frame.

The results of the SG detector simulation on criterion where
χ2 is replaced by γ, are shown in Table IV.

We can see from this table that even under selection of an
optimal threshold, the probability Pe is close to 1/2 and hence
to the probability of a random guessing.

As for SGA using the method known as Sample Pair
Analysis [3], which is very popular and effective for detecting
conventional LSB-based SGs, it involves solving a quadratic
equation to determine the probability “P” of LSB embedding in

each pixel. However, such an approach is senseless for the
proposed method because, we do not have any embedding with
pixel probability but only the inversion of one LSB randomly
chosen in each frame.

TABLE IV. THE PROBABILITIES OF ERRORS (PFA, PM, PE= (PFA+PM)/2) AGAINST

CHOSEN THRESHOLD α FOR THE PROPOSED SG AND UNDER THE USE OF γ -
CRITERION

Probability
Threshold

Pfa, % Pm, % Pe, %

10 1 0 50
20 95 5 50
25 86 14 50
30 75 25 50
35 60 40 50
40 51 49 50
45 39 61 50
50 27 73 50
55 17 83 50
60 15 85 50
65 13 87 50
70 11 89 50
80 5 95 50
90 2 98 50
100 0 100 50

Let us return to the discussion regarding the optimal
detection algorithm for the proposed SG. Since the
transformation of CO to SG requires modifying only one LSB
per frame, and moreover, only one randomly chosen LSB in
each frame, it is reasonable to suggest that the optimal
detection algorithm should analyze only LSBs of all frames. A
second reasonable assumption is that the correlation between
LSBs of different frames can be neglected. Hence, the decision
about SG presence should be made independently for each
frame, and the final decision (CO or SG) for the entire file
should be determined using the majority rule.

It follows from our previous discussion that we could try to
use some classifier such as support vector machine (SVM) [12]
for SG detection after preliminary training on samples of CO
and SG constructed according to our method. Of course, such a
classifier could be replaced by specialized neuron network [13].
In the future, we plan to implement this approach, but we have
a little hope of achieving positive results because the
“invasion” by CO transform in SG is minimal. For instance, in
1920x1080 pixel frames, we modify only one LSB in ~ 2x106
pixels!

But let us consider an attack against the proposed SG from
another (unusual) perspective–namely, the execution property
of strong encryption for secret messages. It is obvious that
encryption and decryption procedures using a secret key are
mandatory for the proposed SG. Otherwise, a steganalyst, who
we assume knows the full “embedding” and extraction
algorithms, would be able to recover the secret message after
hashing of the file and recognize the SG presence, since the
extracted information would be meaningful.

The idea of executing such an SGA and the method to
prevent it were recently proposed and published in [14,15]. On
the other hand, if the “embedded” data was previously
encrypted using a strong cipher, then a steganalyst would be
able to extract this ciphertext and test it for pseudorandomness

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 132 --

using so called NIST tests. (See [16] and Table V). If the video
file is not SG (so., no data was “embedded”), then the
steganalyst would be able to extract hashes of frames, but they
would not necessarily pass all NIST tests. The number of
passed tests can then be compared to a predefined threshold. If
it exceeds the threshold, the file is assumed to be SG;
otherwise, it is considered as CO.

TABLE V. THE TITLES OF NIST TESTS ON PSEUDORANDOMNESS

N Titles of tests
1 The frequency test
2 Frequency test within a block
3 The runs test
4 Tests for the longest-run-of-ones in a block
5 The binary matrix rank test
6 The discrete Fourier transform (spectral) test
7 The non-overlapping template matching test
8 The overlapping template matching test
9 Maurer’s “Universal Statistical” test
10 The linear complexity test
11 The serial test
12 The approximate entropy test
13 The cumulative sums (cusums) test
14 The random excursion test
15 The random excursions variant test

In Table VI the results of NIST tests passing for SG with
LSB-based embedding taken from the paper [14] are presented,
where a plus sign (+) indicates that the corresponding test was
passed and a minus sign (-) indicates that it was not passed. We
note that the specific SG embedding method used does not
affect the results. So, the embedding algorithm [15] differs
from the SG proposed in the current paper because the results
depend on type of cipher only. In [14], the strong cipher
GOST-28147-89 was applied.

