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Abstract—General Purpose Computing on GPU (GPGPU) has
become popular in the recent decade as it enabled significant
faster computation speeds compared to traditional CPU based
computing. Tasks like training machine learning models can be
accelerated significantly by using GPUs. Current commercial
cloud computing resources with GPUs incur considerably high
cost for users and there is no efficient mechanism for personal
GPU holders to rent their GPUs for GPGPU tasks. This paper
presents a GPU resource pooling system, designed to address the
inefficiencies in current GPU allocation mechanism which leads
to resource underutilization and increased costs, by enabling
dynamic sharing of idle GPUs for executing one-to-one and
distributed machine learning tasks. The system operates on a
pay-as-you-go cost model, optimizing GPU usage and ensuring
cost efficiency. Through a dynamic scheduling algorithm, the
system intelligently allocates GPU resources, enhancing workload
distribution and reducing execution times. Built with scalability
in mind, the system’s architecture can be extended to support
various general-purpose computing tasks in the future. Our
evaluations demonstrate significant improvements in resource
utilization, making this solution a practical and cost-effective
choice for decentralized GPU computing.

Index Terms—GPGPU, GPU Resource pooling, Distributed
Machine Learning, Dynamic GPU Scheduling

I. INTRODUCTION

Graphics Processing Units (GPUs) have become crucial in

computer-intensive and data parallelism tasks due to their high

parallel processing capabilities. The increasing demand for

GPU computing has led to challenges in resource management,

especially in shared environments such as cloud environments.

There is a challenge in finding reliable, high-performance GPU

machines at a fair cost. Also, there are many underutilized

GPUs of personal computers all over the world. Conventional

GPU allocation methods often lead to inefficient resource

utilization due to static partitioning. This paper introduces a

GPU resource pooling system that facilitates a pool to rent

GPUs of GPU owners, and as a system where users can use

to do their tasks by distributing the workload. This system is

mainly focused on training machine learning models.
Several previous studies have explored remote GPU uti-

lization, focusing on decoupling GPUs from host machines

and enabling efficient resource sharing. Early research, such

as Kotani et al. [1], explored grid environments to allocate

idle GPUs for computational tasks. However, it highlighted

CPU bottlenecks in single-core systems and was limited to

specific Operating Systems. Ino [2] introduced a GPU mul-

titasking technique based on host system utilization, but it

limits dynamic adaptability as its execution mode relies on

predefined thresholds. Shitara et al. [3] addressed the challenge

of direct coupling between guest machines and GPU nodes by

using Message Passing Interface (MPI) for inter-node com-

munication. However, their approach required OpenCL-based

execution, limiting broader applicability. Recently, commercial

solutions like vast.ai [4] and run.ai [5] have emerged with

the rise of Artificial Intelligence (AI). They have introduced

proprietary platforms that integrate GPU pooling within Ku-

bernetes clusters, primarily focused on AI workflows. These

existing enterprise solutions focus on closed-source, business-

driven implementations and introduce architectural constraints

that hinder fully dynamic, decentralized GPU sharing for a

broader range of applications.

To overcome these limitations, we propose a novel GPU

resource pooling system that enables efficient pooling of GPU

resources while ensuring the security aspects of both the GPU

owner and the GPU user. Unlike conventional allocation meth-

ods, our system implements a flexible pooling architecture

such that the users can create custom GPU clusters to handle

their training tasks. Additionally, our system eliminates the

need of port forwarding or modifying OS kernels, ensur-

ing a smooth onboarding process for GPU owners.Also our

approach assumes that GPU owners have a stable internet

connection and use compatible hardware and software con-

figurations to integrate seamlessly with our system.

