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Abstract— The study examines the applicability of various 
EEG signal metrics for functional states of concentration and 
mind-wandering recognition. The metrics were selected based on 
related work analysis in the topic of human functional states 
(similar to concentration) recognition. We describe algorithms for 
calculating the chosen power and entropy metrics across different 
frequency bands. The study utilizes a dataset containing EEG 
recordings of functional states, such as concentration on a point in 
the center of the forehead and a baseline mind-wandering state, 
including data from 17 participants. The applicability of the 
metrics was assessed using the point-biserial correlation coefficient 
between the metric values and functional states, as well as a 
modified version based on the difference in interquartile ranges of 
the metric values. We show that the most applicable metrics 
include power in the α, θ, and SMR frequency bands, as well as 
signal entropy in the 0.3–30 Hz range. These metrics demonstrate 
significant but variable changes between functional states for 
almost all experienced participants in the dataset. 

I. INTRODUCTION 

Electroencephalogram (EEG) analysis is one of the most 
widely used methods for recognizing and assessing human 
functional states. The EEG signal is employed for these purposes 
both in scientific research and in the operation of devices 
designed for personal use, such as Muse [1], Emotiv [2], and 
others. These devices are used in self-regulation practices, 
concentration, meditation, and other activities to assess their 
quality and track progress. 

At the same time, the neurophysiological foundations of such 
assessments remain unclear, and various scientific studies 
related to recognizing concentration states and similar 
conditions yield inconsistent results (see Section 2). These 
studies often utilize different, non-overlapping sets of EEG 
signal metrics, and the obtained values of similar metrics show 
weak agreement. This inconsistency may be attributed to 
differences in the functional states being examined, the EEG 
recording equipment used, or the weak correlation between the 
selected metrics and the investigated state. 

Therefore, it is necessary to evaluate the applicability of 
various EEG metrics, which will enable the development of an 
intelligent method for recognizing the state of concentration 
using a dataset recorded under well-defined functional 
conditions with high-frequency scientific EEG recording 
equipment, ensuring sufficiently accurate metric values. 

This study consists of four sections. Section 2 provides a 
review of relevant research on recognizing and assessing 
concentration and other similar functional states based on EEG 

signals, examining the metrics used and comparing the results 
obtained. Section 3 justifies the selection of the most promising 
metrics for further analysis, describing algorithms for computing 
these metrics and evaluating their applicability for concentration 
state recognition. Section 4 describes the dataset used for 
assessing the applicability of the selected metrics. Section 5 
presents the study's results, including the evaluation of the 
chosen metrics' applicability based on EEG signal analysis from 
the collected dataset, along with an interpretation of the findings 
and an assessment of the prospects for using these metrics in 
concentration state recognition. 

II. RELATED WORK 

This section presents studies related to the recognition and 
assessment of human concentration levels or similar processes 
based on the analysis of EEG signals recorded using gel or dry 
electrodes on healthy adult participants. Table I provides a list 
of the reviewed studies, including the number of participants, 
the investigated state, the comparison object in the study 
(comparison of different functional states within one group of 
participants or comparison of the same functional state across 
different participant groups), the metrics used, and the number 
of EEG channels. 

In study [9], a comparison of three states is conducted: a 
relaxed state (no concentration), concentration (focused 
attention on a red dot in the center of the screen), and immersion 
(playing a MOBA video game). It should be noted that the 
immersion state, which requires high reaction speed and 
constant attention to changing external stimuli, is more similar 
in nature to the concentration state described in most other 
studies in this review. Meanwhile, the concentration state in this 
study corresponds closely only to the definition used in study 
[8]. 

Nevertheless, both of these states exhibit significant 
differences in the θ (4-8 Hz), α (8-13 Hz), and β (13-30 Hz) 
frequency bands compared to the relaxed state. Additionally, 
the study computed power ratios in specific frequency bands, 
namely: θ/α, (SMR + Middle β)/θ (where 
SMR (sensorimotor rhythm) represents the 12–15 Hz range, 
and Middle β corresponds to 15–20 Hz), and β/θ. These ratios 
showed different variations across different EEG channels, with 
θ/α being the most universal in distinguishing between 
concentration and immersion states. At the same time, study [9] 
noted that the β/θ ratio does not exhibit stable changes for the 
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immersion state. This partially contradicts the findings of study 
[3], where significant changes in concentration levels (which 

largely, though not entirely, correspond to the immersion state 
in study [9]) were identified using this ratio. 

