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Abstract—We propose a new approach to design of 
stegosystems without embedding of secret information directly 
into cover objects. However, it is not, strongly speaking, 
steganography without any embedding, but rather steganography 
with minimal modification. The cover objects are either video 
films or photo sessions. Algorithms of minimized embedding 
procedure and secret data extraction are presented. A number of 
conventional and “unusual” stegosystem detection attacks are 
considered, and methods to mitigate them are proposed. The 
complexity of cover objects transforms as well as “embedding” 
rates for video films are estimated through simulation. The use of 
error-correcting codes is also implicitly addressed. 

Keywords—steganography, hash function, error correcting 
codes, vulnerability to detection, embedding rate, video films. 

I. INTRODUCTION 

It is well known that steganography (SG) plays a crucial 
role in providing information security in the digital world. In 
fact, although cryptography (CR) is the primary means of 
ensuring information security with strong guarantees–
especially when considered in a broad sense, including 
authentication, digital signatures and cryptographic protocols–it 
does have limitations. As metaphorically described as a 
'mongrel' in the book [1], CR has one major drawback—it 
reveals the presence of additional hidden information, which 
should often be concealed. To close this “gap” in information 
security, users are nudged to implement SG. The latter 
technique hides even a presence of an added information in 
some digital cover objects (CO), such as, printed text, data, still 
images, movies, source codes and so on. By the way, all SGs 
can be divided into two classes: either those with CO given in 
advance or those where CO is generated freely by the source 
originator of stegosystems. 

In the current paper we are dealing with the design of SG 
from the first class. In this case CO should be looking as 
completely innocent one. For example, it can be a short video 
film with children, architecture of some beautiful city, or 
pictures of nature and wild animals during a travelling in 
Africa. At a single glance, the creation of steganograms 
requires making small changes—either in the spatial (pixel) 
domain for images or in the domain of certain pixel transforms, 
such as after Fourier or Walsh transforms. Of course, such 
changes must not be visually noticeable, and even after the 
application of various steganalytic methods, detecting the 
existence of an SG should remain difficult with a high 
probability. 

Methods of embedding, extraction and detection of SGs are 
presented in the well-known book [2]. The simplest embedding 
method is based on replacing the least significant bits (LSB) 
either in the pixel domain or in the transformed areas with the 
bits of a secret information. This makes it impossible to detect 
the SG presence with the naked eyes, but it remains susceptible 
to reliable SG detection based on histogram analysis or on the 
most effective method known as “Sample Pair Analysis” [3]. 
To prevent the compromise of SG security by the 
aforementioned or similar methods, many more sophisticated 
methods of embedding have been proposed, as presented in the 
book [1] and in many other papers [4]. 

But, in contrast to CR, for which encryption and decryption 
algorithms exist that provides so-called perfect cryptographic 
security–where even for the best breaking of a cipher, the 
information leakage about encrypted messages, given the 
cryptogram but unknown key, is zero. We remark, however, 
that such ciphers necessarily require the key length to be equal 
to the length of the plaintext. 

Unfortunately, similar perfect SG belonging to the class of 
given in advance CO are known only for scenarios when 
steganalysis can detect SG over the noisy channels [5], which 
are not very common in practice. It is worth noting that a new 
concept, GAN-steganography (Generative Adversarial 
Network), was proposed in recent times. In this framework a 
novel technique for hiding arbitrary binary data in images using 
generative adversarial networks which allows to optimize the 
perceptual quality of the images produced by such model was 
proposed. But unfortunately, such SGs are far from achieving 
perfect security, although provide an effective payload of 
around 4.4 secure bits per pixel [6,7]. It may seem like an 
oxymoron, but recently, so called coverless stegosystems that 
provide perfect detection security also have been proposed [8]. 
Let us briefly explain this approach, as it is very close to the 
one proposed in the current paper. 