Contribution: This paper presents the design and imple-

mentation details of a GPU resource pooling system that

optimizes resource utilization and effective task scheduling to

handle dynamic workloads. The key contributions of our work

include:

• An effective GPU pooling architecture that enables

efficient allocation of GPU resources across multiple

workloads

• A dynamic scheduling algorithm that optimizes the

performance of the task based on the number of GPUs

• Performance evaluation and benchmarking demon-

strating significant improvements in GPU utilization and

reduced task execution times

Organization: The remainder of this paper is organized as

follows. Section 2 discusses related work, Section 3 describes

the system architecture of the GPU pooling system, Section 4
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presents the implementation of the system, Section 5 presents

the results of an evaluation of the system, Section 6 discusses

some future works, and Section 7 concludes the paper.

II. RELATED WORK

The advent of General-Purpose Graphic Processing Units

(GPGPUs), notably propelled by NVIDIA CUDA, marked a

transformative milestone in computational acceleration. As the

physical infrastructure constraints, programmers increasingly

turned to remote GPU platforms to harness the computational

power necessary for these GPGPU tasks. This evolution led the

research landscape into distinct pre-CUDA and post-CUDA

eras. pre-CUDA is characterized by foundational studies in re-

mote GPU utilization while post-CUDA has further expanded

the scope and scalability of remote GPU platforms with the

advancement in GPU architectures.

In the pre-CUDA era, Kotani et al. [1] introduced a re-

source selection system aimed at leveraging GPUs as general-

purpose computational resources within grid environments.

They mainly focused on computing LU decomposition and

the conjugate gradient method on network-connected PCs

equipped with NVIDIA GeForce GPUs. The system is de-

signed to utilize these GPUs only when they are in idle state.

Their study proposed a method for identifying idle GPUs using

a screensaver-based approach that monitors video memory

usage to detect idle periods of the host machine, thereby

minimizing interference with host operations when executing a

guest program. This system employs a matchmaking service to

align user requirements with benchmark results from currently

available grid resources.However, they observed a significant

increase in CPU utilization, particularly with single-core host

machines, due to CPU intervention during GPU execution.

They also noted that their method for obtaining VRAM usage

relied on the GetCaps function, which is a Direct Draw

feature available only on Windows computers. In INO et al.

[6] the system was applied to accelerate biological sequence

alignment in a laboratory environment.

Ino. [2] has suggested a GPU multitasking technique de-

signed to execute guest applications on host resources by

monitoring the CPU and video memory usage to minimise

the disruption to the host machine. To determine whether

the host resources should operate in a periodic or continuous

execution mode, the system initially runs a null kernel program

before executing the guest task and measures its execution

time, denoted as k. This measured time k then compared to

a pre-measured time α, obtained from dedicated execution on

the same resource. The resource is considered partially idle

if k ≥ α and fully idle if k < α occurs successively three

times. When the resource is partially idle, the guest program

runs periodically by sharing the host CPU cycles with guest

and local programs. And, when the resource is fully idle, the

guest program runs continuously.

He et al. [7] proposed a method to address host perturbation

through the abstraction of a transport layer using Non-volatile

Memory Express over Fabrics (NVMe-oF). This approach

enables memory operations across various interconnects, such

as Fibre Channel, RDMA, or TCP, allowing storage resources

to be maintained and upgraded independently. To facilitate

remote access from a host server to a GPU, they implemented

two proxies: one at the host end and one at the GPU end.

These proxies handle the conversion between PCIe

Transaction Layer Packets (TLP) and network packets,

effectively functioning as a PCIe virtual switch. Additionally,

the proxies provide configuration interfaces that support the

dynamic distribution of GPUs within a cloud orchestration

system. However, a notable limitation of this approach is that

each GPU is dedicated to a single server during use, and

the binding relationship between GPUs and the host server

remains fixed unless manually released by the users. Shitara

et al. [3] have effectively addressed the existing limitation of

direct coupling between guest machines and GPUs in multi-

node computational environments, where each node is man-

aged by the inter-node communication library MPI. When a

user application requests a task from a remote server, it invokes

an OpenCL function on the OpenCL devices (worker nodes)

and returns the result. Within this OpenCL function call, the

remote server requests the OpenCL device currently executing

the guest program to read data from its GPU memory. This

data is then sent to another OpenCL device, as per the remote

server’s request, using the MPI library.