TABLE I. CONCENTRATION METRICS FROM RELATED WORK 

Source Number of 
participants 

States Object Metrics Number of 
channels 

[3] 60 Proofreading (different lighting) Functional states θ / β, Cortisol level 2 

[4] 12 Concentration game Functional states 
 

Entropy (MSFEn): Grey 
relation 

1 

[5] 14 Logical task / rest Functional states 
 

δ / β1, α + β + δ + θ + R, 
Entropy, OCN 

63,1 

[6] 30 Cognitive tasks (different 
temperature) 

Functional states 
 

(SMR + Middle β) / θ, 
Prefrontal β, PI 

14 

[7] 7 Learning (different temperature) Functional states 
 

Prefrontal (SMR + Middle β) 
/ θ 

8 

[8] 20 Concentration on a screen (different 
lighting) 

Functional states 
 

δ, α, β1, β2 (relative ratio), 
KSS, PVT 

6 

[9] 32 Concentration on a point / rest / 
videogame 

Functional states 
 

θ, α, β, θ / α, (SMR + Middle 
β) / θ, β / θ 

8 

[10] 8 Concentration task, watching a video 
(different lighting) 

Functional states 
 

(SMR + Middle β) / θ 2 

[11] 71 Mindfulness-meditation Groups of participants [α, β, YBOCS, FFMQ]: LDS 4 

[12] 22 Mindfulness-meditation / listening to 
a podcast 

Functional states 
 

θ, α, β, FD-analysis, 
Coherence-analysis 

14 

[13] 55 Mindfulness- meditation Groups of participants Spectral analysis 32 

[14] 40 Counting figures (for experienced 
meditators and a control group) 

Groups of participants (β + γ) / (α + θ), (α + θ - β) / 
(α + θ), FD-analysis, State 

transition analysis 

32 

Studies [7] and [10] share similarities in their topic and 
methodology. They investigate a process resembling learning 
(though weakly formalized in both studies), partially based on 
performing academic tasks from various university disciplines 
and processing information from electronic sources. The key 
difference is that study [7] examines the effect of ambient 
temperature on the learning process, while study [10] focuses 
on the effect of lighting. Both studies use the same EEG spectral 
analysis-based concentration metric, namely (SMR + Middle 
β)/θ, as also employed in studies [6] and [8]. Although study [7] 
used more EEG channels, only two prefrontal channels were 
actually used to measure this metric, similar to study [10]. Both 
studies demonstrated a significant influence of external 
conditions (temperature and lighting, respectively) on the 
metric values, which the authors attribute to changes in 
concentration levels. However, it should be noted that both 
studies involved only male participants (study [7] justified this 
by aiming to exclude the potential influence of the female 
menstrual cycle on experimental results). 

The effects of similar external conditions were studied in a 
significantly larger sample, including female participants, in 
studies [3], [6], and [8]. The processes examined in these studies 
are more structured. Study [3] investigates the influence of 
lighting on the proofreading process, which requires a 
heightened level of concentration. Study [6] examines the 
impact of temperature on performing a set of cognitive tests 
assessing various cognitive abilities, including attention levels. 
Both studies employ similar EEG spectral analysis-based 
concentration metrics: (SMR + Middle β) / θ in study [6] (with 
additional use of prefrontal β power) and a largely inverse 

metric, θ / β, in study [3] (with slight differences in the 
frequency ranges used for power calculations). Additionally, 
these studies incorporate objective concentration level control 
metrics that are independent of EEG data, such as cortisol levels 
in study [3] and the accuracy-to-time ratio (PI) in study [6]. 

Although study [8] investigates the influence of a similar 
external factor (lighting) on concentration, it significantly 
differs in both the process under study and the applied metrics. 
Participants were required to focus their gaze on a screen with 
different brightness levels. It remains unclear how comparable 
this process is to other concentration-related processes reviewed 
in this paper. However, periodically measured subjective (KSS) 
and objective (PVT) concentration metrics showed significant 
dynamics, correlating with power fluctuations in the δ, α, β1, 
and β2 bands (in relative values). Notably, this study did not 
normalize these power values using the θ band, and the θ band 
power itself did not show a significant correlation with other 
concentration metrics. This may confirm the validity of using it 
as a normalizing factor in the (SMR + Middle β) / θ metric, 
which is employed as a concentration indicator in other studies. 

