
Methods for Solving the Linear Cutting-stock
Problem on Several Slitting Machines with

Minimizing the Number of Waste and Knife
Rearrangements

Vladislav Klimenko, Liudmila Shchegoleva
Petrozavodsk State University (PetrSU)

Petrozavodsk, Russia

{klimenko, schegoleva}@petrsu.ru

Abstract—This article presents the methods for solving the
linear cutting problem. The linear cutting problem is, in general,
an optimization problem that involves arranging the given types
of material (orders) in such a way as to minimize waste and/or
maximize the use of raw materials, taking into account the
restrictions on the number of knives, the width of the master roll
and the required orders. A special case of the problem includes
an additional condition of minimizing knife rearrangements.
There are also multiple slitting machines with different widths
of the master roll. It makes the problem more complex and
requires proper algorithms. The following approaches to its
solution are considered: the full enumeration method, and a
genetic search based on genetic and evolutionary algorithms.
Pseudocode is presented for various methods of solving the
problem. An example is provided for the genetic search method.
A comparison is made between both algorithms in terms of
algorithmic complexity, controllability of execution time and
accuracy.

I. THE LINEAR CUTTING-STOCK PROBLEM

Cellulose and wood pulp are sent to mixing pools, where

they are blended and transformed into a uniform paper mass.

This mass is then fed under pressure to the paper-making

machine (PMM), where the process of producing paper sheet

begins. The technological process includes several stages [1]:

first, the dewatering of the paper mass occurs on the wire

section, then in the press section, after which the sheet is dried

and calendered to give it the desired texture and density. When

the paper sheet reaches the required characteristics, it is wound

onto a drum roll. Using a crane, the sheet is removed from

the PMM roll and transferred to longitudinal cutting machines,

where it is cut into rolls of specified formats.

Typically, several presses operate at the production facility,

which can have different master roll widths. This variety

allows for the optimization of the production process and

adaptation to various customer requirements. Each press can

be adjusted to work with specific characteristics of the pa-

per sheet, ensuring flexibility in the production process and

efficient use of resources.

The paper cutting process includes several key stages [2].

First, the paper sheet is fed into slitting machines (SM), where

it is carefully aligned and secured. Then, with the help of

sharp knives or cutting discs, the sheet is divided into rolls of

the desired width. These machines can be set up for various

formats, allowing for the production of rolls of different widths

depending on the order. After cutting, the finished rolls are

transported via conveyors to the packaging line. Here, they

undergo final quality checks and are packaged in wrapping

paper, ensuring protection of the rolls during storage and

transportation.

SM play a crucial role in the finishing process of paper

production, enabling the precise conversion of a master rolls

into smaller, manageable formats tailored to customer specifi-

cations. These machines are designed to handle a wide range

of paper types, including those with varying thicknesses and

properties. Equipped with advanced technology, SM ensure

that each cut is clean and accurate, minimizing waste and

maximizing efficiency. The operation typically involves feed-

ing the large paper rolls (master rolls) into the SM, where they

are unwound and passed through a series of rotating blades

that slice the paper into narrower strips. The resulting rolls

are then automatically wound onto cores, ready for further

processing or shipping. By integrating SM into the production

line, manufacturers can enhance their operational flexibility,

responding swiftly to market demands and providing high-

quality products that meet diverse customer needs.

The interplay between ecology and money is increasingly

relevant in the context of industrial processes like paper cutting

[3]. As companies strive to maximize profits, the pressure to

reduce waste and enhance sustainability becomes paramount.

The efficient use of resources not only has environmental ben-

efits—such as reducing deforestation and minimizing landfill

contributions—but also translates into significant cost savings.

By optimizing the cutting process, businesses can decrease

material waste, which directly impacts their bottom line. This

alignment of ecological responsibility with financial viability

creates a compelling business case for adopting greener prac-

tices in manufacturing.

Moreover, as consumers become more environmentally

conscious, companies that prioritize sustainable practices can

gain a competitive advantage in the market. Investing in

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 110 --

technologies that minimize waste and enhance energy effi-

ciency can lead to improved brand loyalty and potentially

higher sales. This is particularly pertinent in industries like

paper production, where the sourcing and processing of raw

materials have a direct impact on the environment. By viewing

ecological initiatives not just as an obligation but as a strategic

investment, businesses can cultivate a positive image, attract

environmentally aware consumers, and ultimately enhance

their profitability while contributing to the health of the planet.