In the present-CUDA era Duato et al [8] suggested a pro-

gramming framework that enables remote execution of CUDA

programs with small overhead called rCUDA. A runtime

system and a CUDA-to-rCUDA transformation framework are

provided to intercept CUDA function calls and redirect these

calls to remote GPUs. rCUDA primarily focuses on dedicated

high-performance clusters rather than shared grids. In addition,

rCUDA does not allow a user program to be distributed over

multiple GPUs for parallel computing. Liang and Chang [9]

proposed a similar virtualization technology called GridCuda,

implemented as a grid-enabled programming toolkit.

CUDA does not provide an interface to distribute compute

kernels to remote nodes. To address this limitation Ji et al.

[10] introduced a Remote Kernel Launch (RKL) approach

which is designed to distribute CUDA kernels to remote GPUs

for execution. The lexical analyser written in Fast Lexical

Analyzer Generator (Flex) identifies and extracts the kernel

part from a given CUDA application. Then a dynamic mapping

schema will distribute kernel parts to remote GPUs ensuring

balanced workload among nodes. The system consists of three

core components: client machine, directory server and the

cluster of GPU servers. After the client gives the CUDA code,

the directory service will search for an appropriate GPU on

the server by analysing the complexity of the CUDA kernel.

Complexity will be calculated by the number of threads and

blocks in the kernel code. If the selected GPU can handle the

workload alone, RKL will not be called, and otherwise RKL

will distribute the task to remote GPU servers. If the task is

assigned to the GPU cluster, lexical analyser will separate the

kernel and the C programming portions and then RKL function

stores the kernel on the GPU server side using the directory

service. Prior to executing the task on the GPU cluster, it
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will send an acknowledgement to get the additional data as

required. Finally the result will be sent back to the client

side. The mapping scheme is used to map the kernel to the

accurate GPU with sufficient threads. Kernels are divided into

classes based on the thread requirements and mapping schema

will ensure the correct mapping between the GPU class and

the Kernel class. Experimental results demonstrated that RKL

has minimal overhead, with execution starting within nearly

one second for high-complexity GPU kernels making RKL

efficient for distributed GPU computing.

A recent study identified several other business-oriented

proprietary solutions in the GPU pooling domain. vast.ai

[4] is a platform that facilitates distributed GPU pooling

capabilities for machine learning tasks. They have reduced the

cost of using distributed training of machine learning models

using HPC (High performance Computing) clusters made by

personal GPUs of users worldwide. vast.ai provides a Jupyter

notebook interface with interactive shells for writing scripts.

However vast.ai has added some restrictions on the GPU owner

side to have a high available network connectivity to prevent

any bandwidth issues and the availability of the GPUs for 24/7.

Also GPU owners should prevent utilizing his/her GPU after

renting to the system.

run.ai [5] is also an enterprise GPU resource management

platform specialized in ML tasks. System facilitates an orches-

tration service for existing datacenter GPU resources using

Kubernetes. However, this doesn’t facilitate renting dometic

personal GPUs into their GPU pool. GPUDeploy [11] is

another GPU renting platform specifically designed for ML

tasks. They use SCP (Secure Copy Protocol) to transfer files

from local machines to their servers and RSYNC [12] for

file synchronization. The system provides a fault tolerance

mechanism using TMUX [13] to keep applications running

even after any disconnections from the client side. They have

provided some instructions that need to be followed in order

to rent GPUs to their pool, such as Linux distribution with

root privileged users, NVIDIA GPUs with the latest drivers

pre-installed, and expose ports 5000-5999. GPU owners who

satisfy these requirements can pool their resources by estab-

lishing a SSH connection with the main server.

