
Load Balancer Filter-Based Approach To Enable
Distributed API Rate Limiting

Thivaharan Kalyanasundaram, Kobinarth Panchalingam, Tharsigan Jegatheesan, Adeesha Wijayasiri
University of Moratuwa

Moratuwa, Sri Lanka

{thivaharan.20, kobinarth.20, tharsigan.20, adeeshaw}@cse.mrt.ac.lk

Srinath Perera
WSO2 LLC

Santa Clara, USA

srinath@wso2.com

Abstract—Efficient and accurate rate limiting is crucial for
managing API traffic in distributed systems, ensuring fair
resource allocation, preventing abuse, maintaining reliability,
and enabling monetization. Unlike single-node approaches, dis-
tributed rate limiting poses challenges in maintaining consistent
API rate limits across multiple nodes. This research explores im-
plementing distributed API rate limiting through load balancers,
evaluating six algorithms integrated via Lua filters that enforce
client-specific global rate limits while balancing performance
and accuracy. To synchronize client states across load balancers,
three mechanisms are assessed: Redis, MySQL, and Conflict-
Free Replicated Data Types (CRDTs). Latency, throughput, and
throttling deviation serve as key metrics to evaluate the results. To
reduce the potential state synchronization overhead among load
balancers, this research introduces a novel asynchronous batch-
quota-based implementation. Experiments with a microservices
benchmarking application and API traffic simulation in Google
Cloud Platform (GCP) demonstrate that the load balancer-
based rate limiting framework introduces minimal performance
impact, with latency overhead remaining below 1% for certain
configurations, proving its high viability. The Sliding Window
Log algorithm had the lowest throttling deviation, while all
algorithms showed negligible performance differences. For state
synchronization, CRDTs exhibited the lowest latency overhead,
followed by Redis and MySQL, with all three offering comparable
consistency. These findings provide practical insights for API
providers when selecting rate-limiting strategies for distributed
environments.

Index Terms—API Rate Limiting, Algorithms, Load Balancers,
State Synchronization, Distributed Systems

I. INTRODUCTION

The evolution of Application Programming Interfaces

(APIs) has transformed software development and system

integration. Beyond their technical role, APIs drive innovation,

enhance user experiences, and fuel business growth across

industries [1]. Industry projections indicate continued API

adoption, with Gartner predicting a 30% rise in API demand

by 2026, driven by AI and large language models (LLMs)

[2]. This rise of API economy reflects how organizations will

continue to leverage APIs to monetize their data, services, and

functionalities, fostering collaboration and innovation [3]. This

surge in API adoption introduces significant challenges. As the

number of APIs and consumers grows, managing performance,

security, and fair usage becomes increasingly complex.

A critical component of API management is rate limiting,

which restricts the number of requests an API client can make

to an API endpoint within a defined time frame. The term is

often used interchangeably with throttling, though throttling

may also refer to dynamically slowing down requests based

on system load. It is essential for preventing server overloads,

mitigating denial-of-service (DoS) attacks, reducing service

disruptions, and preventing financial losses for providers.

Additionally, it ensures fair resource allocation among clients,

preventing monopolization by a single user. It also enables

API providers to monetize their services through tiered access

levels and subscription plans.

Distributed API rate limiting refers to the implementation

of rate limits in a distributed environment, where APIs are

deployed across multiple independent nodes and accessed

through a system of load balancers. This approach is es-

sential for maintaining API performance, security, and fair-

ness, particularly as modern applications increasingly rely

on distributed architectures to enhance scalability, resilience,

and geographic redundancy. Unlike single-node rate limiting,

where all decisions are made locally, distributed rate limiting

requires coordinating multiple nodes while maintaining a

globally consistent enforcement of client-specific rate limits.

One of the key challenges in distributed API rate limiting is

maintaining a consistent state across multiple nodes. Client-

specific data, such as request counters, timestamps, and quotas,

must be synchronized across nodes to ensure accurate enforce-

ment. However, inconsistencies can arise due to network de-

lays, concurrent updates, and node failures, allowing clients to

exceed rate limits by sending requests to different nodes before

state is synchronized. Achieving strong state consistency may

introduce high synchronization overhead, thereby increasing

processing time, resource consumption, and degrading perfor-

mance. Weaker state consistency implementations may reduce

the rate limit enforcement accuracy.

Scalability is another challenge, as the rate limiting system

must scale to handle the increasing number of requests and

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 75 ----------------------------------------------------------------------------



clients across multiple distributed nodes. The selection of ap-

propriate rate limiting algorithms is also essential, as different

use cases may require varying trade-offs between accuracy,

performance, and resource utilization. Providers must carefully

evaluate their specific rate limiting needs - considering fac-

tors like request patterns, accuracy requirements, and system

efficiency - to choose implementations that balance effective

request control with optimal performance in distributed envi-

ronments.

Our approach in this research is to implement distributed

API rate limiting at the load balancer level, rather than

delegating it to application servers or external services. Load

balancers, as the central entry point for API traffic, are well-

suited for enforcing rate limits, particularly in distributed en-

vironments. By integrating rate limiting within load balancers,

API usage can be centrally controlled across all deployed

nodes, ensuring uniform policy enforcement and simplifying

management. Additionally, since load balancers are designed

to handle high traffic volumes and scale horizontally, this

approach can efficiently accommodate the increasing demand.

Implementing rate limiting at the load balancer level also

eliminates the need for communication between application

servers for state synchronization, minimizes load, and provides

clear separation of concerns. This approach also removes the

dependency on additional services for rate limiting, as load

balancers are already part of the network path, simplifying

the setup and integration of rate limiting capabilities.

To effectively implement distributed rate limiting through

load balancers, choosing an appropriate rate limiting algorithm

for the specific use case and synchronizing the state between

load balancer instances with minimal inaccuracies and perfor-

mance overheads is crucial. Potential candidates for achieving

this synchronization include in-memory databases like Redis,

relational databases like MySQL, and Conflict-Free Replicated

Data Types (CRDTs).

To guide this research, the following key questions are

addressed:

• RQ1 How does implementing distributed API rate lim-

iting through load balancers using different algorithms

impact latency, throughput, and throttling accuracy, and

how can they be further optimized?

• RQ2 How do different state synchronization mechanisms

for synchronizing rate limit data between load balancers

compare in terms of performance and consistency?

The rest of the paper is organized as follows: Section II

discusses related work, Section III details the methodology of

our approach, and Section IV elaborates on the implementa-

tions. Section V presents the evaluation plan and discusses

the results of our approach. Finally, Section VI concludes the

paper with key findings and future directions.