However, the cutting of the paper sheet must be organized

in such a way as to minimize waste and ensure maximum

efficiency in material usage. This leads to the necessity of a

mathematical formulation of the linear cutting-stock problem

(LCP), where it is essential to optimally distribute the rolls

according to the width of the formats in order to achieve

the best results in the cutting process, taking into account

the restrictions on the widths of the master rolls and the

requirements for the final product.

II. MATHEMATICAL MODEL

Let:

• c — the total number of SM;

• L = {L1, L2, . . . , Lc} — the widths of each SM’s master

roll;

• m — is a total quantity of orders;

• M = {(l1, q1), (l2, q2), . . . , (lm, qm)} : i = 1,m, j =
1,m, li �= lj — the set of orders, where each order i has

a format width li and a number of rolls qi;
• v — is a quantity of orders in a cutting layout;

• p = (p1, p2, . . . , pv) — a cutting layout, which is an

ordered sequence, where for each pj there exists an order

(lk, qk) ∈ M such that pj = lk, with the number of

elements in different layouts possibly being different;

• a — is a quantity of cutting layouts in a cutting plan for

one SM;

• P = {p1, p2, . . . , pa} — the cutting plan for one SM,

which is an ordered sequence of layouts;

• G = {P 1, P 2, . . . , P c} — the global cutting plan for all

SM.

It is necessary to find such a global cutting plan G for which

the total width of waste will be minimal. Let the function τ(P)
of waste sums is given by the expression:

τ(P) =

a∑
i=1

⎛
⎝L−

vi∑
j=1

pij

⎞
⎠ . (1)

Then the objective function is:

τ ′(G) =
∑
P∈G

τ(P) → min . (2)

The following constraints are given. The constraint imposes

a condition on the layout: the sum of formats must not exceed

the width of their master roll:
∑

pj∈P i

pj < Li, 1 ≤ i ≤ c. (3)

The constraint describes the condition for fulfilling all

orders:

∑
P∈G

a∑
i=1

vi∑
j=1

I(pij = lk) = qk, k = 1,m. (4)

However, to improve the efficiency of the enterprise, a

requirement can be added to the task to minimize the number

of knife rearrangements for the sought cutting plan [4]. The

cutting plan should be minimized, first of all, in terms of

waste, and then minimized in terms of the number of knife

rearrangements.

Let

σ(p1, p2) = v2 − max
0≤k≤min{v1,v2}

{j : j ≤ k, p1j = p2j} (5)

— a function calculating the knife rearrangements to transition

from layout p1 to layout p2. v1 and v2 are the quantity of

orders in the p1 and p2 respectively. It is equal to the difference

between the number of formats in layout p2 and the number

of matching formats at the beginning of the ordered sequence

of formats for layouts p1 and p2. Matching formats at the

beginning of the sequence do not require knife rearrangement,

so they can be ignored.

The function for calculating the number of knife rearrange-

ments for the cutting plan P can be expressed as follows:

μ(P) = v1 +

a−1∑
i=1

σ(pi, pi+1). (6)

This sum consists of the number of formats in the initial

layout p1, as the knives are not initially set. The sum also

includes the number of necessary knife rearrangements for

each pair of layouts pi and pi+1.

Then the function for calculating the number of knife

rearrangements for the global cutting plan G can be expressed

as follows:

μ′(P) =
∑
P∈G

μ(P). (7)

Thus, the problem of minimizing the number of knife

rearrangements for the SM in the layout P for the LCP with

waste minimization will be as follows:

μ′(G) → min . (8)

Subject to the condition that the minimum of the function:

τ ′(G) is achieved on the set G.
The mathematical model extends another one from the

article [5]. But it’s algorithms can’t be applied, because there

are several SM with different widths. The mathematical model

requires more complex methods which can distribute orders

between multiple SMs.