In all the studies reviewed above, concentration state 
recognition and its dynamics were assessed exclusively through 
spectral analysis, involving calculations of absolute EEG signal 
power values in different frequency bands or their ratios. 
However, studies [4] and [5] take a fundamentally different 
approach, incorporating entropy-based metrics in addition to 
spectral ones (such as δ / β1 and α + β + δ + θ + R, where R = 
α / β). In study [5], entropy metrics effectively distinguished 
between a relaxed state and a concentration state while solving 
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a logical task. Study [4] demonstrated a correlation between 
entropy and real-time concentration levels, as assessed by 
objective participant performance in a reaction-speed-based 
game. The entropy metric is based on Shannon entropy theory, 
which, when applied to EEG signal analysis, reflects its level of 
predictability and complexity. The authors of studies [4] and [5] 
propose that this approach may be useful for assessing 
concentration levels. Study [4] also utilizes grey relation 
analysis to highlight the advantages of a specific entropy 
calculation algorithm, MSFEn, over other alternatives. 
Moreover, study [5] employs an additional non-spectral metric, 
OCN, developed by the authors. The results obtained using this 
metric, even with just one EEG channel, were comparable to 
those obtained using 63 channels. According to the authors of 
study [4], spectral EEG analysis methods have low accuracy 
due to the signal’s nonlinearity and non-stationarity. For this 
reason, entropy and other non-spectral methods may hold 
greater potential for recognizing complex states such as 
concentration. Study [5] further demonstrates that entropy-
based recognition achieves higher accuracy compared to 
spectral methods. 

Studies [11], [12], [13], and [14] examine the effects of 
mindfulness meditation on brain activity. It is unclear to what 
extent their findings can be compared with other studies in this 
review, as mindfulness meditation involves a high degree of 
concentration on breathing. Additionally, most of these studies 
differ methodologically, as they compare participants with 
different levels of meditation experience rather than contrasting 
concentration with another state (as seen in Table 1). However, 
they apply similar spectral analysis methods, albeit with slight 
variations in frequency bands. Furthermore, studies [12] and 
[14] employ non-spectral analysis techniques such as fractal 
dimension (FD) analysis, coherence analysis, and EEG state 
transition clustering. Study [11] uses LDS analysis to 
demonstrate interdependencies between spectral metrics and 
subjective psychological scores (YBOCS, FFMQ). 

Thus, among the studies reviewed, the most commonly 
applied metrics for concentration recognition and assessment 
are those based on EEG spectral analysis. Both absolute power 
values in different frequency bands (mainly θ, α, and β) and 
their derivative values (ratios between them) are used. The β 
band is the most frequently applied, either alone or as part of 
derivative metrics, appearing in almost all reviewed studies. 
The θ band is the second most commonly used, although studies 
[8] and [9] noted a lack of significant correlation between its 
power (and some derivative characteristics) and concentration 
levels. The most prevalent derivative spectral metric is (SMR + 
Middle β) / θ, which is cited in several studies as the one most 
directly linked to the concentration process.  

Despite the widespread use of spectral metrics, studies [4] 
and [5] highlight the potentially low accuracy of concentration 
recognition through spectral analysis, attributing this to the 
EEG signal’s nonlinearity and non-stationarity. As an 
alternative, they propose using various non-spectral metrics, 
including entropy, coherence analysis, state transition analysis, 
OCN, FD, and others. Moreover, study [5] demonstrates higher 
concentration recognition accuracy with entropy metrics 
compared to spectral characteristics. 