II. RELATED WORK

API rate limiting can be enforced through various patterns

[4]. It is typically implemented at different layers, including

API gateways, reverse proxies, application servers, or through

external services. Rate limits may be applied globally across

all distributed nodes or locally on individual nodes. These

limits can be based on a client’s API key, IP address, access

token, or any other unique identifier.

Most state-of-the-art research on API rate limiting focuses

on non-distributed setups, where a single node enforces local

rate limits. The study by Malki, Zdun and Pautasso ana-

lyzes the impact of API rate limiting on the reliability of

microservices-based architectures, using Kong API Gateway’s

built-in local rate limiting functionality [5]. Subsequent re-

search by Malki and Zdun examines the combined effects

of rate limiting, load balancing, and request bundling in

microservices [6]. Both these studies do not explore the effects

of different rate limiting algorithms nor the complexities of

distributed rate limiting. However, they provide a foundation

for workload simulations and benchmarking.

Several other studies have investigated distributed rate lim-

iting, but primarily in network bandwidth control rather than

API management. The work by Stanojevic and Shorten [7]

introduces a server-centric approach using upstream routers

to regulate network traffic. Similarly, work [8] proposes algo-

rithms to enforce network bandwidth limits using a centralized

token bucket mechanism. Although these techniques share

similarities with API rate limiting, they do not address API-

specific requirements such as client-based enforcement.

Henriksson and Bennhage [9] critically evaluate Spotify’s

rate limiting system, which leverages CRDTs to manage

global state using Token Bucket algorithm. They propose an

alternative approach that integrates optimistic replication and

queuing mechanism to improve accuracy and efficiency. While

their study focuses on Spotify’s proprietary implementation,

their findings highlight the advantages of using CRDTs for

state synchronization in distributed rate limiting systems.

In existing industrial API implementations, rate limiting

of APIs is commonly enforced in two ways: directly at the

endpoints or through middlewares. Endpoint implementations

involve applying rate limiting mechanisms directly at either

the client-side or server-side. Alternatively, middleware im-

plementations handle these controls within an intermediary

infrastructure, such as API gateways, load balancers, or proxy

services, which manage the traffic between the client and

server.

Client-side rate limiting is less common than traditional

server-side approaches due to challenges in enforcement and

synchronization. Doorman [10] is one such system that allows

clients interacting with shared resources to voluntarily limit

their usage. However, maintaining fairness across numer-

ous clients, ensuring consistent enforcement, and managing

complex client-side configurations make this approach less

practical. Additionally, it lacks the centralized control and

security of server-side rate limiting, reducing its effectiveness

in managing API traffic efficiently.

There are several libraries used for API rate limiting that

require integration at the application level [11]–[15]. These

libraries implement various rate limiting algorithms, with some

supporting distributed rate limiting by storing client state in

an external database or cache. However, implementing rate

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 76 ----------------------------------------------------------------------------



limiting at the application level adds complexity, increases

overhead, and requires modifying existing services. Addition-

ally, since requests must reach the application servers to check

rate limits, this introduces extra network calls and potential

performance delays. A more efficient approach is to enforce

rate limits earlier, within a middleware such as a load balancer

or API gateway, ensuring centralized control and reducing the

application-level burden.

Reference [16] compares four common rate limiting algo-

rithms using the Bucket4j server-side library [11], which uses

the Token Bucket algorithm by default. The authors analyze

factors like ease of implementation, data traffic handling, data

starvation, and memory usage. While this study provides an

analysis of these algorithms, it focuses solely on the Bucket4j

library and does not consider a distributed API setup with state

synchronization mechanisms, making it difficult to evaluate the

algorithms in a realistic distributed environment. Additionally,

the study lacks detailed performance metrics and does not in-

corporate real-world traffic patterns in its experiments. Despite

these limitations, the work provides a good foundation for

understanding these algorithms.

API gateways are another candidate where rate limiting

processes are generally implemented along with other func-

tionalities [17]. It can provide local as well as distributed API

rate limiting solutions. Kong API Gateway and WSO2 API

Gateway support distributed API rate limiting by integrating

with Redis to centrally store and synchronize state among

multiple instances. Furthermore, intermediate reverse proxies

are used to rate limit APIs according to the specific needs of

API providers [18], [19].

Load balancers, on the other hand, are often positioned at

the front of distributed services, arguably offering a more

effective way to implement distributed rate limiting. They

provide a natural point of interception for incoming requests,

eliminating the need for additional setup and seamlessly

scaling with the overall system [20], [21]. Also, research [6]

concludes that implementing both load balancing and rate

limiting to APIs improves the overall reliability of micro

services architecture. Nginx [22] supports local rate limiting,

whereas Envoy Proxy [23] enables both local and global rate

limiting through an externally deployed service.

Solutions discussed in both academic research as well as

industrial implementations have used various algorithms to

rate limit APIs, based on their specific use cases and needs.

Table I summarizes the widely used algorithms and their

sources.

As a summary, existing research on API rate limiting is

biased toward non-distributed implementations, and prior work

on distributed rate limiting is largely focused on network

bandwidth control rather than APIs. Middleware-based ap-

proaches, particularly load balancer based rate limiting, remain

unexplored in academia despite being used in industries.

Furthermore, no comprehensive studies have compared the

performance and accuracy of different rate limiting algorithms

or explored ways to further optimize them with different state

synchronization mechanisms in distributed environments.

TABLE I LIST OF RATE LIMITING

ALGORITHMS

Algorithm Source
Fixed Window Counter [5], [12], [18]

Sliding Window Log [5], [18]

Sliding Window Counter [24], [25]

Token Bucket [5], [9], [16], [22]

Leaky Bucket [5], [22], [26]

GCRA [27]

III. METHODOLOGY

This study proposes a distributed API rate limiting frame-
work built on load balancers. The framework utilizes load

balancers to enforce rate limiting policies while ensuring state

consistency across multiple instances through external data
stores. Fig. 1 presents a high-level overview of the framework

executed in load balancers. The following subsections provide

a detailed discussion of the selected load balancer and state

synchronization mechanisms.

Fig. 1. Rate Limiting Framework

A. Load Balancer

Nginx has been chosen as the candidate for load balancer,

in which the distributed rate limiting framework will be imple-

mented. It is a widely used open-source HTTP server, reverse

proxy, and load balancer known for its high performance,

stability, and low resource consumption. As of February 2025,

Nginx serves 20.34% of the top 1,180,650,484 websites in the

world, which is the highest among all web servers [28].