Imagine that a very large database of images is freely 
accessible. If you want to hide additional data with perfect 
security, we can encrypt it in advance and divide it into blocks 
(portions) of “m” bit length each. Next, you take a 
cryptographic hash function with a hash length equal to “m” 
and extract images randomly from the database one by one 
until the hash of a chosen image matches the first portion of the 
ciphertext. In a positive case, we keep such an image as the 
first part of the stegotext. By repeating comparison procedure 
for all ciphertext portions, you form the full stegotext and then 
transmit or store it. It is clear that such SG is perfectly secure, 
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but it has one significant defect–it looks highly suspicious if an 
innocent photo session between ordinary network users 
consists of randomly chosen images taken from a huge 
database. Moreover, it is SG system that hides a secret message 
not in a given in advance CO, but in a randomly chosen one. 

By the way, in some publications [9] it was proposed to 
apply so-called “Latent Dirichlet Allocation Algorithm”, which 
allows for the automatic identification of content-similar 
objects in a database. But of course, it does not provide a very 
strong content correlation between the CO chosen from the file. 

In the current paper we propose to eliminate these defects. 
The remainder of our paper is organized as follows: 

 Section II describes the proposed SG system. 

 Section III presents estimates for the required number of 
iterations, obtained both theoretically and through 
simulation. 

 Section IV evaluates the efficiency of different detection 
attacks on the proposed SG. 

 The last section briefly discusses the main results and 
outlines directions for the future research for 
almostperfectly secure SG. 

II. DESCRIPTION OF THE PROPOSED ALMOSTPERFECTLY SECURE 

STEGOSYSTEM 

We select video files (or films) as COs for the proposed SG. 
The reason for this lies in the possibility of embedding more 
secret data than in still images. But as a future work (see our 
conclusion), we believe it is important to also consider photo 
(image) sessions. In Fig. 1, the block scheme of secret 
“embedding” is presented. More accurately, it would be correct 
to call it a block-scheme of CO transformation in such a way 
that hidden data can be correctly extracted. This is why we 
sometimes put the word “embed” in the quotation marks. 

The secret data intended to be “embedded” should first be 
encoded by an error-correction code, then encrypted with a 
strong stream cipher using a secret key K known only to 
legitimate users, and finally divided into portions, each of “m” 
bit length. Note that the use of stream cipher, rather than a 
block cipher, is recommended in order to avoid error spreading 
after decryption, which is typical for block cipher [10]. After 
that, the frames of video file should be hashed one by one to 
obtain m-bit hashes for each frame. Next, the hashes of the 
frames and the portions of the ciphertext are compared to one 
another. In the case of an exact match, the processed frames are 
stored as a part of the stegotext (stegoimages). Otherwise, a 
procedure of truly random selection among the frame pixels is 
performed, followed by the inversion of their LSBs. 

These transformations are repeated until a hash match 
occurs or until a predefined threshold for the number of 
iterations is exceeded. In the latter case, the iteration algorithm 
should be stopped, and the process moves on to the next 
frame. 

Extraction of the hidden information is shown in Fig. 2. 

 

 

Fig. 1. Block scheme of secret data “embedding” into video file frames 

 

Fig. 2. Block scheme of secret data extraction. 

In order to extract hidden data from the stego video file, it is 
necessary to first perform frame-by-frame hashing using the 
same hash function that was used for “embedding”. Next, the 
extracted data should be decrypted using the secret decryption 
key K, known to legitimate users. Finally, any errors that may 
occur due to the absence of hash matches for some frames 
should be corrected using the chosen error-correcting code. 

Let us consider some requirements for the parameters of the 
proposed SG. First, the number of hash comparisons 
(iterations) should not be too large. In fact, the number of 
iterations is upper bounded by the total number of pixels in 
each frame. Moreover, the number of iterations corresponds to 
the complexity of the “embedding” procedure and the required 
processing time for each frame. 

The next restriction involves an upper bound on the 
probability of iteration process blocking–otherwise, the errors 
in frames cannot be reliably corrected. Both theoretical and 
simulated estimates of the required number of iterations are 
presented in the next section. 

It is important to emphasize that in contrast to conventional 
LSB-based SGs, where there is a tradeoff between SG 
detection security and embedding rate, the proposed scheme 
has a tradeoff between embedding procedure complexity and 
embedding rate. 
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III. ESTIMATES FOR THE REQUIRED NUMBER OF ITERATIONS 

Let us initially consider an idealized hash function that, 
after each iteration with LSB inversion of a truly randomly 
chosen pixel, produces any hash of length “m” with equal 
probabilities 2-m. 