It is important to note that not all reviewed studies’ results 
are directly comparable, even when they use the same metrics. 
This is largely due to the weak formalization of the concept of 
"concentration," leading to the study of neurophysiologically 
distinct processes under the same term. Additionally, the 
baseline states used for comparison in different studies vary 
significantly (e.g., comparisons with a control group of 
participants with no deep concentration training or within a 
single group under different conditions, such as listening to 
audio messages or resting). Overall, the analysis of these studies 
supports the existence of significant metric changes during 
concentration, rather than specific directional trends in those 
changes. Moreover, EEG signal variations for the same states 
can differ across different electrode placements. However, 
several studies indicate that concentration state recognition and 
assessment are possible even with a minimal number of 
electrodes. It appears that prefrontal electrodes alone, which are 
used in all reviewed studies, may be sufficient. Study [5] reports 
comparable accuracy in concentration recognition using 
devices with either 63 electrodes or just one prefrontal 
electrode. Furthermore, one of the most promising metrics, 
(SMR + Middle β)/θ, appears to be effective when using only 
prefrontal electrodes, according to study [10]. 

III. METHOD 

Based on the conducted review, the following EEG-based 
concentration state metrics were selected for further 
consideration: 

• Mean power of the signal in the α-band across channels; 

• Mean power of the signal in the lower β-band (up to 20 
Hz) across channels; 

• Mean power of the signal in the θ-band across channels; 

• Mean power of the signal in the SMR-band across 
channels; 

• Mean entropy of the signal in the frequency range from 0.3 
to 30 Hz across channels; 

• Mean entropy of the signal in the α-band across channels; 

• Mean entropy of the signal in the lower β-band (up to 20 
Hz) across channels; 

• Mean entropy of the signal in the θ-band across channels; 

• Mean entropy of the signal in the SMR-band across 
channels. 

Among the listed metrics, two main groups can be 
distinguished: spectral metrics and entropy-based metrics. 

The selected frequency bands for spectral metrics were 
those used in the largest number of reviewed studies, in which 
the most consistent results were observed. Although some 
studies also employed derived spectral values (various ratios 
and sums), this work considers only their absolute values, as 
they are the most interpretable concentration state metrics. In 
addition to the difficulty of directly interpreting derived values 
from a neurophysiological perspective, it is also important to 
consider the potential negative impact of weakly correlated 
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individual components on the correlation indicators of summed 
and/or relative values. 

Furthermore, to prevent possible information loss due to 
edge effects, the chosen frequency bands intentionally overlap 
to some extent, specifically: 

• θ-band: 4 to 8 Hz; 

• α-band: 8 to 13 Hz; 

• SMR-band: 12 to 15 Hz; 

• β-band (lower part): 13 to 20 Hz. 

To compute the power spectral density, which is integrated 
over specific ranges to determine power in the respective 
frequency bands, Welch’s algorithm was used. Welch’s method 
is one of the most widely used approaches for computing the 
periodogram of a function, which serves as an estimate of the 
power spectral density and is defined as follows: 

𝑆்ሺ𝜔ሻ ൌ 𝐸 ቈ
|𝑋்ሺ𝑖𝜔ሻ|ଶ

𝑇
 , ሺ1ሻ 

where 𝑆்ሺ𝜔ሻ is the estimate of the power spectral density, and 
𝑋்ሺ𝑖𝜔ሻ is the amplitude of the Fourier transform for the 
function 𝑥ሺ𝑡ሻ over a finite time interval 𝑇. 

Welch’s method defines a practical approach to computing 
the mathematical expectation presented in Formula 1. It does so 
by dividing the given interval into overlapping segments, which 
are determined by parameters specifying the length of these 
segments and their overlap [15]. Overlapping segments increase 
their total number, which helps reduce the variance of the power 
spectral density estimate. To minimize the bias of the estimate 
for individual segments, a window function is applied to each 
segment, reducing the effect of side lobes. In this method, the 
Tukey window is used. 

The power of the signal in different frequency bands is a 
well-interpretable value since these bands correspond to well-
studied and defined processes in the human brain [16]. For this 
reason, although entropy measures in the reviewed studies were 
calculated over the entire analyzed range, it seems promising to 
attempt calculating entropy for the same frequency bands used 
for power estimation. At the same time, in addition to entropy 
metrics in these specific bands, this study also calculates the 
overall entropy measure over the entire range from 0.3 to 30 Hz. 