Nginx’s functionalities can be extended through Lua script-

ing via OpenResty [29], enabling the implementation of cus-

tom procedures. While Nginx offers built-in local rate limiting,

it lacks native support for global distributed rate limiting. By

using Lua scripting and integrating with external data stores,

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 77 ----------------------------------------------------------------------------



Fig. 2. State Synchronization Using Central Data Stores Fig. 3. State Synchronization Using Active-Active Redis (CRDTs-based)

we can implement a distributed rate limiting framework. This

setup will enable us to conduct experiments, benchmarking

and comparisons, making it a suitable candidate for our

research.

B. State Synchronization

In this context, state refers to counters, timestamps, or

quotas associated with each unique client making requests to

API services, based on the specific rate limiting algorithm.

Effective state synchronization among load balancers is crucial

for ensuring the consistency and accuracy of rate limiting.

In this study, we have selected centralized approaches like

Redis and MySQL, as well as decentralized approaches like

Conflict-free Replicated Data Types (CRDTs) for this purpose,

as depicted in Fig. 2 and 3.

Redis is a high-performance, in-memory data store widely

used for caching and real-time analytics due to its low latency

and high throughput capabilities [30]. It supports multiple data

structures, making it ideal for various rate limiting algorithms.

Its ability to perform operations in memory reduces latency,

making it suitable for high-traffic environments where rate lim-

its need frequent checking and updating. Redis’s native support

for replication and clustering ensures reliable performance and

fault tolerance in distributed rate limiting scenarios.

Modern relational databases offer strong transactional guar-

antees and ACID properties, ensuring that rate limit state is

updated reliably and consistently. Among this, MySQL has

been selected for its robustness and widespread adoption in

enterprise applications. It offers strong consistency through its

support for transactions via InnoDB, ensuring that updates to

rate limit states are atomic and isolated [31]. It also provides

the option of persisting the client’s request history.

CRDTs are specialized data structures designed for dis-

tributed systems to achieve eventual consistency without con-

flicts [32], [33]. These data types allow concurrent updates

from multiple nodes without the need for real-time coordi-

nation, making them suitable for environments where net-

work partitions or temporary disconnections may occur. An

additional advantage is that load balancers can communicate

with any of the CRDT nodes based on their proximity or

availability, reducing network access time and minimizing

delays in rate limit enforcement. However, the impact of

eventual consistency on the accuracy of rate limiting should be

studied. We will be using CRDTs available in Redis Enterprise
Active-Active Geo-Distribution implementation, which are in-

built with the functionalities we require but incur subscription

costs in production environments [34].

IV. IMPLEMENTATION

The surveyed algorithms were implemented as shown in

Algorithm 1, 2, 3, 4, 5 and 6 as Lua scripts and initially

tested in a local setup using JMeter. This provided insights

into how each algorithm handles different traffic patterns

and constraints, revealing their strengths, limitations, and the

optimizations needed for effective adaptation in distributed

environments. Each algorithm was later developed in mul-
tiple versions, varying based on the state synchronization

mechanism, algorithm-specific parameters, and asynchronous

implementations where applicable. All implemented versions

are published as open-source for OpenResty in [35].

A. Fixed Window Counter

This divides time into fixed windows and tracks the number

of requests within each window. If the number of requests

exceeds the limit during a window, subsequent requests are

denied until the next window starts. This algorithm is simple

and memory-efficient, requiring only a counter per window. It

is easy to implement and provides predictable rate limiting

behavior. However, it suffers from the boundary problem,

where a burst of requests at the end of one window and

the beginning of the next can exceed the limit within a short

time. This makes it unsuitable for scenarios requiring a smooth

distribution of requests.

B. Sliding Window Log

The Sliding Window Log algorithm offers a more precise

approach by recording the timestamp of each request in

a log, and continuously checking the number of requests

within a rolling time window. This provides highly accurate

rate limiting since it maintains an exact history of request

timestamps. This precision allows smoother rate enforcement,

avoiding sudden spikes allowed by the Fixed Window Counter.

However, it has a significant memory overhead, as it must store

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 78 ----------------------------------------------------------------------------



Algorithm 1 Fixed Window Counter

1: Initialize:
2: count ← 0

3: window start time ← -1

4: procedure RATE LIMIT(window size, max requests)

5: current time ← get unix timestamp()

6: window start ← floor(current time / window size) ×
window size

7: if window start �= window start time then
8: count ← 0

9: window start time ← window start

10: end if
11: if count < max requests then
12: count ← count + 1

13: return true � Request Allowed

14: end if
15: return false � Request Denied

16: end procedure

and process timestamps for each request. Performance can also

degrade under heavy traffic due to the continuous need for log

maintenance and lookup.

Algorithm 2 Sliding Window Log

1: Initialize:
2: requests log ← empty list

3: procedure RATE LIMIT(window size, max requests)

4: current time ← get unix timestamp()

5: Remove entries from requests log that are older than

(current time − window size)

6: if length of requests log < max requests then
7: append current time to requests log

8: return true � Request Allowed

9: end if
10: return false � Request Denied

11: end procedure

C. Sliding Window Counter
This combines elements of both Fixed Window Counter and

Sliding Window Log. It divides time into smaller sub-windows

and maintains a count of requests in each sub-window. The

overall request rate is then calculated by summing the counts

of the current and previous sub-windows, with a weight for

the oldest sub-window based on the elapsed time. This bal-

ances accuracy and memory efficiency by approximating the

request rate using sub-window counters. It smooths out abrupt

rate enforcement inconsistencies seen in the Fixed Window

Counter. However, it still introduces some imprecision, as the

counting granularity depends on the chosen number of sub-

windows. Algorithm 3 uses two sub-window counters for this

approximation.

D. Token Bucket
Token Bucket works by maintaining a bucket filled with

tokens, each representing a unit of request capacity. Tokens

Algorithm 3 Sliding Window Counter

1: Initialize:
2: counter ← empty map

3: procedure RATE LIMIT(window size, max requests)

4: current time ← get unix timestamp()

5: cur window ← floor(current time / window size) ×
window size

6: prev window ← cur window - window size

7: elapsed ← current time - cur window

8: weight ← 1 - (elapsed / window size)

9: count ← counter[prev window] × weight +

counter[cur window]

10: if count < max requests then
11: counter[cur window] ← counter[cur window] + 1

12: return true � Request Allowed

13: end if
14: return false � Request Denied

15: end procedure

are added to the bucket at a constant rate, and each incoming

request consumes a token (or multiple tokens for a heavy

request). If the bucket has no tokens left, the request is

denied. This replenishment process can be carried out either

via a separate process that periodically adds tokens at a fixed

rate or by dynamically calculating and adding the number of

tokens at each request, based on the elapsed time. For our

implementations, we have used the second approach.