Then, it is obvious that the probability of obtaining any 
given hash of length “m” after at most “l” iteration is equal to 

2 1
( , ) 1

2

lm

m
P m l

 
   

 
. (1)

In Table I the results of calculation by (1) for different 
parameters “m” and “l” are given. 

TABLE I.  THE PROBABILITY OF HASH COINCIDENCE AT “l” ITERATIONS AND 

HASH LENGTH “m” FOR IDEALIZED HASH FUNCTION   

m 
l 

1 5 10 20 30 40 50 

1 0.500 0.031 0.001 10-6 10-9 10-12 10-15 
5 0.969 0.147 0.005 5x10-6 5x10-9 5x10-12 5x10-15 
10 0.999 0.272 0.009 10-5 10-8 10-11 10-14 
50 1 0.796 0.048 5x10-5 5x10-8 5x10-11 5x10-14 
100 1 0.958 0.093 10-4 10-7 10-10 10-13 
1000 1 1 0.624 0.001 10-6 10-9 10-12 
5000 1 1 0.992 0.005 5x10-6 5x10-9 5x10-12 
10000 1 1 0.999 0.009 10-5 10-8 10-11 

 

Since the proposed scheme was implemented using the real 
keyless hash function CRC32, in Table II we present the same 
probabilities as in Table 1, but for real hash function, obtained 
through simulation. 

TABLE II. THE PROBABILITIES SIMILAR TO ONES PRESENTLY IN TABLE 1, BUT 

OBTAINED THROUGH SIMULATION FOR HASH FUNCTION CRC32.  

m 
l 

1 5 10 

1 0.500 0.031 0.001 
5 0.970 0.125 0.005 

10 0.999 0.250 0.010 
50 1 0.781 0.045 
100 1 0.969 0.090 
1000 1 1 0.603 
5000 1 1 0.984 
10000 1 1 1 

    

The simulation environment consisted of an 11th Gen 
Intel(R) Core(TM) i7-1165G7 CPU @ 2.80 GHz, 16 GB 
RAM, running Windows 10 (version 22H2), with Visual 
Studio 2022 and Python. 

 Comparing the results presented in Tables I and II, we can 
see that they do not differ significantly from one another. 
Therefore, it is possible to select the parameters of the 
proposed SG system as follows: m = 10, l0 = 10000. However, 
such computational complexity excludes SG formation in a 
real-time. This means that, for the chosen parameters, the 
probability of iteration procedure blocking, which in turn is 
equivalent to an error in the processed frame, is approximately 
Pe = 0.01. Since the errors spread across the hidden portion of 
the length “m”, it is reasonable to apply a q = 2m-ary shorted 

Reed Solomon error correcting codes (RS) to correct such 
errors. It is well known [11] that such a code, with parameters 
(n, k), q = 2m, satisfies n ≤ 2m-1 and has a minimal code 
distance d = n-k+1. It is capable of correcting all q-ary errors 
of multiplicity up to d/2. The probability of erroneous 
decoding for such a code is 

 
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1
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ed e e

d
i

n
P P P

i
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  

 
  (2)

Substituting the previously chosen RS code parameters  
n = 320, k = 300, d = 21 and symbol error probability  
Pe = 0.01 into (2), we obtain Ped ≈ 0.00034. This value can be 
considered sufficiently small for each frame. 

IV. ATTACKS ON THE PROPOSED SG DETECTABILITY 

Let us emphasize once more the main feature of the 
proposed SG system: only one LSB for a randomly chosen 
pixel in each frame of the video file is inverted. 

It is important to note that the selection of pixels for 
inversion should be performed randomly but not through a 
regular selection process, e.g., from the first pixel of the frame 
up to the last one. Otherwise, it may increase the efficiency of 
SGA. 

Let us recall some SG detection attacks on conventional 
LSB-based SG, where the LSBs of all pixels are replaced with 
bits of secret information. In this case, typical histograms of 
CO and SG have the view shown in Fig. 3 where the histogram 
V(i) =#{n, B(n) = i, B(n) is the brightness of n-th pixel. 