A finite impulse response (FIR) filter was used for signal 
filtering. Before computing all metrics (both spectral and 
entropy-based), the raw EEG signal was filtered within the 0.3–
30 Hz range. After this, an additional filtering step was 
performed in the corresponding frequency bands before 
calculating entropy metrics. No other preprocessing methods 
were applied to maintain the degree of automation in the feature 
extraction process. Specifically, filtering most signal artifacts is 
not easily automated [16], and the most easily filterable 
artifacts, such as those related to blinking, were absent in the 
original signal due to the experimental conditions. Furthermore, 
as will be shown later, when evaluating the applicability of the 
selected metrics, the top and bottom 2.5% of values are 
excluded from consideration, further reducing the potential 
influence of artifacts. 

Figure 1 illustrates the entropy computation algorithm 
applied to the filtered signal. The rectangles in the figure 
represent sequential signal values from an individual EEG 
channel, with a total count of N. At the i-th step of the method, 
a base vector of length m is taken, and its distance to all other 
vectors of length m is computed, including those that partially 
overlap with the base vector and with each other. 

 
Fig. 1. Entropy calculation ((1 0 1) are three example outcomes of the distance 
check) 

Vectors whose distance is smaller than a predefined 
threshold r are considered similar to the base vector. The value 
𝐶ሺ𝑖, 𝑟, 𝑚ሻ represents the total number of such vectors. In this 
study, the parameter m is set to 5, following the 
recommendations in [17], and the threshold r, used for 
comparison based on the Chebyshev distance, is taken as the 
standard deviation of the EEG channel signal. The approximate 
entropy (AppEn) measure is then computed using the following 
formulas: 

𝐴ሺ𝑚, 𝑟ሻ ൌ 𝐴𝑉𝐺ሾ𝑙𝑜𝑔 𝐶ሺ𝑖, 𝑟, 𝑚ሻሿ, ሺ2ሻ 

𝐴𝑝𝑝𝐸𝑛 ൌ 𝐴ሺ𝑚, 𝑟ሻ െ 𝐴ሺ𝑚  1, 𝑟ሻ. ሺ3ሻ 

The general idea behind this entropy estimation method is 
that when an additional value is added to the vectors, the degree 
of their similarity in a simple, predictable signal will not change 
significantly. As a result, the difference given in Formula 3 will, 
in absolute value, be smaller than the corresponding measure 
for a more complex and random signal. 

At the same time, it should be noted that the entropy 
estimate obtained in this way is somewhat biased since, when 
calculating the value of 𝐶ሺ𝑖, 𝑟, 𝑚ሻ, the base vector is considered 
similar to itself. This is necessary to avoid the potential need to 
take the logarithm of zero in Formula 2. 

An improved estimate in this regard is the SampEn (Sample 
Entropy) metric, which is calculated as follows: 

𝐴ሺ𝑚, 𝑟ሻ ൌ ∑𝐶ሺ𝑖, 𝑟, 𝑚ሻ, ሺ4ሻ 

𝑆𝑎𝑚𝑝𝐸𝑛 ൌ െ log ቆ
𝐴ሺ𝑚, 𝑟ሻ

𝐴ሺ𝑚   1, 𝑟ሻ
ቇ . ሺ5ሻ 

In Formula 4, the similarity of a vector with itself is not 
considered when calculating 𝐶ሺ𝑖, 𝑟, 𝑚ሻ, and for the 
computability of Formula 5, it is sufficient to have at least one 
pair of similar vectors in the signal of a given EEG channel. For 
this reason, the SampEn (Sample Entropy) estimate is used as 
the entropy value in this study. 

To assess the applicability of the considered metrics for 
recognizing concentration states, the point-biserial correlation 
coefficient (PBCC) [18] was used. This coefficient is 
proportional to the difference in the expected values of a metric 
for two classes (in this case, the concentration state and the 
baseline state). However, when analyzing the metric values for 
individual participants, differences in their distributions were 
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noted for different states, even when the differences in expected 
values were weakly expressed. 

For example, in Fig. 2, the entropy metric values taken over 
2-second epochs (selected based on the chosen m parameter 
value [17] and sufficiently long for the analyzed frequency 

ranges) show that the concentration state (CN) and the baseline 
state of mind-wandering (MW) exhibit almost no difference in 
their mean values (avg). However, they significantly differ in 
terms of interquartile range (IQR). At the same time, the same 
entropy metric calculated in the α-band demonstrates greater 
differences in mean values. 