III. FULL ENUMERATION METHOD

The exhaustive search method represents a comprehensive

approach to solving the LCP, ensuring the discovery of a

globally optimal solution. However, when faced with high

structural complexities inherent in linear cutting tasks, this

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 111 --

method encounters significant limitations due to its computa-

tional complexity, which is so high that it sometimes renders

it impractical for real-world applications [6]. The algorithmic

complexity for this method will be exponential in relation to

the number of orders [7].

One variant of exhaustive search using recursion is pro-

posed. This algorithm finds a global cutting plan with minimal

waste and the number of knife rearrangements. At each itera-

tion, it considers the current global cutting plan and returns the

best available option. Initially, the considered global cutting

plan is empty. The algorithm can be divided into two main

parts: the first part checks that the current solution satisfies

Constraint (4), and if so, it can be returned as the best for

the current iteration; the second part is executed if the current

solution does not satisfy Constraint (4), and thus, additional

formats need to be added to the cutting plan. At each iteration

of the algorithm, a new cutting plan is created and stored in

the variable newP. The new format is added to the last cut

(the variable LastCut) if it does not violate Constraint (3);

otherwise, a new cut is added (the variable newLastCut). A

new recursive iteration of the enumeration is called for the new

cutting plan, and the resulting global cutting plan (the variable

NewBestG) is compared with the current best global cutting

plan (the variable BestG). The current best global cutting plan

will be replaced with the plan from the variable NewBestG in

three cases:

1) if the variable BestG contains an empty global cutting

plan;

2) if the global cutting plan in the variable NewBestP is

better than the global cutting plan in the variable BestG
in terms of waste;

3) or if the global cutting plan in the variable NewBestG
is equal in waste but better in the number of knife

rearrangements.

After considering all possible options for adding orders, the

best global cutting plan is returned from the variable BestG.

The pseudo code of the recursive enumeration algorithm is

presented in Algorithm 1.

The input of the algorithm is:

• A set of orders M = {(l1, q1), (l2, q2), . . . , (lm, qm)};

• the widths of SM L = {L1, L2, . . . , Lc};

• the current global cutting plan G (initially, this is an

empty global cutting plan).

The output of the algorithm is:

• The global cutting plan in the variable BestG, minimizing

waste and the number of knife rearrangements.

Algorithm 1 Enumerate Global Plan Cuts

1: EnumerateGlobalPlanCuts(M, L, G={{∅}, . . . , {∅}}):

2: BestG = ∅
3: # Counter for order formats

4: MCount = {l1 : 0, l2 : 0, . . . , lm : 0}
5: for P in G do
6: for p in P do
7: for l in p do
8: MCount[l]++

9: # Check if the current format fulfills the order

10: orderCompleted = 1

11: for i = 1 to m do
12: if M[i].q �= MCount[M[i].l] then
13: orderCompleted = 0

14: if orderCompleted = 1 then
15: # If G contains the necessary number of orders,

16: # it cannot be expanded with new formats

17: BestG = G
18: return BestG
19: P = ∅
20: for i = 1 to m do
21: if M[i].q < MCount[M[i].l] then
22: # Skip fulfilled orders

23: continue
24: for j = 1 to c do
25: P = Gj

26: PQuantity = |P|
27: # Last cut in the current cutting plan

28: LastCut = P[PQuantity]

29: # Total width of the last cut

30: LastCutLen =
∑LastCut

j=1 LastCut[j]
31: # If adding a new format to the last cut

32: # does not violate the maximum width constraint

33: if LastCutLen + M[i].l ≤ Lj then
34: newLastCut = LastCut + {M[i].l}
35: newP = P
36: # Add the new format to the last cut

37: newP[PQuantity] = newLastCut
38: else
39: # Add a cut to the new cutting layout

40: newP = P + {M[i].l}
41: G’ = G
42: G′

j = newP
43: NewBestG = EnumeratePlanCuts(M, L, G’)

44: # Check if the new cutting plan is the best option

45: if NewBestG �= ∅ then
46: if BestG = ∅ then
47: BestG = NewBestG
48: if τ ′(BestG) > τ ′(NewBestG) then
49: BestG = NewBestG
50: ifτ ′(BestG) = τ ′(NewBestG)andμ′(BestG) >