III. SYSTEM ARCHITECTURE

A. Centralized Management Setup

This is the backbone of this system, and almost all the

operations are executed and controlled by this system. In

this system, there are multiple standalone operations going

on, such as authentication, job scheduling, monitoring, file

uploading, HTTP request routing, etc. These are implemented

as microservices. The system is fully structured with a mi-

croservice architecture.

1) Authentication Service: This service is responsible for

user authentication.

2) Job Scheduling Service : This service is responsible

for the creation of Kubernetes Jobs and Stateful sets based

on the dynamic tasks which are submitted by the customers.

Moreover, it manages the labeling and training of worker

nodes and adds affinity and tolerations for pods ensuring

accurate job creation.

3) API Gateway: It serves as the interface that receives

HTTP requests from the frontend and routes them to respective

microservices by creating [14] messages using google proto3

serialization method and pushing them to related RabbitMQ

message queues using AMQP.

4) Monitoring Service: This service is responsible for mon-

itoring the completion of the pod job and cleaning up the

resources created to perform the job. When a job has been

created, the job scheduling service triggers the monitoring

process using a protobuf message.

5) Utility Service: It manages the interaction of the system

with GCP bucket storage. The training scripts that have been

submitted by the users will be saved in the GCP bucket store.

The Kubernetes control plane, which handles the multi-

node distributed system, is also on the same server machine.

The reason for having the Kubernetes control plane and the

microservices on the same server is to maintain better commu-

nication with the system and reduce the time taken to apply a

job to the cluster. Fig.1 showcases the high-level architecture

design of the microservice based central management setup.

Fig. 1. centralised microservices-based system

B. Load Balancing
In front of the API Gateway, an NGINX reverse proxy has

been deployed to manage traffic, redirect requests from the

frontend to the API Gateway and utility service, and enforce

CORS policies. The utility service was kept independent of the

API Gateway while optimizing its performance to minimize

latency.

C. Communication Protocols
Our system uses both synchronous and asynchronous com-

munication. We mainly use HTTP for synchronous com-

munication between the frontend and the API gateway and
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asynchronous communication for inter-service communication

using a message broker, which is RabbitMQ. Fig.2 illustrates

the Remote Procedure Call (RPC) pattern used for handling

authentication requests within the system in an asynchronous

manner.

Fig. 2. RabbitMQ RPC Pattern

When a client sends an HTTP request to the API Gateway,

it creates an exclusive callback queue to receive responses

as the initial step. Then the request reroutes to a queue that

the authentication service listens to. That request includes

reply to, which is set to the callback queue, and the unique

correlation id. Once the request has been received, the

authentication service processes it and sends the results back

to the specified callback queue. The API gateway, waiting on

the callback queue, verifies the correlation id and forwards

the authentication response to the client.

D. VPN Setup

This system establishes a distributed architecture by lever-

aging Kubernetes, which can be deployed as either a single-

node or multi-node configuration. In this implementation,

a multi-node Kubernetes cluster is employed to orchestrate

a distributed system of GPUs located worldwide. However,

this approach presents certain challenges. To enable seamless

operation, all nodes must reside within the same network. VPN

offers an effective solution by providing secure communica-

tion channels over the Internet. Accordingly, an OpenVPN

server, configured with a certificate authority, has been imple-

mented [15]. Upon onboarding, new customers are required

to download the .ovpn file as their initial step and establish

a connection to the VPN. Figure 3 illustrates how the VPN

server ensures secure communication among nodes within the

Kubernetes Pod Network. This configuration facilitates private,

efficient, and isolated inter-pod and inter-node communication

across the cluster.

E. Distributed system using Kubernetes

Since Kubernetes is a container orchestration tool, it pro-

vides a fault-tolerant mechanism to maintain a reliable and

scalable resource cluster. When running a script on a computer,

Fig. 3. Kubernetes on VPN

the isolation needs to be implemented in advance. For that

Docker is used to run the tasks on the GPU owner side. When

using such a container runtime, having an orchestration tool is

crucial for reliability. Kubernetes serves that purpose reliably.