 
Fig. 2. Example of entropy and α-entropy graphs 

Therefore, for further analysis, two indicators were used for 
each metric: the direct PBCC value and its adaptation for 
evaluating class differences based on interquartile range, 
denoted as PBCCIQR, and expressed by the formula: 

𝑃𝐵𝐶𝐶𝐼𝑄𝑅 ൌ
𝐼𝑄𝑅ଵ െ 𝐼𝑄𝑅

𝑠ିଵ
ඨ

𝑛ଵ𝑛

𝑛ሺ𝑛 െ 1ሻ
, ሺ6ሻ 

where 𝐼𝑄𝑅ଵ and 𝐼𝑄𝑅 are the interquartile range values for the 
two classes, 𝑛ଵ and 𝑛 are their sample sizes, 𝑛 is the total 
sample size, and 𝑠ିଵ is the unbiased estimate of the standard 
deviation for the entire sample. 

IV. DATASET 

To determine the applicability of concentration state 
metrics, EEG data were collected from 17 healthy adult 
participants with at least one year of experience in concentration 
practice (ranging from 1 to 30 years, with an average of 8 years). 
The participants were between 20 and 53 years old, with an 
average age of 36 years (7 men, 10 women). EEG signals were 
recorded from 63 channels (10-20 system montage) with a 
sampling rate of 2048 Hz. 

Each EEG recording included 15 minutes of a concentration 
state, during which participants were instructed to focus their 
attention on the center of their forehead and return to this point 
whenever their attention wandered. Additionally, there were 10 
minutes of a mind-wandering state, where participants were 
instructed to let their thoughts flow freely. In both conditions, 
participants sat with their eyes closed under identical external 
conditions, with the only difference being their internal focus of 
attention. 

For some participants, multiple EEG recordings were 
obtained, resulting in a total of 23 recordings. After each 
session, participants completed a survey providing details about 
their experience with concentration practice and the number of 
hours they had slept the previous night. They also subjectively 
assessed the quality of their concentration by mentally dividing 
the 15-minute period into four quarters and rating the degree of 
concentration for each quarter on a 10-point scale (1 = complete 
absence of concentration, 10 = the best concentration they had 
ever experienced). 

V. RESULTS 

Using the algorithms described in Section III, we processed 
the dataset from Section IV and calculated correlations between 
concentration and mind-wandering states. Figure 3 presents a 
correlation coefficient matrix for each of the considered metrics 
across all collected recordings during the mind-wandering state 
and the second and third quarters of the concentration state. The 
columns of the matrix are sorted in descending order based on the 
absolute mean value of the corresponding metrics across all 
recordings (the mean value is indicated in the AVG row). The 
rows of the matrix are sorted by participant (the row index 
corresponds to the participant number). Rows corresponding to 
multiple recordings of the same participant are grouped together 
under the same index. The actual recording index is specified in 
the "rec_id" column. 

The columns "exp," "points," and "max_cor" indicate the 
participant’s experience in concentration practice, the average 
subjective concentration quality score for the second and third 
quarters (as the most stable ones in terms of concentration quality) 
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of the recording, and the highest absolute correlation coefficient 
among all metrics for that recording, respectively. A value of 0 in 
the "points" column indicates that the participant did not provide 
a concentration quality rating, while a value of -1 denotes 
recordings where the participant failed to follow the given 
instructions correctly. Other columns contain correlation 
coefficient (PBCC) values for entropy and power metrics (denoted 
as "ent" and "pow," respectively) in the α, β (up to 20 Hz), θ, and 
SMR frequency bands (labeled as "a," "b20," "th," and "SMR," 
respectively). Additionally, for each metric, PBCCIQR values 
(denoted as "iqr") are provided. For example, the column labeled 
"b20_ent_iqr" represents PBCCIQR for the entropy metric in the 
β-band up to 20 Hz, while "smr_pow" represents PBCC for power 
in the SMR band. 