μ′(NewBestG) then
51: BestG = NewBestG
52: return BestG

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 112 --

IV. GENETIC SEARCH METHOD

Genetic and evolutionary algorithms are search and opti-

mization methods that can significantly improve the processes

of solving cutting stock problems with the minimization of

knife rearrangements. One of the fundamental advantages of

these algorithms is the ability to flexibly control execution

time, allowing them to be adapted to the specific requirements

of a given task. At the same time, each iteration does not

degrade the quality of the current solution, making the process

less vulnerable to local minima [8].
The effectiveness of applying genetic and evolutionary

algorithms is closely related to the power of computational

resources, which often implies the use of high-performance

computing systems, such as supercomputers and clusters [9].

A. The algorithm
The following random search algorithm with elements of

a genetic algorithm is proposed [10]. It was called ge-

netic search (GS). It iteratively forms new populations S =
{S1, S2, . . . , SC}, where St is the t-th global cutting plan G,

and St,i is the i-th cutting plan P in the t-th global cutting

plan G. The initial population S0 consists of random global

cutting plans that meet the Constraints (3) and (4). The size

of the initial population determines the number of iterations,

thus affecting the accuracy and speed of the algorithm.
Each iteration begins with mutation (function GlobalMutate)

for the global cutting plans of the current population St. The

Mutate function creates a new cutting plan P ′, and if it is

better than the old cutting plan, that is, τ ′(G) > τ ′(G′), the

global cutting plan is replaced, G = G′. After that, crossover

(function Crossingover) is performed for a pair of adjacent

cutting plans St,2i−1 and St,2i. The Crossingover function

returns the better of the two cutting plans, thereby forming a

global cutting plan St+1,i in the new population. This reduces

the size of the population St+1 by half compared to St. As a

result of the algorithm’s operation, the population is reduced to

a single global cutting plan G′, which will be no worse than the

cutting plans from the initial population G ∈ S0. The larger the

size of the initial population, the more iterations there are, and

consequently, the higher the probability of obtaining a global

cutting plan G′ with minimal waste and knife rearrangements.

Let,

• t be the iteration number of the search and population.

• S be the set of global cutting plans G that meet the

Constraints (3)-(4); in other words, the population of

cutting plans. And St is the population at the search

iteration t.
• C be the size of the current population.

• Algorithm 2: Mutate(P) is the mutation function that

randomly shuffles the cutting layouts p ∈ P and the order

of formats within them. The function shuffle randomly

shuffles the order of the cutting formats p. The use of the

Mutate function increases the likelihood of obtaining an

improved cutting plan in terms of minimizing the number

of knife rearrangements. Input: cutting plans P . Output:

cutting plan with altered order P ′.

Algorithm 2 Mutate Algorithm

1: Mutate(P):

2: P’ = P
3: for i = 1 to a do
4: # Shuffle the cutting layout P’i

5: shuffle(P’[i])
6: # Shuffle the cutting layouts in P’
7: shuffle(P’)
8: return P’

• Algorithm 3: GlobalMutate(P) is the mutation function

for global cutting plan that applies Mutate function that

increases the likelihood of obtaining an improved global

cutting plan in terms of minimizing the number of knife

rearrangements. Input: global cutting plan G. Output:

global cutting plan with altered order G′.

Algorithm 3 Mutate Algorithm for a global cutting plan

1: GlobalMutate(G):

2: G’ = G
3: for P ∈ G’ do
4: # Mutate the cutting plan P
5: P’ = Mutate(P)

6: if τ(P ′) < τ(P) then
7: P = P’
8: else if τ(P ′) = τ(P) and μ(P ′) < μ(P) then
9: P = P’

10: return G’

• Algorithm 4: Crossingover(G1, G2) is a crossover func-

tion for two global cutting plans G1 and G2. This

function selects the best of the global cutting plans G1

and G2 based on the objective function (8). Using the

Crossingover function allows the population to get rid of

the less optimal plans. Input: global cutting plans G1, G2.

Output: new global cutting plan G′.