Fig. 4. Distributed system using Kubernetes

To allow Kubernetes to utilize the GPUs on each worker

node, NVIDIA Container Toolkit [16] is automatically in-

stalled during the worker onboarding process. Additionally,

NVIDIA Device Plugin Daemonset [17] is deployed in the

Kubernetes cluster to detect and allocate GPU resources for

training tasks. This setup ensures that training tasks can be

effectively executed using the pooled GPUs without manual

configuration on each node.

Containerd [18] is used for the container runtime and Calico

[19] is integrated as the Container Network Interface (CNI) to

enable pod networking and inter-node communication. A GCP

key secret is used to grant read access of the GCP bucket

to Kubernetes. This allows the training pods to automatically

download user-uploaded scripts and the datasets at runtime.

Kubernetes mainly functions in the system from two as-

pects. First, it serves in creating the GPU pool with its multi-

node functionality. The second is the fault tolerance mecha-

nism for node failures. Every working GPU is considered as a

Kubernetes node. Fig.4 illustrates the high-level architecture of
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the distributed system of worker nodes, where the Kubernetes

control plane manages multiple worker nodes.

F. Service-Runner tool

This tool is designed and implemented to centrally start

the services and manage all the environment variables and all

other utilities of microservices. When there is a new update

in one of the services, this program will automatically trigger

through a pipeline and fetch the new Docker image tag from

the Docker hub and spin up with new updates.

IV. IMPLEMENTATION

A. Worker Node Onboarding Process

For renting a GPU, a user has to be registered as a GPU

owner in the system. Then, the user will be directed to a

page that provides necessary instructions to set up the VPN

connection and connect to the cluster. Additionally, the system

is currently optimized for Ubuntu 20.04 LTS or later, making

it incompatible with Windows-based machines. For efficient

workload distribution, we assume homogeneous GPU clus-

ters where all GPUs have similar specifications, specifically

NVIDIA RTX 4000 series with uniform VRAM capacities.

Once a worker node fulfills these basic requirements, it needs

to be connected to the VPN server using the instructions

provided by the system in order to rent their GPU. VPN al-

lows communication within worker nodes, which are typically

behind distinct NATs (Network Address Translations). Unique

client certificates will be provided for workers, ensuring that

mutual TLS authentication remains intact with the VPN server.

A virtual IP address will be assigned to the worker node, upon

successful registration with the VPN server.

Then the user can download the deb package called worker-
onboarding.deb and run it in the user’s local machine termi-

nal. All necessary guidelines for running the deb package will

be provided on the web page. Installation of all required tools

has been automated by the deb package. It will check whether

the user has a GPU, whether he is connected to the VPN,

etc. If those verifications fail, the user will not be able to

continue the installation process to connect with the system.

Upon successful completion, the user will be automatically

connected to the GPU pool and a local web application and

a GPU monitoring process will be started to streamline the

worker node processes. The specifications of the GPU will

be sent to the main system to be saved in the database.

Fig.5 illustrates the high-level flow of the worker onboarding

process. It represents the sequence of steps that a user should

follow, from setting up the VPN connection and downloading

the onboarding package, to checking GPU configuration, and

successfully connecting to the system.

B. Job Scheduling Process

The job scheduling process is handled by the job scheduling

service. The job scheduling process is dynamically handled

based on the number of selected GPUs. Currently, our system

does not support dynamic workload distribution among hetero-

geneous GPUs. Users must manually select GPUs of similar

Fig. 5. Worker onboarding workflow

specifications for optimal performance. In the scheduling pro-

cess we use kubernetes/client-go SDK in the job scheduling

service to directly communicate with the Kubernetes control

plane. This SDK provides almost all the functionalities to

create yaml configuration files and apply them to the Kuber-

netes cluster without using any external libraries or kubectl

commands.