From the results, no single metric exhibits consistent and 
significant changes across states. Even entropy, which shows the 
most reliable state-dependent changes, has maximum absolute 
values of 0.62 for participant 12 and -0.62 for participant 5, 
meaning that relative changes in this metric between concentration 
and baseline states are completely opposite for these two 
participants. At the same time, in participant 3's recordings, 
entropy demonstrates one of the most significant changes for the 
second recording, while showing almost no variation in the first. 
However, in the first recording, notable changes appear in the θ-
band entropy, which are nearly absent in the second recording. 
This can be explained by the presence of high-amplitude 

stationary waves outside the θ-band in the first recording, which 
are unrelated to the concentration state. 

It appears that due to such random brain processes occurring 
in parallel with the concentration state and exerting a much 
stronger influence on the EEG signal, it is impossible to identify a 
universal metric that consistently shows significant unidirectional 
changes, even within recordings from the same participant. 
However, for most recordings, at least one of the examined 
metrics exhibits significant differences between states. In some 
cases, these differences are more pronounced not in the mean 
metric values but in the interquartile range—particularly for 
entropy metrics and power metrics in the α- and θ-bands. For 
instance, in the second recording of participant 1, the only 
significant difference is observed in the interquartile range of 
power in the α-band, despite almost no difference in the mean 
value of this metric. Differences in mean values are primarily 
observed for power metrics across different frequency bands, as 
well as for the entropy metric. However, entropy metrics within 
specific frequency bands mostly do not show significant changes, 
with the notable exception of entropy in the θ-band. If we exclude 
recordings where participants did not correctly follow instructions 
(they are marked with a value of -1 in the "points" column), had 
no concentration practice, or rated their concentration quality low 
(below 6 points or provided no rating), we see that nearly all 
remaining recordings exhibit significant differences between 
states in at least one metric. The smallest differences are observed 
in participant 14's recording and participant 1’s second recording. 

Fig. 3. Correlation matrix 
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Participant 14 has the least experience in concentration 
practice (1 year) among all participants. Meanwhile, participant 1, 
despite providing similar subjective ratings for concentration in 
the second and third quarters of both recordings, rated their overall 
concentration quality in the second recording significantly lower 
than in the first (6, 8, 6, 5 vs. 7, 8, 8, 7, respectively). 

For all other recordings, the minimum absolute difference in 
metric correlation coefficients (max_cor) is no less than 0.4, with 
this value being higher on average for more experienced 
participants (over 10 years of practice). Although participant 3, 
with around 20 years of experience, did not rate their 
concentration quality in any of their recordings, they also exhibit 
high max_cor values. Participants who were unable to rate their 
concentration due to low quality recordings tend to show smaller 
differences between states. Participants with no experience in 
concentration practices show some of the smallest differences, 
with the highest among them (0.34) observed for participant 17. 
However, this difference primarily appears in the SMR-band 
power metric, which is largely insignificant for most other 
participants. 

Thus, there is no single metric among the examined ones that 
can serve as a universal indicator of concentration across different 
participants and within recordings from the same participant. 
However, for almost every high-quality recording from 
experienced participants, there are significant differences in at 
least one of the considered metrics—something that is not 
observed in other recordings. This suggests that these metrics can 
provide some assessment of concentration quality, provided that 
the baseline state is recorded immediately before evaluating the 
concentration state. 

VI. CONCLUSION 

This study examined the use of EEG signal entropy and power 
metrics to assess differences between human functional states, 
based on a review of research on concentration state recognition. 
The applicability of these metrics was evaluated using 23 
recordings of concentration states and mind-wandering baseline 
states from 17 participants. To assess the applicability of the 
metrics, the point-biserial correlation coefficient (PBCC) and its 
modification based on the difference in interquartile ranges 
(PBCCIQR) were used. We show that the most promising metrics 
for recognizing the concentration state are power metrics in the α, 
θ, and SMR frequency bands, as well as the entropy metric of the 
signal in the 0.3–30 Hz range. Differences from the baseline state 
can manifest in both the mean values of these metrics and their 
interquartile ranges. However, none of these metrics exhibit 
universal changes across all participants. At the same time, for 
almost all high-quality recordings of experienced participants, at 
least one of these metrics showed significant changes. Thus, the 
measurement of these changes can be used as an intelligent 
method for concentration recognition and assessment only if the 
baseline state is recorded immediately before the evaluation. 
Further research is needed to investigate the impact of 
concentration on these metrics in specific brain regions. 
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