Algorithm 4 Crossingover

1: Crossingover(G1,G2) :
2: if τ ′(G1) < τ ′(G2) then
3: return G1

4: else
5: if τ ′(G1) = τ ′(G2) and μ′(G1) < μ′(G2) then
6: return G1

7: else
8: return G2

The genetic search algorithm is presented in Algorithm 5.

Input: S0 – the initial population of global cutting plans.

Output: final cutting plans P ′.

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 113 --

Algorithm 5 GeneticSearch

1: GeneticSearch(S0) :
2: t = 0
3: while St > 1 do
4: n = St

5: for i = 1 to n do
6: St,i = GlobalMutate(St,i)
7: # Write the crossover result to the next population

8: for i = 1 to �n/2� do
9: St+1,i = Crossingover(St,2i−1, St,2i)

10: # If the population size is odd,

11: # transfer the remaining element

12: if n mod 2 = 1 then
13: St+1,i = St,�n/2�
14: t = t+ 1
15: return St,1

B. Algorithmic complexity

In total, the GS will perform O(log(|S0|)) iterations, as

the size of the populations is halved each time, rounding

up. However, each iteration contains the processing of cutting

plans in the functions GlobalMutate, Crossingover, and τ . A

cutting plan consists of
∑|M |

i=1 qi formats, as it must satisfy

Constraint (4). Thus, the overall algorithmic complexity of

genetic search is equal to

O

⎛
⎝

|M |∑
i=1

qi log(|S0|)
⎞
⎠ (9)

C. Example

Let:

• c = 2 — the total number of SM;

• L = {L1, L2} — the widths of each SM, where L1 = 60
and L2 = 40;

• M = {(10, 2), (20, 3), (30, 1), (40, 2), (50, 1)} — the set

of orders.

In the table I the initial population S0 is presented.

TABLE I
INITIAL POPULATION S0

Plan Global cutting Plans τ ′ μ′
S0,1 P 1 = {{10, 20, 30}, {40}}, P 2 = {{10, 30}} 20 6

S0,2 P 1 = {{10, 20}, {30}, {40}}, P 2 = {{10, 30}} 80 6

S0,3 P 1 = {{10, 30}, {20}, {40}}, P 2 = {{10, 30}} 80 6

S0,4 P 1 = {{10, 20, 30}}, P 2 = {{40}, {10}, {30}} 40 6

S0,5 P 1 = {{10, 20, 30}, {10, 30}}, P 2 = {{40}} 20 5

Each iteration of genetic search is described below for the

S0.

1) t = 0: The results of applying genetic search on S0 are

presented in the Table II. There are no better mutated plans. So

no one is replaced with a new mutated global cutting plan G′.
The results of applying GlobalCrossingover(G) on S0 are S0,1,

S0,4 and S0,5. S0,1 was chosen from S0,1 and S0,2 because

the value of τ ′ for S0,1 is less. The same for S0,3 and S0,4.

S0,5 has not a pair. The final population S1 is presented.

TABLE II
ITERATION t = 0

Plan New global cutting plans G’ in GlobalMutate τ ′ μ′
S0,1 P 1 = {{30, 10, 20}, {40}}, P 2 = {{10, 30}} 20 6

S0,2 P 1 = {{30}, {10, 20}, {40}}, P 2 = {{10, 30}} 80 6

S0,3 P 1 = {{20}, {10, 30}, {40}}, P 2 = {{30, 10}} 80 6

S0,4 P 1 = {{10, 20, 30}}, P 2 = {{40}, {30}, {10}} 40 6

S0,5 P 1 = {{30, 10, 20}, {40}}, P 2 = {{10, 30}} 20 6
Choice Selected global cutting plans G’ τ ′ μ′

Old P 1 = {{10, 20, 30}, {40}}, P 2 = {{10, 30}} 20 6

Old P 1 = {{10, 20}, {30}, {40}}, P 2 = {{10, 30}} 80 6

Old P 1 = {{10, 30}, {20}, {40}}, P 2 = {{10, 30}} 80 6

Old P 1 = {{10, 20, 30}}, P 2 = {{40}, {10}, {30}} 40 6

Old P 1 = {{10, 20, 30}, {10, 30}}, P 2 = {{40}} 20 5
Choice Crossingovered plans τ ′ μ′
S0,1 P 1 = {{10, 20, 30}, {40}}, P 2 = {{10, 30}} 20 6