1) Saving GPU details and getting available nodes: The

existence of a GPU and its specifications are scraped by a

background program in the onboarding process of a worker

node. It includes GPU model, number of CUDA cores,

VRAM, TFlops, PCIe lanes, etc. After a successful onboard-

ing, the GPU specifications will be saved to the database by

assigning a unique node name. Saved GPU data will be used

when retrieving the available nodes in the cluster at any given

time. Only the Ready state nodes will be displayed as available

GPUs for the user. Also, nodes need to match with our name

scheme for security purposes.

2) Tainting a GPU node: When users select one or more

GPUs, a unique taint will be applied to the selected GPUs

from the job scheduling service. Kubernetes taints work in

such a way that any pod without a matching toleration will

not be allowed to schedule in that node. This strategy isolates

the rented GPUs from the other GPUs. Already tainted GPUs

are not shown as available GPUs in the frontend, ensuring

multiple taints are not applied to a node.

3) Scheduling one-to-one jobs: When the user selects only

a single GPU, the jobs scheduling service creates a Kubernetes

Job with all the environment variables and all the details about

the uploaded training script by the user. First, all the metadata

of the job will be saved in the MongoDB database, and the

related docId is used to create the job name. Then a new

yaml file will be created using the client-go SDK [20] in the

format of (docid).yml. Finally, that job will be applied to the

tainted node. By setting .spec.ttlSecondsAfterFinished value

in the yaml file, the job will be automatically deleted with the

respective pods after completion. Otherwise, if the user tries

to execute the job again, that will not be scheduled by the

Kubernetes.

4) Scheduling distributed jobs: If the user selects mul-

tiple GPUs, a Kubernetes Statefulset will be created by

the job scheduling service along with a headless service.

Node affinity is used to guarantee that the pods will be
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only deployed in rented GPUs not the others. In distributed

machine learning tasks, a master worker node needs to be

automatically selected(will be discussed in a later section). For

that, an indexing mechanism is needed. Statefulset facilitates

the indexing mechanism. The zero indexed pod will be used

as the master worker node and it is responsible to manage the

whole process(will discuss later). Also, statefulset stores the

state, and in case of a pod failure during execution, it spins

up a new pod with the past state knowledge. This is helpful

in distributed training. The headless service is an extension

of the clusterIP service but doesn’t have a static IP. It gives

direct access to the worker pods to get updates from other

worker nodes. After successfully applying the statefulset, the

monitoring service will be triggered for monitoring the pods

to signal the front end for job completion and clean out

the resources. The system assumes that PyTorch correctly

distributes data across all rented GPU instances, ensuring

balanced training across multiple nodes.

C. Distributed Model Training Process

The system leverages the PyTorch Distributed Data Parallel

(DDP) library for distributed training among selected GPU

nodes. As the initial step, the system dynamically chooses a

master node from the selected nodes and broadcasts its IP

address to the remaining nodes. To facilitate seamless com-

munication, a Kubernetes headless service is used to resolve

the IP address of the master pod, and a stateful set ensures

the master pod’s reference remains persistent throughout the

training lifecycle. The master node serves as the rendezvous

point for the initializing the distributed process group. It

coordinates gradient synchronization, collective communica-

tion among all participating nodes and keeping checkpoints

throughout the training process. The use of a headless service

allows direct pod-to-pod communication, which is essential

for low-latency, high-throughput operations. The stateful set

guarantees a consistent network identity for the master pod,

simplifying coordination during re-initialization and recovery

from the last checkpoint in case of a node failure.

Once the process group is initialized, PyTorch DDP enables

data parallelism by splitting the training dataset across all

participating nodes. Each node independently processes its

own shard of the dataset, performing a forward pass followed

by a backward pass to compute gradients locally. After the

backward pass, PyTorch DDP synchronizes gradients across

all nodes using an all-reduce operation, which averages the

gradients from each worker. This ensures that all nodes

maintain consistent model updates. With the averaged gradi-

ents computed, each node simultaneously updates its model

parameters, keeping the distributed models in sync. In our

current system, gradient synchronization occurs at the end of

each epoch, though we are actively researching more efficient

synchronization strategies to minimize network latency and

reduce overall training time.