TABLE VI. RESULTS OF STEGANALYTIC TESTING FOR FULL LSB-BASED

EMBEDDING WITH ENCRYPTION OF 15 SEQUENCES BY CIPHER GOST-28147-89

Sequence
Test

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 + + + + + + + + + + + + + + +
2 + + + + + + + + + + + + + + +
3 + + + + + + + + + + + + + + +
4 + + + + + + + + + + + + + + +
5 + + + + + + + + + + + + + + +
6 + + + + + + + + + + + + + + +
7 + + + + + + + + + + + + + + +
8 + + + + + + + + + + + + + + +
9 + + + + + + + + + + + + + + +
10 + + + + + + + + + + + + + + +
11 + + + + + + + + + + + + + + +
12 + + + + + + + + + + + + + +
13 + + + + + + + + + + + + + + +
14 + + + + + + + + +
15 + + + + + + + + +

 A more complete statistic is presented in Table VII, also
taken from [14].

We can see from Tables VI, VII that most of the tests have
been passed. In contrast to NIST passing for any SG, the results
of NIST tests passing for CO as MPEG-2 file and taken from
[14] are shown in Table VIII.

TABLE VII. RATIO OF NIST TESTS PASSING (IN %) CALCULATED FOR 1000

CIPHER TEXTS ENCRYPTED BY CIPHER GOST-28147-89.

NIST
test

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
at

i
o,

 %

98
.9

99
.5

99
.1

98
.4

99
.4

99
.2

99
.8

98
.8

98
.8

99
2

98
.4

99
.0

98
.6

69
.7

70
.0

TABLE VIII. RESULTS OF NIST TESTING AFTER EXTRACTION OF CO FOR

MPEG-2 FILE.

Sequence
Test

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 + + + + + + + + + + + +
2 + + + + + + + +
3 + + + + + +
4 + + + + + + + + + +
5 + + + + + + + + + + + + + +
6 + + + + + + + + + + + + +
7 + + + + + + + +
8 + + + + + + + + + + +
9 + + + + + + + + + + +

10 + + + + + + + + + + + + + + +
11 + + + + + +
12 + + + +
13 + + + + + + + + +
14 + + + + + + + + +
15 + + + + + + + + +

A more complete statistic for the extracted date from
MPEG-2 covers are presented in Table IX, taken from [14].

TABLE IX. RATIOS OF PASSED TESTS EXTRACTED FROM 1000 DIFFERENT FILES

MPEG-2 WITHOUT EMBEDDING

NIST
test

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
at

io
,

%

49
.0

45
.9

29
.1

66
.0

96
.2

82
.5

53
.2

68
.4

68
.4

97
.2

43
.8

45
.7

43
.0

32
.1

33
.2

Although it is a different CO than the one investigated in
the current paper, we believe that this experiment serves only
as an example of the general SGA method, as we later show
how it is possible to protect the detection of the proposed SG
against a similar attack.

We also note that the use of Support Vector Machine (SVM
classifier) yields significantly better results, namely the
probability Pe ~ 5.2% [17].

Thus, we can see that SGA method based on the use of
NIST tests occurs sufficiently effective even against the SG
proposed in the current paper. But fortunately, an approach
proposed in [15] effectively protects against such an attack. Let
us briefly consider the proposed protection method. Then the
embedding procedure consists of three steps:

1) Encryption of the secret data using any strong cipher.

2) Decompression of the encrypted binary sequence with
arithmetic code (AC) given certain probabilities. Note that
family of AC is error-free; however, in order to use the
decompression procedure, it is necessary to define the
probabilities of symbols [15], that may play the role of an
additional stegokey.

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 133 --

3) “Embedding” of the decompressed sequences into CO
according to a given SG algorithm.

In order to extract secret data from SG, it is also necessary
to perform three steps:

1) Extract the “embedded” data according to the SG
algorithm.

2) Compress the extracted sequence with the known
probabilities of AC.

3). Decrypt the sequence obtained in the step 2 using the
known crypto key.

If an attacker does not know the embedding cipher
modification and the values of probabilities for AC, then they
will likely obtain a sequence that does not pass NIST tests.

Table X presents the results of NIST testing after cipher
modification with decompression using AC with the
probabilities P(O) = 0.49, the encryption is by AES cipher,
P(0) = 049, P(1) = 0.51, taken from the paper [15].