S0,4 P 1 = {{10, 20, 30}}, P 2 = {{40}, {10}, {30}} 40 6

S0,5 P 1 = {{10, 20, 30}, {10, 30}}, P 2 = {{40}} 20 6
Plan Global cutting plans S1 τ ′ μ′
S1,1 P 1 = {{10, 20, 30}, {40}}, P 2 = {{10, 30}} 20 6

S1,2 P 1 = {{10, 20, 30}}, P 2 = {{40}, {10}, {30}} 40 6

S1,3 P 1 = {{10, 20, 30}, {10, 30}}, P 2 = {{40}} 20 5

2) t = 1: The results of applying genetic search on S1

are presented in the Table III. Mutation function can improve

a plan as it happened with S1,3. The new value of S1,3 is

P 1 = {{10, 30, 20}, {10, 30}}, P 2 = {{40}}, because μ′ is

4. The old values was 5, τ ′ is the same. Results of applying

GlobalCrossingover(G) on S1 are S1,1 and S1,3. The final

population S2 is presented.

TABLE III
MUTATION ON S1

Plan New global cutting plans G’ in GlobalMutate τ ′ μ′
S1,1 P 1 = {{20, 10, 30}, {40}}, P 2 = {{30, 10}} 20 6

S1,2 P 1 = {{30, 10, 20}}, P 2 = {{40}, {30}, {10}} 40 6

S1,3 P 1 = {{10, 30, 20}, {10, 30}}, P 2 = {{40}} 20 4
Choice Selected global cutting plans G’ τ ′ μ′

Old P 1 = {{10, 20, 30}, {40}}, P 2 = {{10, 30}} 20 6

Old P 1 = {{10, 20, 30}}, P 2 = {{40}, {10}, {30}} 40 6

New P 1 = {{10, 30, 20}, {10, 30}}, P 2 = {{40}} 20 4
Choice Crossingovered plans τ ′ μ′
S1,1 P 1 = {{10, 20, 30}, {40}}, P 2 = {{10, 30}} 20 6

S1,3 P 1 = {{10, 30, 20}, {10, 30}}, P 2 = {{40}} 20 4
Plan Global plans τ ′ μ′
S2,1 P 1 = {{10, 20, 30}, {40}}, P 2 = {{10, 30}} 20 6

S2,2 P 1 = {{10, 30, 20}, {10, 30}}, P 2 = {{40}} 20 4

3) t = 2: Results of applying GlobalMutate(G) on S2 are

presented in the Table IV. There are no better mutated plans.

So no one is replaced with a new mutated global cutting plan

G′. The results of applying GlobalCrossingover(G) on S2 is

S2,2. It was chosen from S2,1 and S2,2 because the value of μ′

for S2,2 is less, when τ ′ value is the same. The final population

S3 is presented.

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 114 --

TABLE IV
MUTATION ON S2

Plan Mutated global cutting plans G’ τ ′ μ′
S2,1 P 1 = {{20, 10, 30}, {40}}, P 2 = {{10, 30}} 20 6

S2,2 P 1 = {{30, 10, 20}, {10, 30}}, P 2 = {{40}} 20 6
Choice Selected global cutting plans G’ τ ′ μ′

Old P 1 = {{10, 20, 30}, {40}}, P 2 = {{10, 30}} 20 6

Old P 1 = {{10, 30, 20}, {10, 30}}, P 2 = {{40}} 20 4
Choice Crossingovered plans τ ′ μ′
S2,2 P 1 = {{10, 30, 20}, {10, 30}}, P 2 = {{40}} 20 4
Plan Global plans τ ′ μ′
S3,1 P 1 = {{10, 30, 20}, {10, 30}}, P 2 = {{40}} 20 4

4) t = 3: The population S3 consists of only one global

cutting plan. It means that the global cutting plan S3,1 is a

final solution:

S3,1 = {{{10, 30, 20}, {10, 30}}, {{40}}}
τ ′(S3,1) = 20, μ′(S3,1) = 4

(10)

It is better than the solutions from the initial population S0.