This algorithm is highly flexible and allows short bursts

of requests while maintaining a steady long-term rate. It

ensures fairness by allowing users to save up unused tokens for

later bursts. However, allowing short bursts could overwhelm

the system during high traffic scenarios. Selecting the size

and refill rate of the bucket requires careful consideration to

effectively balance burst handling with overall traffic control.

Algorithm 4 Token Bucket

1: Initialize:
2: tokens ← bucket capacity

3: last refill time ← get unix timestamp()

4: procedure RATE LIMIT(bucket capacity, refill rate)

5: current time ← get unix timestamp()

6: elapsed time ← current time - last refill time

7: new tokens ← elapsed time × refill rate

8: tokens ← min(bucket capacity, tokens + new tokens)

9: last refill time ← current time

10: if tokens ≥ 1 then
11: tokens ← tokens - 1

12: return true � Request Allowed

13: end if
14: return false � Request Denied

15: end procedure

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 79 ----------------------------------------------------------------------------



E. Leaky Bucket

The Leaky Bucket algorithm controls request rates by

processing them at a fixed pace, similar to a leaking bucket.

Incoming requests are added to the bucket, and if it overflows,

excess requests are discarded. This enforces a steady request

rate, preventing bursts and ensuring uniform load distribution.

However, sudden spikes can fill the queue quickly, leading to

the rejection of new requests. Asynchronous responses may

also cause delays due to queued processing.

In our implementation, a queue is maintained to store

request leak times. When a request arrives, the necessary delay

is determined to maintain the expected leak rate, its leak time

is computed, and it is appended to the queue. For subsequent

requests, the leak time is calculated based on the previous

request. The bucket capacity is determined by the leak rate

and the maximum acceptable delay for user experience.

Algorithm 5 Leaky Bucket

1: Initialize:
2: queue ← empty queue

3: procedure RATE LIMIT(leak rate, bucket capacity)

4: current time ← get unix timestamp()

5: last leak time ← current time

6: if queue is not empty then
7: last leak time ← leak time of last request

8: end if
9: dequeue leak times that are older than current time

10: if length of queue < bucket capacity then
11: default delay ← 1 / leak rate

12: time diff ← current time - last leak time

13: delay ← 0

14: if time diff �= 0 then
15: delay ← max(0, default delay - time diff)

16: end if
17: leak time ← current time + delay

18: enqueue leak time

19: return true, delay � Request Allowed

20: end if
21: return false � Request Denied

22: end procedure

F. Generic Cell Rate Algorithm (GCRA)

GCRA extends the Leaky Bucket concept to offer more

flexible traffic management while maintaining minimal mem-

ory usage. It operates by calculating a theoretical arrival

time (TAT) for each request, which is adjusted based on the

emission interval and burst capacity. It enforces equal spacing

between requests, ensuring a smooth and predictable traffic

flow. To provide some flexibility for users, GCRA permits

limited bursts while still preventing sustained overflows.

Adapting these algorithms in distributed environments

presents a unique set of challenges compared to traditional

non-distributed environments. Achieving effective rate limit-

ing in such distributed environments requires balancing both

performance and accuracy. Concurrent access from multiple

Algorithm 6 Generic Cell Rate Algorithm

1: Initialize:
2: TAT ← -1

3: procedure RATE LIMIT(window size, max requests,

burst capacity)

4: emission interval ← window size / max requests

5: delay tolerance ← emission interval * burst capacity

6: current time ← get unix timestamp()

7: if TAT = -1 then
8: TAT ← current time

9: else
10: TAT ← max(current time, TAT)

11: end if
12: allow at ← TAT - delay tolerance

13: if current time ≥ allow at then
14: TAT ← TAT + emission interval

15: return true � Request Allowed

16: end if
17: return false � Request Denied

18: end procedure

clients in high-traffic scenarios introduces the risk of race

conditions, which can lead to inconsistent states if not properly

managed. Additionally, frequent synchronization of the rate

limiting state with external data stores may impose significant

overhead, affecting performance.

In this context, race conditions can arise primarily due to

two reasons:

1) Client’s requests may be routed to multiple Nginx in-

stances, leading to concurrent access to the shared data

store by Nginx instances.

2) Multiple worker processes within an Nginx instance

may concurrently access the shared data store or the

local shared memory space, in case of batch-quota-based

implementations.

Without proper concurrency control, these factors can result

in inaccurate rate limit enforcement.

To mitigate these concurrency issues, several approaches

were evaluated with consideration of their performance impact.

In Redis, in-built data structures supporting atomic operations

were used for simple operations, while Lua scripts, Redis

locks, and Multi-Exec transactions were tested for more com-

plex logic. After this evaluation, Lua scripts, which execute

atomically within Redis, were chosen for their high perfor-

mance due to a single network round trip and the ability to

be cached locally. Similarly, MySQL-based implementations

leveraged stored procedures, per-client row-level locks, and

transactions with the read-committed isolation level. Addition-

ally, explicit locks provided by OpenResty were used within

Nginx to control concurrent access to shared memory space

between multiple worker processes.

In distributed API rate limiting, synchronizing state with

external data stores for every request may introduce signif-

icant communication overhead, leading to increased latency.

To address this, asynchronous batch-quota-based versions of

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 80 ----------------------------------------------------------------------------



applicable algorithms were developed. Instead of querying

and updating the client state in data store for each request,

load balancer instances fetch quotas in batches from the

global data store, manage them locally, and use them for

rate limit decisions on subsequent requests, until the batch is

exhausted. This approach is implemented for Fixed Window

Counter, Sliding Window Log, Sliding Window Counter, and

Token Bucket algorithms. However, implementing them for

Leaky Bucket and GCRA was impractical as Leaky Bucket

queues requests and processes them in real-time, making

batch processing infeasible, while GCRA relies on theoretical

arrival time calculations, which do not align with batch-based

updates.

These asynchronous versions can improve performance by

minimizing external data store network calls, reducing con-

tention, and lowering synchronization latency. This optimiza-

tion is particularly beneficial when network latency has a

significant impact. However, it may lead to inaccuracies in

the overall global rate limit in scenarios where multiple load

balancers fetch a local batch quota for a specific client and syn-

chronize unevenly. Batch-quota fetching can be implemented

in two ways:

1) Lazy Update: The shared data store is updated only

after a local batch is exhausted. This approach may allow

requests to exceed the rate limit.

2) Eager Update: The shared data store is updated while

fetching a new quota. This approach may restrict re-

quests before the actual global rate limit is reached.