 
Fig. 3. Typical histograms for CO (a) and for LSB-based SG(b) 

By using closely located neighboring levels of the 
histogram for SG, it is easy to establish a criterion for SG 
detection: 

2  , then SG is present, (3)

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 131 ----------------------------------------------------------------------------



2  , then SG is absent, 

where α is predefined threshold, 

 
 

  21 /2
2
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(2 ) (2 1)

2 (2 ) (2 1)

L
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V i V i

V i V i






 


  . (4)

In fact, detection criteria (3) works satisfactory for detecting 
of LSB-based SGs but it is practically useless for the proposed 
SG because its histogram differs only slightly from the CO 
histogram in each frame, as only one pixel per frame is 
changed. 

To verify this fact, a simulation was performed on typical 
video frames. The results are presented in Table III. From this 
table, we can see that even for an optimally chosen threshold, 
the minimal SG detection error Pe= (Pfa +Pm)/2, (where Pfa is 
the probability of false alarm, Pm is the probability of missing 
SG detection in the proposed system), is very close to ½, which 
is equivalent to random guessing. 

TABLE III. THE PROBABILITIES OF ERRORS (PFA, PM, PE= (PFA+PM)/2) AGAINST 

CHOSEN THRESHOLD FOR THE PROPOSED SG AND UNDER THE USE  χ2 CRITERIA 

Probability 
Threshold 

Pfa, % Pm, % Pe, % 

0,002 0 100 50 
0,006 8 92 50 
0,010 29 71 50 
0,014 31 69 50 
0,022 36 64 50 
0,030 39 61 50 
0,034 50 50 50 
0,038 53 47 50 
0,054 59 41 50 
0,062 60 40 50 
0,066 77 23 50 
0,070 80 20 50 

0,0546 80 20 50 
0,554 90 10 50 
0,558 98 2 50 
0,562 100 0 50 

Another detection criterion that is widely used against LSB-
based SGs computes the difference between neighboring pixel 
byte levels as 

 
1

2

0
2

( ) ( 1)

2

L

i

n

n i n i








 



, (5)

where n(i) is the number of bytes with the value i among 
the pixels in the frame. 

The results of the SG detector simulation on criterion where 
χ2 is replaced by γ, are shown in Table IV. 

We can see from this table that even under selection of an 
optimal threshold, the probability Pe is close to 1/2 and hence 
to the probability of a random guessing. 

As for SGA using the method known as Sample Pair 
Analysis [3], which is very popular and effective for detecting 
conventional LSB-based SGs, it involves solving a quadratic 
equation to determine the probability “P” of LSB embedding in 

each pixel. However, such an approach is senseless for the 
proposed method because, we do not have any embedding with 
pixel probability but only the inversion of one LSB randomly 
chosen in each frame. 

TABLE IV. THE PROBABILITIES OF ERRORS (PFA, PM, PE= (PFA+PM)/2) AGAINST 

CHOSEN THRESHOLD α FOR THE PROPOSED SG AND UNDER THE USE OF γ -
CRITERION 

Probability
Threshold 

Pfa, % Pm, % Pe, % 

10 1 0 50 
20 95 5 50 
25 86 14 50 
30 75 25 50 
35 60 40 50 
40 51 49 50 
45 39 61 50 
50 27 73 50 
55 17 83 50 
60 15 85 50 
65 13 87 50 
70 11 89 50 
80 5 95 50 
90 2 98 50 
100 0 100 50 

 

Let us return to the discussion regarding the optimal 
detection algorithm for the proposed SG. Since the 
transformation of CO to SG requires modifying only one LSB 
per frame, and moreover, only one randomly chosen LSB in 
each frame, it is reasonable to suggest that the optimal 
detection algorithm should analyze only LSBs of all frames. A 
second reasonable assumption is that the correlation between 
LSBs of different frames can be neglected. Hence, the decision 
about SG presence should be made independently for each 
frame, and the final decision (CO or SG) for the entire file 
should be determined using the majority rule. 