But it is not the best, there are better solutions. For example,

the solution G is provided:

G = {{{20, 40}}, {{10, 30}, {10, 30}}}
τ ′(G) = 0, μ′(G) = 4

(11)

V. COMPARISON OF ALGORITHMS

The full enumeration algorithm has exponential algorithmic

complexity relative to the number of orders, while GS has

O
(∑|M |

i=1 qi log(|S0|)
)

. It is evident that GS is faster than

complete enumeration; however, this speed is achieved at the

expense of considering fewer possible options.

The full enumeration method forces the consideration of all

possible options. In contrast, for GS, the number of iterations

can be set based on the size of the initial population, which

allows for control over execution time.

Moreover, the full enumeration method guarantees consid-

eration of all options and thus finds the best cutting plan. GS

can only find a global cutting plan G′ that is no worse than

the initial population S0, but increasing the size of the initial

population increases the likelihood of finding a better global

cutting plan.

VI. CONCLUSION

The article examines a particular case of the one-

dimensional cutting stock problem with the minimization of

waste and knife rearrangements. The mathematical model

includes several SM with different widths of the master roll.

For this case, two algorithms are proposed to find the optimal

solution: the full enumeration method and genetic search (GS).

The full enumeration method guarantees finding the optimal

solution. However, it is significantly slower than GS. The GS

is faster and allows for the regulation of execution time, but it

does not guarantee that the answer will be optimal. Thus, GS

is better suited for solving the problem.

In further research, it is planned to expand the mathe-

matical model and methods using the following criteria and

constraints: order fulfillment timelines, queue for PMM, and

consideration of multiple PMMs.

REFERENCES

[1] U. A. Romoldovich and V. A. Kuzneczov, “Matematicheskie mod-
eli i metody‘ ucheta srokov produkcii v zadache raskroya tamburov
bumagodelatel‘ny‘x mashin,” Ucheny‘e zapiski Petrozavodskogo gosu-
darstvennogo universiteta, no. 4 (141), pp. 112–115, 2014.

[2] M. H. Correia, J. F. Oliveira, and J. S. Ferreira, “Reel and sheet cutting
at a paper mill,” Computers & Operations Research, vol. 31, no. 8, pp.
1223–1243, 2004.

[3] R. Khan, C. I. Pruncu, A. S. Khan, K. Naeem, M. Abas, Q. S. Khalid,
and A. Aziz, “A mathematical model for reduction of trim loss in cutting
reels at a make-to-order paper mill,” Applied Sciences, vol. 10, no. 15,
p. 5274, 2020.

[4] M. Martin, H. H. Yanasse, and L. L. Salles-Neto, “Pattern-based ilp
models for the one-dimensional cutting stock problem with setup cost,”
Journal of Combinatorial Optimization, vol. 44, no. 1, pp. 557–582,
2022.

[5] V. Klimenko and L. Shchegoleva, “Methods for solving the linear
cutting-stock problem with minimizing the number of waste and knife
rearrangements,” Inženernyj vestnik Dona (RUS), no. 3, 2025.

[6] O. I. El-Dessouki and W. H. Huen, “Distributed enumeration on between
computers,” IEEE Transactions on Computers, vol. 29, no. 09, pp. 818–
825, 1980.

[7] A. B.-F. Branch, “Constrained two-dimensional cutting stock problems
a best-first branch-and-bound algorithm,” 1997.

[8] C. Salto, E. Alba, and J. M. Molina, “Analysis of distributed genetic
algorithms for solving cutting problems,” International Transactions in
Operational Research, vol. 13, no. 5, pp. 403–423, 2006.

[9] A. M. Easwaran and S. Drossopoulou, “A parallel genetic algorithm
approach to the knife change minimisation problem,” in the Proceedings
of the sixth Parallel Computing Workshop (PCW’96), Japan, 1996.

[10] R. V. Voronov, A. I. Shabaev, and V. V. Klimenko, “Genetic algorithm
for the linear cutting problem with allowances for production volumes,”
Software Engineering, no. 1, pp. 35–43, 2024.

ISSN 2305-7254__PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

-- 115 --