The maximum deviation from the configured rate limit

depends on the number of load balancers and the maximum
fetchable batch quota. Larger batch sizes and more nodes

increase the potential for deviation, either exceeding or re-

stricting the effective limit depending on the update strategy

used.

This maximum deviation can be controlled by adjusting

the maximum amount of batch quota a load balancer can

fetch at a time. In static batch quota implementation, a load

balancer fetches a percentage of the remaining global quota for

a specific client, stores it locally, and uses it for subsequent

requests. By adjusting this percentage, the maximum batch

quota a load balancer can fetch is controlled. Additionally, in

dynamic batch quota implementation, the load balancer tracks

a client’s request history over previous time windows and

adjusts the next batch quota to be fetched based on recent

client behavior. This dynamic approach further enhances rate-

limiting accuracy in asynchronous implementations, reducing

under-fetching or over-fetching.

API providers should allow a certain grace percentage over

the configured rate limits when using asynchronous versions

of the algorithms to ensure adherence to Service Level Agree-

ments (SLAs) even in case of maximum deviations, offering

a practical trade-off for potential better average latency. How-

ever, these deviations are negligible if requests from a specific

client are typically routed through the same load balancer.

Benchmarking these asynchronous implementations will help

evaluate how it enhances performance and assess accuracy

trade-offs.

Further, the communication between load balancers and

the external data store should also be properly configured

to handle high traffic scenarios. Connection pooling should

be configured in load balancers to minimize connection pro-

visioning overheads. Frequently executed rate limiting logic

should be cached locally within the data store to reduce the

network bandwidth of requests. This can be implemented

through mechanisms like Lua scripts in Redis and stored

procedures in MySQL.

V. EVALUATION

The goal is to test and compare the performance and accu-

racy of various rate limiting algorithms for distributed APIs,

within load balancers, using different state synchronization

mechanisms. The experiments are conducted in both local

and cloud deployment setups. A traffic pattern modeled after

real-world scenarios was used to obtain benchmark results. To

enable the reproducibility of our study, we have published all

test artifacts as open-access [36].

A. Benchmark Workload Scenario

We have used TeaStore [37] as the backend service, which

is a renowned micro-service benchmarking and reference

application designed to emulate a basic web store environment.

It contains five distinct services: WebUI, Auth, Recommender,

Persistence, and Image, all of which communicate via REST.

This architecture makes TeaStore an ideal platform to generate

realistic API traffic. HTTP requests for these services will be

made directly through load balancers, rather than using the ex-

isting WebUI component. Our test scenario, which is extracted

from TeaStore, includes eight key HTTP transactions, each

consisting of multiple GET and POST requests simulating

typical API usage. Users perform actions such as logging in,

browsing the store for products, adding these products to the

shopping cart, and then logging out.

B. Experimental Setup

Apache JMeter version 5.6.3 is used as the load generator

to simulate client traffic. Load balancers, data stores, and

backend services are deployed as Docker containers for easy

deployment and management across environments. OpenResty

version 1.27.1, Redis version 7.4.2, MySQL version 8.4.4,

Redis Enterprise version 7.8.4 and TeaStore version 1.4.2 have

been utilized for the setup.

Rate limiting algorithms are implemented as Lua filters

within Nginx. The selected algorithm will be dynamically

mounted to Nginx containers at runtime through the Nginx

configuration file. To effectively support asynchronous ver-

sions of the algorithms, Nginx is configured with a shared

memory space among worker processes for local state storage.

Experiments are conducted in two distinct environments:

• Local Setup: Initial development and functional testing

are carried out in a local environment.

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 81 ----------------------------------------------------------------------------



• Cloud Deployment: Performance of the implementations

is evaluated in a public cloud environment, simulating

real-world cloud conditions. Conclusions are derived

from these results.

The final deployment is hosted on Google Cloud Platform

(GCP), utilizing four Compute Engine instances in a single-

region, as shown in Table II. Each virtual machine (VM) is

provisioned with an e2-standard-4 machine type, featuring 4

vCPUs, 16 GB of RAM, HDD-based persistent disks and

running Ubuntu 22.04 as the operating system.

TABLE II GCP
VM SETUP

VM Region
Data Store (Redis, MySQL) us-central1

Load Balancer 1 us-central1

Load Balancer 2 us-central1

Application Server (Teastore) us-central1

For the CRDT-based setup, Redis Enterprise clusters are

deployed as Docker containers within each Load Balancer

VM and synchronized using eventual consistency. Logging

is configured via JMeter to log the timestamps of requests

along with their response codes and latency. Our evaluation

metrics are calculated based on these logs. VM instances are

monitored for resource consumption by the GCP Ops Agent.

This logging and monitoring infrastructure will help in detailed

performance analysis of our setups.

C. Test Configurations
The discussed scenario was applied iteratively over a 10

minute period, including a ramp-up period of 10 seconds,

accounting for over 45,000 requests to test each implementa-

tion. API requests from each client were distributed between

the two load balancers in a round-robin manner. A global

aggregated rate limit was enforced across all TeaStore services

and applied individually to each client. Clients subscribed to

the APIs are uniquely identified by API tokens, which are

assigned during the API subscription process and are appended

with each request.
A setup thread was first employed to send warm-up requests

for 60 seconds, ensuring that the system reached a stable state

before the main testing began. The test execution included

100 concurrent users (clients) divided into 3 distinct thread

groups, each simulating different request rates to model diverse

user traffic patterns, as shown in Table III. Request rate was

controlled using JMeter’s Constant Throughput Timer, which

maintains a consistent request rate for each thread within a

thread group. Requests exceeding the rate limit were subjected

to a retry mechanism.
The rate limiting framework was tested with five algorithms:

Fixed Window Counter, Sliding Window Log, Sliding Window

Counter, Token Bucket and GCRA. The Leaky Bucket algo-

rithm was excluded as it queues requests and processes them

at a constant rate, unlike other algorithms that reject excess

requests. This difference makes direct comparison infeasible

for real-time request rejection and fairness.

TABLE III TEST CONFIGURATION FOR USER TRAFFIC

SIMULATION

User Group Percentage
of Users Request Rate (req/min)

High Traffic Users 5% 120 (Above limit)

Moderate Traffic Users 25% 90 (Below limit)

Low Traffic Users 75% 30 (Well below limit)

Each algorithm was configured with a rate limit of 100

requests per minute, with parameters tailored to its respective

mechanism. Table IV summarizes the configurations used for

each algorithm during testing. All algorithms were evaluated

across the three state synchronization mechanisms discussed.