TABLE X. THE RESULTS OF NIST TESTING AFTER CIPHER MODIFICATION WITH

AC UNDER THE PROBABILITIES P(0)=0.49, P(1)=0.51.

Sequence
Test

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4 + + + + + + + +
5 + + + + + + + + + + + + + + +
6 + + + + + + + + + + + + + + +
7
8
9 + + + + + + + + + + + + +
10 + + + + + + + + + + + + + + +
11
12
13
14
15

By comparing Table X and Table VIII, we can see that
these Tables are similar; hence, it is impossible to detect SG
using NIST testing after cipher modification based on AC.

Nevertheless, an attacker can apply compression to the
extracted sequence if the parameters P(0) and P(1) for AC are
known to them. In this case, they would be able to detect SG.
However, if these parameters are unknown, the attacker may
attempt different values P(0), P(1) close to 0.5. Table XI
presents the results of NIST testing in terms of pass rates for
each of tests and for different probabilities of AC P(0), P(1),
chosen by the attacker close to 0.5.

It follows from the last results that the exact knowledge of
the probabilities P(0), P(1) is not necessary to provide correct a
detecting of SG based on NIST tests. Therefore, it is necessary
to select a more complex secret key than a single AC
parameter. In [15], a method was proposed to use the sequence
of probabilities Pi(0), i = 1, 2, …, N as an additional key, where
N = 50 is the length of the decompressed sequence. Then, such
a selection of an additional key prevents its discovery through
exhaustive search.

TABLE XI. THE PASS RATES OF NIST TESTS AFTER ATTACKER'S COMPRESSION

WITH DIFFERENT PARAMETERS P(0), P(1) CLOSE TO 0.5 GIVEN TO THE

DECOMPRESSION BY LEGITIMATE USER P(0) = 0.49, P(1)=0.51.

N of test
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P(0) P(1)
0.40 0.60

Pa
ss

 r
at

e,
 %

0 48 0 93 100 100 0 67 97 97 85 0 0 2 4
0.41 0.59 0 77 0 97 99 99 8 95 97 99 91 16 0 10 11
0.42 0.58 0 94 0 98 99 100 53 96 100 98 98 49 0 18 19
0.43 0.57 0 89 0 99 98 98 66 94 100 99 97 63 0 19 17
0.44 0.56 1 98 1 98 98 99 90 95 99 99 96 89 0 26 28
0.45 0.55 2 98 24 98 99 98 98 98 99 96 97 95 1 41 42
0.46 0.54 17 96 76 100 98 97 100 98 97 98 99 95 16 40 41
0.47 0.53 52 98 92 97 99 99 100 98 99 98 98 99 53 52 57
0.48 0.52 91 99 100 99 100 99 99 99 100 98 99 100 89 73 74
0.49 0.51 100 97 98 99 99 99 100 99 99 99 98 98 99 75 73
0.51 0.49 62 100 96 100 100 99 100 98 100 99 97 97 59 65 60
0.52 0.48 13 97 71 99 99 98 100 90 100 98 96 97 15 40 37
0.53 0.47 21 99 72 99 99 97 100 93 99 99 100 99 17 44 44
0.54 0.46 0 97 4 93 100 99 97 73 100 99 99 95 0 25 24
0.55 0.45 0 93 0 98 99 97 83 60 99 98 97 82 0 23 23
0.56 0.44 0 99 0 90 99 99 59 32 97 100 96 76 0 16 17
0.57 0.43 0 84 0 69 100 100 27 4 98 99 94 28 0 10 10
0.58 0.42 0 60 0 18 99 98 1 0 100 97 82 0 0 11 11

CONCLUSION

In this paper, we propose a novel stegosystem similar to the
so-called embeddingless approach, specifically designed to
introduce minor modifications to cover objects in the form of
video files. Unlike conventional SG, which typically involves a
trade-off between security and embedding rate, the proposed
method emphasizes a balance between embedding rate and the
computational complexity of the embedding process. On a
standard PC, embedding secure information into 30 video
frames requires approximately 7 minutes. Therefore, the use of
higher-performance computers is recommended to reduce
embedding time.