It follows from our previous discussion that we could try to 
use some classifier such as support vector machine (SVM) [12] 
for SG detection after preliminary training on samples of CO 
and SG constructed according to our method. Of course, such a 
classifier could be replaced by specialized neuron network [13]. 
In the future, we plan to implement this approach, but we have 
a little hope of achieving positive results because the 
“invasion” by CO transform in SG is minimal. For instance, in 
1920x1080 pixel frames, we modify only one LSB in ~ 2x106 
pixels! 

But let us consider an attack against the proposed SG from 
another (unusual) perspective–namely, the execution property 
of strong encryption for secret messages. It is obvious that 
encryption and decryption procedures using a secret key are 
mandatory for the proposed SG. Otherwise, a steganalyst, who 
we assume knows the full “embedding” and extraction 
algorithms, would be able to recover the secret message after 
hashing of the file and recognize the SG presence, since the 
extracted information would be meaningful. 

The idea of executing such an SGA and the method to 
prevent it were recently proposed and published in [14,15]. On 
the other hand, if the “embedded” data was previously 
encrypted using a strong cipher, then a steganalyst would be 
able to extract this ciphertext and test it for pseudorandomness 
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using so called NIST tests. (See [16] and Table V). If the video 
file is not SG (so., no data was “embedded”), then the 
steganalyst would be able to extract hashes of frames, but they 
would not necessarily pass all NIST tests. The number of 
passed tests can then be compared to a predefined threshold. If 
it exceeds the threshold, the file is assumed to be SG; 
otherwise, it is considered as CO. 

TABLE V. THE TITLES OF NIST TESTS ON PSEUDORANDOMNESS 

N Titles of tests 
1 The frequency test 
2 Frequency test within a block 
3 The runs test 
4 Tests for the longest-run-of-ones in a block 
5 The binary matrix rank test 
6 The discrete Fourier transform (spectral) test 
7 The non-overlapping template matching test 
8 The overlapping template matching test 
9 Maurer’s “Universal Statistical” test 
10 The linear complexity test 
11 The serial test 
12 The approximate entropy test 
13 The cumulative sums (cusums) test 
14 The random excursion test 
15 The random excursions variant test 

 

In Table VI the results of NIST tests passing for SG with 
LSB-based embedding taken from the paper [14] are presented, 
where a plus sign (+) indicates that the corresponding test was 
passed and a minus sign (-) indicates that it was not passed. We 
note that the specific SG embedding method used does not 
affect the results. So, the embedding algorithm [15] differs 
from the SG proposed in the current paper because the results 
depend on type of cipher only. In [14], the strong cipher 
GOST-28147-89 was applied. 

TABLE VI. RESULTS OF STEGANALYTIC TESTING FOR FULL LSB-BASED 

EMBEDDING WITH ENCRYPTION OF 15 SEQUENCES BY CIPHER GOST-28147-89  

Sequence 
Test 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 + + + + + + + + + + + + + + +
2 + + + + + + + + + + + + + + +
3 + + + + + + + + + + + + + + +
4 + + + + + + + + + + + + + + +
5 + + + + + + + + + + + + + + +
6 + + + + + + + + + + + + + + +
7 + + + + + + + + + + + + + + +
8 + + + + + + + + + + + + + + +
9 + + + + + + + + + + + + + + +
10 + + + + + + + + + + + + + + +
11 + + + + + + + + + + + + + + +
12 + + + + + + + + + + + + + +  
13 + + + + + + + + + + + + + + +
14 + +    + + + + +  +  +  
15 + +    + + +  +  + + +  

 A more complete statistic is presented in Table VII, also 
taken from [14]. 

We can see from Tables VI, VII that most of the tests have 
been passed. In contrast to NIST passing for any SG, the results 
of NIST tests passing for CO as MPEG-2 file and taken from 
[14] are shown in Table VIII. 

TABLE VII. RATIO OF NIST TESTS PASSING (IN %) CALCULATED FOR 1000 

CIPHER TEXTS ENCRYPTED BY CIPHER GOST-28147-89.  

NIST
test 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
at

i
o,

 %
 

98
.9

 

99
.5

 

99
.1

 

98
.4

 

99
.4

 

99
.2

 

99
.8

 

98
.8

 

98
.8

 

99
2 

98
.4

 

99
.0

 

98
.6

 

69
.7

 

70
.0

 

TABLE VIII. RESULTS OF NIST TESTING AFTER EXTRACTION OF CO FOR 

MPEG-2 FILE.  