Asynchronous batch-quota-based versions were tested with

Redis-based implementation, using a static batch-quota fetch

of 50% of the remaining global quota and a lazy update

mechanism. Additionally, tests were also conducted without

the rate limiting framework, where requests were directly

proxied from the load balancer to the application server

without any rate limiting checks. This allowed for assessing

and comparing the overhead introduced by the rate limiting

framework on API performance.

TABLE IV ALGORITHM CONFIGURATIONS

FOR TESTING

Algorithm Parameter Value

Fixed Window Counter
window size 60 seconds

max requests 100

Sliding Window Log
window size 60 seconds

max requests 100

Sliding Window Counter

window size 60 seconds

max requests 100

sub window count 5

Token Bucket
bucket capacity 5

refill rate 1.67 tokens/second

GCRA

window size 60 seconds

max requests 100

burst capacity 5

D. Evaluation Metrics

The independent variables in the experimental setup are the

rate limiting algorithm and the state synchronization mecha-

nism used by the load balancers. To evaluate performance,

we have selected latency and throughput, the key metrics

commonly used to benchmark microservice-based architec-

tures and APIs [38]. Additionally, throttling deviation will be

measured to assess the accuracy of rate limit enforcement.

Latency measures the time from request submission to

response, while throughput captures the number of requests

processed per unit time. These metrics are used to evaluate

both the overhead introduced by the rate limiting framework

on API access and the comparative performance of different

rate limiting algorithms and state synchronization mechanisms.

Application servers are not considered bottlenecks, as the VMs

are provisioned with adequate resources.

Throttling deviation quantifies how accurately an imple-

mentation enforces the configured limits. It is measured as

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 82 ----------------------------------------------------------------------------



the percentage of requests that deviate from the configured

rate limit across all clients in a given test scenario. For each

client, the number of deviating requests is determined using

Algorithm 7 and aggregated to compute the total number of

deviations in the test.

Algorithm 7 Calculating Number Of Deviations Per Client

1: Initialize:
2: total deviation ← 0

3: window size ← 60 seconds

4: rate limit ← maximum requests allowed in window

5: Sort client request logs by request.timestamp in ascending

order

6: for each request in client request logs do
7: window start ← request.timestamp - window size

8: window end ← request.timestamp

9: successful requests ← Count requests with response

code 200 from window start to window end

10: if successful requests < rate limit then
11: expected response ← 200

12: else
13: expected response ← 429

14: end if
15: actual response ← request.response code

16: if actual response �= expected response then
17: total deviation ← total deviation + 1

18: end if
19: end for

Once the total number of deviations is obtained, throttling

deviation is calculated using the following formula:

Throttling Deviation =
Total Deviations

Total Requests
× 100%

A high throttling deviation indicates that the rate-limiting

implementation fails to accurately enforce the configured rate

limit. This deviation can occur due to the framework being

either overly restrictive, causing false positives (throttling

requests that should be allowed), or overly relaxed, causing

false negatives (allowing requests that should be throttled).
By analyzing and interpreting these metrics, valuable in-

sights can be provided for the development of rate limiting

strategies for distributed API deployments.

E. Results Analysis
The rate limiting framework introduced negligible latency

overhead, compared to the non-rate limited implementation as

observed in Table V. Comparing latency between algorithms

based on the state synchronization mechanism as in Fig. 4,

shows that despite theoretical differences in computational

complexity and client state handling, all algorithms performed

similarly, suggesting that these differences have little impact

on response times in real-world API access. This uniform

and low-latency performance of algorithms is largely due

to optimizations in the execution environment for efficient

concurrency handling and reduced network round-trips to data

stores, as discussed in Section IV.

Among the state synchronization mechanisms, CRDT-based

synchronization exhibited the lowest latency across all al-

gorithms, with almost negligible overhead compared to the

non-rate-limited implementation. This is due to its ability to

be deployed in proximity to load balancers and its eventual

consistency model, which could offer even better performance

in multi-regional deployments. Standard Redis-based synchro-

nization performed second-best, making it a strong alternative,

particularly for single-region deployments. In contrast, the

MySQL-based implementation showed a comparatively higher

latency, likely due to disk access overhead compared to in-

memory Redis. It could be beneficial in scenarios where

persisting client requests for analysis are required.

TABLE V LATENCY OVERHEAD DUE TO RATE LIMITING

FRAMEWORK

Algorithm
State Synchronization

CRDT Redis MySQL
ms % ms % ms %

Fixed Window
Counter

1.43 0.54 2.76 1.04 7.50 2.82

Sliding Window
Log

0.61 0.23 1.04 0.39 8.62 3.24

Sliding Window
Counter

2.09 0.79 7.36 2.77 8.45 3.18

Token Bucket 1.17 0.44 1.31 0.49 8.99 3.38

GCRA 1.07 0.40 2.86 1.08 7.74 2.91

Fig. 5 indicates that the throttling deviation of each algo-

rithm remained consistent regardless of the synchronization

mechanism used. This suggests that all tested state synchro-

nization methods maintained a similar level of consistency.

The eventual consistency model of Redis Enterprise clusters

using CRDTs had no significant impact on throttling deviation,

comparatively. Among the tested algorithms, Sliding Window

Log exhibited the lowest throttling deviation. This is attributed

to its ability to log request timestamps with microsecond

precision, enabling precise tracking of requests within the

current window.

In contrast, the Fixed Window Counter showed the highest

throttling deviation due to its rigid window boundaries, which

can cause enforcement inconsistencies at window transitions.

The Sliding Window Counter demonstrated better accuracy,

with its deviation influenced by the number of sub-windows

used. In this test, a configuration with five sub-windows

yielded lower deviation (0.56%) compared to a two-sub-

window setup (0.72%). The throttling deviation of Token

Bucket depended on its bucket capacity, as it allows request

bursts based on this parameter. Similarly, GCRA also accom-

modates bursts but operates using theoretical arrival times,

making its deviation sensitive to the configured burst size. The

specific configurations for each algorithm used in these tests

are detailed in Table IV.