A video file was selected as the CO for the proposed SG in
order to increase the total number of bits that can be embedded.
Under the parameters considered in this study–including the
use of RS coding and typical 10-min video files–the system can
reliably and securely embed approximately 17 kbits of
information. Nevertheless, the method is flexible, and COs may
also include image sequences or even a single image. The title
of the proposed SG “almost perfectly secure SG” is more of a
metaphor, reflecting the fact that as for the moment, we do not
know any conventional attacks for our SG detection.
Unfortunately, however, one attack based on detection of the
embedded message after its encryption by strong cipher exists.
Although we refer to the paper necessity where such an attack
may be removed by the use NIST tests, this modification would
require a significant extension of the proposed SG algorithm.

We believe that future developments of the proposed
stegosystem could follow these directions:

 Optimization of the parameters for the proposed SG,
such as (m, lo).

 More careful selection of an error correction code
including decoding algorithm.

 Additional simulation of cipher modification.
 Investigation of alternative CO for embedding, such as

photo sessions.

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 134 --

REFERENCES
[1] K.G. Paterson, Applied cryptography Knowledge Area. Version 1.0.0,

ETH, Zuruch, 2021.
[2] J. Fridrich, Steganography in Digital Media. Cambridge University

Press, 2010.
[3] S. Dumitrescu, X. Wu, Z. Wang “Detection LSB Steganography via

Sample Pair Analysis”, LNCS, vol. 2578, 2002, pp. 355-378.
[4] M. Jain, S.K. Lenka, “A Review on Digital Leakage Prevention

Using Image Steganography”, International Journal of Computer
Science Engineering, vol. 5, N 2, 2016, pp. 56-59.

[5] V. Korzhik, G.M. Luna, K. Nebaeva “Stegosystems based on noisy
channels”, Proc. of the 3th Spanish Meeting on Cryptography and
Information Security, 2006, pp. 379-387.

[6] K.A. Zhang, A. Cuesta-Infante, L. Xu, K. Veeramachaneni
“SteganoGAN: High Capacity Image Steganography with GANS”,
arXiv: 1901.03892v2 [cs.CV], 2019.

[7] I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, Y. Bengio “Generative Adversarial
Networks”, arXiv: 1406.2661v1 [stat.ML] 2014.

[8] Z. Zhou, H. Sun, R. Harit, X. Chen, S. Xingming “Coverless Image
Steganography Without Embedding”, Lecture Notes in Computer
Science, 2015, pp.123-132.

[9] D.M. Blei, A.Y. Ng, M.I. Jordan “Latent Dirichlet Allocation”,
Journal of Machine Learning Research, N3, 2003, pp.993-1022.

[10] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of
Applied Cryptography, CRC Press, 1997.

[11] F.J. Macwilliams, N.J.A. Sloane, The Theory of Error-correcting
Codes, North-Holland Publishing Company, 1979.

[12] S. Agaian, “Steganography & Steganalysis, An Overview of
Research & Challenges”, Aspects of Network Security and
Information Security, NATO Science for Peace and security Series D,
Information and Communication Security, vol. 17, 2008, pp. 179-210

[13] E. Herberg, “Lecture Notes: Neural Network Architectures”
arXiv:2304.05133v2 [cs.LG], 2023.

[14] V. Korzhik, C. Nguyen, I. Fedyanin, “Side Attacks on Stegosystems
Executing Message Encryption Previous Embedding”, Journal of
Information Hiding and Multimedia Signal Processing, vol.11, N1,
2020, pp.44-57.

[15] V. Korzhik, C. Nguyen, G. Morales-Luna “Cipher Modification
Against Steganalysis Based on NIST Tests” PROCEEDING OF THE
24TH CONFERENCE OF FRUCT ASSOCIATION, 2019, pp.179-
186.

[16] L.E. Bassham, A.L. Rukhin, J. Soto, J.R. Nechvatal, M.E. Smid,
S.D. Leigh, M. Levenson, M. Vangel, N.A. Heckert, D.L. Banks A
Statistical Test Suite for Random and Pseudorandom Number-
Generators for Cryptographic Applications, Technical report,
Gaithersburg, MD. USA, 2010.

[17] V. Korzhik, C. Nguyen, K. Akhrameeva “Detection of Video
Steganography with the Use Universal Method Based on NIST-test”
Proceedings of Telecommunications Universities, vol. 6, N1, 2020,
pp.70-76 (in Russian)

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 135 --