Sequence
Test 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 + + + + + + +   + +  + + +
2  +  + +  +    +  + + +
3  +        + +  + + +
4  + +  +  + +  + +  + + +
5  + + + + + + + + + + + + + +
6  + + + + + + + +  + + + + +
7  + +  +  +    +  + + +
8  + + + +  + +  + +  + + +
9  + + + +  + +  + +  + + +

10 + + + + + + + + + + + + + + +
11  +  +  +  +      + +
12  +      +      + +
13  + + + +  +   + +  + +  
14   + + +  + +  + + +   +
15   + + +  + +  + + +   +

 

A more complete statistic for the extracted date from 
MPEG-2 covers are presented in Table IX, taken from [14]. 

TABLE IX. RATIOS OF PASSED TESTS EXTRACTED FROM 1000 DIFFERENT FILES 

MPEG-2 WITHOUT EMBEDDING 

NIST 
test 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
at

io
, 

%
 

49
.0

 

45
.9

 

29
.1

 

66
.0

 

96
.2

 

82
.5

 

53
.2

 

68
.4

 

68
.4

 

97
.2

 

43
.8

 

45
.7

 

43
.0

 

32
.1

 

33
.2

 

 

Although it is a different CO than the one investigated in 
the current paper, we believe that this experiment serves only 
as an example of the general SGA method, as we later show 
how it is possible to protect the detection of the proposed SG 
against a similar attack. 

We also note that the use of Support Vector Machine (SVM 
classifier) yields significantly better results, namely the 
probability Pe ~ 5.2% [17]. 

Thus, we can see that SGA method based on the use of 
NIST tests occurs sufficiently effective even against the SG 
proposed in the current paper. But fortunately, an approach 
proposed in [15] effectively protects against such an attack. Let 
us briefly consider the proposed protection method. Then the 
embedding procedure consists of three steps: 

1) Encryption of the secret data using any strong cipher. 

2) Decompression of the encrypted binary sequence with 
arithmetic code (AC) given certain probabilities. Note that 
family of AC is error-free; however, in order   to use the 
decompression procedure, it is necessary to define the 
probabilities of symbols [15], that may play the role of an 
additional stegokey. 
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3) “Embedding” of the decompressed sequences into CO 
according to a given SG algorithm. 

In order to extract secret data from SG, it is also necessary 
to perform three steps: 

1) Extract the “embedded” data according to the SG 
algorithm. 

2) Compress the extracted sequence with the known 
probabilities of AC. 

3). Decrypt the sequence obtained in the step 2 using the 
known crypto key. 

If an attacker does not know the embedding cipher 
modification and the values of probabilities for AC, then they 
will likely obtain a sequence that does not pass NIST tests. 

Table X presents the results of NIST testing after cipher 
modification with decompression using AC with the 
probabilities P(O) = 0.49, the encryption is by AES cipher, 
P(0) = 049, P(1) = 0.51, taken from the paper [15]. 

TABLE X. THE RESULTS OF NIST TESTING AFTER CIPHER MODIFICATION WITH 

AC UNDER THE PROBABILITIES P(0)=0.49, P(1)=0.51.  

Sequence 
Test 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1                
2                
3                
4  + + +   +   +  + +  +
5 + + + + + + + + + + + + + + +
6 + + + + + + + + + + + + + + +
7                
8                
9 +  + + + + +  + + + + + + +
10 + + + + + + + + + + + + + + +
11                
12                
13                
14                
15                

 

By comparing Table X and Table VIII, we can see that 
these Tables are similar; hence, it is impossible to detect SG 
using NIST testing after cipher modification based on AC. 

Nevertheless, an attacker can apply compression to the 
extracted sequence if the parameters P(0) and P(1) for AC are 
known to them. In this case, they would be able to detect SG. 
However, if these parameters are unknown, the attacker may 
attempt different values P(0), P(1) close to 0.5. Table XI 
presents the results of NIST testing in terms of pass rates for 
each of tests and for different probabilities of AC P(0), P(1), 
chosen by the attacker close to 0.5. 