Fig. 6 indicates that there is minimal latency difference

between normal and asynchronous batch-quota-based versions

of the algorithms while using Redis, in a single-region cloud

deployment. This is primarily due to Redis’s in-memory

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 83 ----------------------------------------------------------------------------



Fixed Window Counter Sliding Window Log Sliding Window Counter Token Bucket GCRA

Algorithm

250

255

260

265

270

275

280

L
a
te

n
c
y
 (

m
s
)

267.41
266.59

268.07
267.15 267.05

273.48
274.60 274.43

274.98

273.72

268.74

267.02

273.34

267.29

268.84

Data Stores

CRDT

MySQL

Redis

No Throttling Latency: 265.98 ms

Fig. 4. Average Latency Comparison by Algorithms and Data Stores

Fixed Window Counter Sliding Window Log Sliding Window Counter Token Bucket GCRA

Algorithm

0.0

0.5

1.0

1.5

2.0

2.5

T
h

r
o
tt

li
n

g
 D

e
v
ia

ti
o
n

 (
%

)

2.22

0.01

0.58

2.09 2.09
2.19

0.02

0.58

2.00

2.132.14

0.01

0.57

2.10 2.14

Data Stores

CRDT

MySQL

Redis

Fig. 5. Throttling Deviation (%) Comparison by Algorithms and Data Stores

Fixed Window Counter Sliding Window Log Sliding Window Counter Token Bucket

Algorithm

250

255

260

265

270

275

280

A
v
e
r
a
g

e
 L

a
te

n
c
y
 (
m
s
)

267.59 267.75 268.09 267.68
268.74

267.02

273.34

267.29

Asynchronous

Normal

No Throttling Latency: 265.98 ms

Fig. 6. Average Latency Comparison: Asynchronous vs. Normal versions
of Algorithms using Redis

Fixed Window Counter Sliding Window Log Sliding Window Counter Token Bucket

Algorithm

0.0

0.5

1.0

1.5

2.0

2.5

T
h

r
o
tt

li
n

g
 D

e
v
ia

ti
o
n

 (
%
)

2.27

0.02

1.52

2.44

2.14

0.01

0.57

2.10

Asynchronous

Normal

Fig. 7. Throttling Deviation (%) Comparison: Asynchronous vs. Normal
versions of Algorithms using Redis

storage and highly optimized data structures, which enable

rapid data access. Additionally, in single-region cloud setups,

the network overhead between the load balancer and Redis

is negligible, making normal versions accessing Redis as

efficient as asynchronous versions accessing Nginx’s local

shared memory.

The performance advantages of asynchronous batch-quota-

based versions become more apparent in scenarios where

network latency between the load balancer and the data store

is significant, such as in multi-region deployments. In such

cases, batching requests can reduce the frequency of network

calls, leading to improved overall response times. Fig. 7

indicates that there is a slightly higher throttling deviation in

the asynchronous versions compared to the normal versions,

which is in line with expectations. This deviation can be

mitigated by reducing the static batch fetch percentage.

The throughput observed in all tests remained consistent

with our configurations, as in Table III. This indicates that

the rate limiting framework effectively managed the traffic

and workload while maintaining the defined throughput tar-

gets across all implementations. Nginx’s event-driven, non-

blocking architecture combined with its multi-process model

allowed it to efficiently handle concurrent requests. Addition-

ally, OpenResty’s optimized LuaJIT environment ensured that

rate limiting logic was processed efficiently in-memory, while

non-blocking request handling prevented external data store

querying from affecting overall throughput.

VI. CONCLUSION AND FUTURE WORK

Concerning RQ1, the results indicate that implementing

distributed API rate limiting through load balancers introduces

minimal performance impact, making it a highly viable and

practical solution. In certain implementations, latency over-

head remained below 1%, demonstrating its efficiency in real-

world deployments. The differences in latency across the rate

limiting algorithms when using a specific state synchronization

mechanism are negligible in real-world scenarios. Throughput

remained stable across tests, demonstrating that the frame-

work effectively handled the configured traffic and workload.

Throttling accuracy varied between algorithms, with Sliding

Window Log exhibiting the lowest deviation due to precise

timestamp tracking, while Fixed Window Counter had the

highest deviation due to its rigid boundaries. Sliding Window

Counter, Token Bucket, and GCRA showed moderate devia-

tions, influenced by their respective configuration parameters,

such as sub-window count and burst allowances.

Concerning RQ2, the choice of state synchronization mech-

anism significantly impacted latency, with CRDT-based syn-

chronization achieving the lowest overhead due to its efficient

eventual consistency model and ability to be deployed in

proximity to load balancers. Standard Redis performed second

best, making it a viable alternative, particularly for single-

region setups. MySQL-based synchronization, however, intro-

duced higher latency due to disk-based storage overhead. All

three mechanisms showed similar throttling deviations for a

particular algorithm, indicating a similar level of consistency.

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 84 ----------------------------------------------------------------------------



These findings suggest that API providers should prioritize

CRDT-based synchronization for optimal performance, with

standard Redis serving as a strong alternative when CRDTs

are not feasible.

Future work will focus on evaluating the scalability and

effectiveness of state synchronization mechanisms and asyn-

chronous implementations in multi-region setups. Addition-

ally, stress testing should be conducted to investigate the

performance and breaking points of different implementations

under high-load scenarios. Also, further optimizations for the

batch-quota-based implementations can be explored, such as

integrating message queues to enable more efficient sharing of

local quotas between load balancers.

REFERENCES

[1] K. T. Shishmano, V. D. Popov, and P. E. Popova, “Api strategy for
enterprise digital ecosystem,” in 2021 IEEE 8th International Conference
on Problems of Infocommunications, Science and Technology (PIC
S&T), 2021, pp. 129–134.

[2] Gartner, Inc. (2024, Mar.) Gartner predicts more than 30%
of the increase in demand for apis will come from ai and
tools using large language models by 2026. [Online]. Available:
https://www.gartner.com/en/newsroom/press-releases/2024-03-20-
gartner-predicts-more-than-30-percent-of-the-increase-in-demand-for-
apis-will-come-from-ai-and-tools-using-llms-by-2026

[3] W. Tan, Y. Fan, A. Ghoneim, M. A. Hossain, and S. Dustdar, “From the
service-oriented architecture to the web api economy,” IEEE Internet
Computing, vol. 20, no. 4, pp. 64–68, 2016.

[4] S. Serbout, A. El Malki, C. Pautasso, and U. Zdun, “Api rate limit
adoption – a pattern collection,” in Proceedings of the 28th European
Conference on Pattern Languages of Programs, ser. EuroPLoP ’23.
New York, NY, USA: Association for Computing Machinery, 2024.
[Online]. Available: https://doi.org/10.1145/3628034.3628039

[5] A. El Malki, U. Zdun, and C. Pautasso, “Impact of api rate limit on relia-
bility of microservices-based architectures,” in 2022 IEEE International
Conference on Service-Oriented System Engineering (SOSE), 2022, pp.
19–28.

[6] A. E. Malki and U. Zdun, “Combining api patterns in microservice
architectures: Performance and reliability analysis,” in 2023 IEEE Inter-
national Conference on Web Services (ICWS), 2023, pp. 246–257.