It follows from the last results that the exact knowledge of 
the probabilities P(0), P(1) is not necessary to provide correct a 
detecting of SG based on NIST tests. Therefore, it is necessary 
to select a more complex secret key than a single AC 
parameter. In [15], a method was proposed to use the sequence 
of probabilities Pi(0), i = 1, 2, …, N as an additional key, where  
N = 50 is the length of the decompressed sequence. Then, such 
a selection of an additional key prevents its discovery through 
exhaustive search. 

TABLE XI. THE PASS RATES OF NIST TESTS AFTER ATTACKER'S COMPRESSION 

WITH DIFFERENT PARAMETERS P(0), P(1) CLOSE TO 0.5 GIVEN TO THE 

DECOMPRESSION BY LEGITIMATE USER P(0) = 0.49, P(1)=0.51.  

N of test 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P(0) P(1)  
0.40 0.60

Pa
ss

 r
at

e,
 %

 

0 48 0 93 100 100 0 67 97 97 85 0 0 2 4 
0.41 0.59 0 77 0 97 99 99 8 95 97 99 91 16 0 10 11
0.42 0.58 0 94 0 98 99 100 53 96 100 98 98 49 0 18 19
0.43 0.57 0 89 0 99 98 98 66 94 100 99 97 63 0 19 17
0.44 0.56 1 98 1 98 98 99 90 95 99 99 96 89 0 26 28
0.45 0.55 2 98 24 98 99 98 98 98 99 96 97 95 1 41 42
0.46 0.54 17 96 76 100 98 97 100 98 97 98 99 95 16 40 41
0.47 0.53 52 98 92 97 99 99 100 98 99 98 98 99 53 52 57
0.48 0.52 91 99 100 99 100 99 99 99 100 98 99 100 89 73 74
0.49 0.51 100 97 98 99 99 99 100 99 99 99 98 98 99 75 73
0.51 0.49 62 100 96 100 100 99 100 98 100 99 97 97 59 65 60
0.52 0.48 13 97 71 99 99 98 100 90 100 98 96 97 15 40 37
0.53 0.47 21 99 72 99 99 97 100 93 99 99 100 99 17 44 44
0.54 0.46 0 97 4 93 100 99 97 73 100 99 99 95 0 25 24
0.55 0.45 0 93 0 98 99 97 83 60 99 98 97 82 0 23 23
0.56 0.44 0 99 0 90 99 99 59 32 97 100 96 76 0 16 17
0.57 0.43 0 84 0 69 100 100 27 4 98 99 94 28 0 10 10
0.58 0.42 0 60 0 18 99 98 1 0 100 97 82 0 0 11 11

 

CONCLUSION 

In this paper, we propose a novel stegosystem similar to the 
so-called embeddingless approach, specifically designed to 
introduce minor modifications to cover objects in the form of 
video files. Unlike conventional SG, which typically involves a 
trade-off between security and embedding rate, the proposed 
method emphasizes a balance between embedding rate and the 
computational complexity of the embedding process. On a 
standard PC, embedding secure information into 30 video 
frames requires approximately 7 minutes. Therefore, the use of 
higher-performance computers is recommended to reduce 
embedding time. 

A video file was selected as the CO for the proposed SG in 
order to increase the total number of bits that can be embedded. 
Under the parameters considered in this study–including the 
use of RS coding and typical 10-min video files–the system can 
reliably and securely embed approximately 17 kbits of 
information. Nevertheless, the method is flexible, and COs may 
also include image sequences or even a single image. The title 
of the proposed SG “almost perfectly secure SG” is more of a 
metaphor, reflecting the fact that as for the moment, we do not 
know any conventional attacks for our SG detection. 
Unfortunately, however, one attack based on detection of the 
embedded message after its encryption by strong cipher exists. 
Although we refer to the paper necessity where such an attack 
may be removed by the use NIST tests, this modification would 
require a significant extension of the proposed SG algorithm. 

We believe that future developments of the proposed 
stegosystem could follow these directions: 

 Optimization of the parameters for the proposed SG, 
such as (m, lo). 

 More careful selection of an error correction code 
including decoding algorithm. 

 Additional simulation of cipher modification. 
 Investigation of alternative CO for embedding, such as 

photo sessions. 
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