[7] R. Stanojevic and R. Shorten, “Load balancing vs. distributed rate
limiting: An unifying framework for cloud control,” in 2009 IEEE
International Conference on Communications, 2009, pp. 1–6.

[8] B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum, and A. C.
Snoeren, “Cloud control with distributed rate limiting,” SIGCOMM
Comput. Commun. Rev., vol. 37, no. 4, p. 337–348, Aug. 2007.
[Online]. Available: https://doi.org/10.1145/1282427.1282419

[9] A. Henriksson and S. Bennhage, “Trading performance for precision in
a crdt-based rate-limiting system,” Master’s thesis, Chalmers University
of Technology, Gothenburg, Sweden, 2021.

[10] Youtube. (2016) Doorman: Global Distributed Client Side Rate
Limiting. [Online]. Available: https://github.com/youtube/doorman

[11] Bucket4j. (2024) bucket4j: Java rate limiting library based on token-
bucket algorithm. [Online]. Available: https://github.com/bucket4j/
bucket4j

[12] Django Ratelimit. Django ratelimit 4.1.0 documentation. [Online].
Available: https://django-ratelimit.readthedocs.io/en/stable/

[13] Google. Guava ratelimiter. [Online]. Available:
https://guava.dev/releases/19.0/api/docs/index.html?com/google/
common/util/concurrent/RateLimiter.html

[14] Python Software Foundation. Python rate-limiter using leaky-bucket
algorithm. [Online]. Available: https://pypi.org/project/pyrate-limiter/

[16] M. V. Bartkov and D. Borovikov, “Selection of a suitable algorithm
for the implementation of rate-limiter based on bucket4j,” International
Journal of Online and Biomedical Engineering (iJOE), vol. 18, no. 04,
p. pp. 52–63, 2022. [Online]. Available: https://online-journals.org/
index.php/i-joe/article/view/25641

[15] Resilience4j. Getting started with resilience4j-ratelimiter. [Online].
Available: https://resilience4j.readme.io/docs/ratelimiter

[17] S. A. Ali and M. W. Zafar, “Api gateway architecture explained,”
INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND
TECHNOLOGY, vol. 5, no. 1, pp. 76–94, Mar. 2021. [Online].
Available: https://www.ijcst.com.pk/index.php/IJCST/article/view/450

[18] Kong Inc. Rate Limiting - Kong Gateway — Kong Docs. [Online]. Avail-
able: https://docs.konghq.com/gateway/latest/get-started/rate-limiting/

[19] WSO2 LLC. Distributed Burst Control, Backend Rate Limiting for
API Gateway Cluster - WSO2 API Manager Documentation 4.3.0.
[Online]. Available: https://apim.docs.wso2.com/en/latest/design/rate-
limiting/advanced-topics/configuring-rate-limiting-api-gateway-cluster/

[20] R. K. Mondal, P. Ray, and D. Sarddar, “Load balancing,” International
Journal of Research in Computer Applications & Information Technol-
ogy, vol. 4, pp. 1–21, 2016.

[21] S. K. Mishra, B. Sahoo, and P. P. Parida, “Load balancing in
cloud computing: A big picture,” Journal of King Saud University -
Computer and Information Sciences, vol. 32, no. 2, pp. 149–158, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1319157817303361

[22] NGINX. About: nginx. [Online]. Available: https://nginx.org/en/

[23] Envoy Project Authors. Envoy proxy - home. [Online]. Available:
https://www.envoyproxy.io/

[24] Cloudflare, Inc. (2017, Jun.) How we built rate limiting capable
of scaling to millions of domains. [Online]. Available: https:
//blog.cloudflare.com/counting-things-a-lot-of-different-things

[25] Alibaba Cloud. (2024, May) Alibaba sentinel rate limiting. [Online].
Available: https://www.alibabacloud.com/blog/601162

[26] F. D. Cas, “A practical approach to enhance web apis security using a
stateless, open-source, pluggable api gateway,” Master’s thesis, Dept. of
Comput. Sci. and Eng., Polytechnic Univ. of Milan, Milan, Italy, 2023.

[27] Redis. (January 2017) redis-cell: a rate limiting redis module. [Online].
Available: https://redis.io/blog/redis-cell-rate-limiting-redis-module/

[28] Netcraft Ltd. (2025, Feb.) February 2025 Web Server Survey —
Netcraft. [Online]. Available: https://www.netcraft.com/blog/february-
2025-web-server-survey/

[29] OpenResty, Inc. OpenResty - Scalable Web Platform by Extending
NGINX with Lua. [Online]. Available: https://openresty.org/en/

[30] S. Chen, X. Tang, H. Wang, H. Zhao, and M. Guo, “Towards scalable
and reliable in-memory storage system: A case study with redis,” in
2016 IEEE Trustcom/BigDataSE/ISPA, 2016, pp. 1660–1667.

[31] N. Jatana, S. Puri, M. Ahuja, I. Kathuria, and D. Gosain, “A survey
and comparison of relational and non-relational database,” International
Journal of Engineering Research & Technology, vol. 1, no. 6, p. 1–5,
2012.

[32] Redis. (2022, Mar.) Diving into Conflict-Free Replicated Data Types
(CRDTs) - Redis. [Online]. Available: https://redis.io/blog/diving-into-
crdts/

[33] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in Stabilization, Safety, and Security of
Distributed Systems, X. Défago, F. Petit, and V. Villain, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 386–400.

[34] Redis. Active-Active Geo-Distribution (CRDTs-Based) — Redis
Enterprise. [Online]. Available: https://redis.io/active-active/

[35] K. Thivaharan, P. Kobinarth, and J. Tharsigan. (2025) rate-limiter-nginx.
[Online]. Available: https://github.com/thiva-k/rate-limiter-nginx

[36] ——. (2025) rate-limiter-nginx-artifacts. [Online]. Available: https:
//github.com/thiva-k/rate-limiter-nginx-artifacts

[37] J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J. Grohmann, and
S. Kounev, “Teastore: A micro-service reference application for bench-
marking, modeling and resource management research,” in 2018 IEEE
26th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), 2018, pp.
223–236.

[38] N. Bjørndal, L. Araújo, A. Bucchiarone, N. Dragoni, M. Mazzara,
and S. Dustdar, “Benchmarks and performance metrics for assessing
the migration to microservice-based architectures,” Journal of Object
Technology, 08 2021.

ISSN 2305-7254________________________________________PROCEEDING OF THE 37TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 85 ----------------------------------------------------------------------------