D. Pod Monitoring and Pod Cleanup

The monitoring service is responsible for this process. Af-

ter successfully applying a statefulset, the monitoring service

will be triggered by the job scheduling service with the name

of the statefulset. Then, the monitoring service will get a pod

list that matches the name starting from the statefulset name.

Then it will scrape the restart count of each and every pod in

the list. When the restart count becomes greater than zero,

the stateful set will be deleted by the monitoring service.

The reason for that is, statefulset always tries to maintain

the same pod count. Hence, even in the success scenario,

a new pod will be started again and again, increasing its

restart count. Therefore, when the restart count becomes 1, the

monitoring service automatically deletes the stateful set and

sends a protobuf message via RabbitMQ to the API Gateway.

Then that response will be used by the front end for displaying

successful completion.

In a single-job scenario, a monitoring process will not be

executed, But in case of failure, the failure state will be

recorded. In success scenarios, the job will be automatically

deleted, as mentioned earlier.

E. Real-Time Monitoring and Logging

Logs provide valuable insights about the progress of a

submitted job for the users who are using a GPU for some

training task. Also, real-time GPU monitoring enables GPU

owners to monitor the utilization of their rented GPUs.

1) Logging: A dedicated web-socket server and a nodeport

service have been deployed on the Kubernetes master plane to

collect and transmit real-time logs from the worker pods. A

role has been created with permissions to access any pod in the

cluster, and that role has been binded to the service account.

Once a task is initiated, the websocket server gets the worker

pod names from the job scheduling service and new web

socket connections will be established for each worker node

to the frontend. These websockets stream logs of the running

pods in real-time. This allows the model trainer to track the

progress of the task eliminating the need to manually check

each worker pod. The websocket server has been programmed

using Node.js and applied to the Kubernetes cluster using a

deployment with 1 replica set. So it always keeps running

inside the cluster.

2) GPU Monitoring: Here, Monitoring refers to monitor-

ing of the GPU utilization. When a worker node connects

to the Kubernetes cluster a background service is initiated

in the GPU owner’s machine. It collects the GPU utilization

metrics in real-time and streams to the worker frontend via

websockets. This information which includes GPU utilization,

GPU temperature, etc. helps the GPU owner for visualization

and analysis.

F. API Request Handling

All the HTTP requests from the frontend will be routed

to the API Gateway service. The API Gateway service runs

an HTTP web server and continuously listens for the HTTP

traffic from the frontend. It also continuously listens to the
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RabbitMQ queues for the messages from the other services at

the same time. When an HTTP request comes to the gateway it

will call the required function. If the request involves another

service, a new protobuf message will be created. Protobuf

mechanism is used to serialize messages to communicate with

the microservices through the RabbitMQ message broker. All

the message types are defined in a .proto file and the necessary

messages are created using that file.

To handle the asynchronous communications, there are

predefined message queues from the API Gateway to the other

services. To listen to the messages, a consumer is always

running in the API gateway. But when it comes to the response

side, some requests need to be handled synchronously. In such

cases when sending the message a replyTo field is being used

which is a feature of RabbitMQ. It will create a random reply

queue to the api gateway as soon as the message is sent to

the relevant service. With the delivery of a reply message, that

queue will be deleted by RabbitMQ. This mechanism has been

used for registering and signing in users in the API gateway.

G. Data storages

MongoDB and the GCP storage buckets are the main data

storage mediums used by the system. Since MongoDB is

a scalable cloud-based platform, it is efficient to store and

retrieve data from various services. In the services that use a

database, a MongoDB client is created at the beginning of the

service and added to the application context. That client will

be used during a database operation.

MongoDB will be used to save all the metadata of the

operations. The GCP storage buckets are used for storing the

user training scripts. When the training starts, the training pod

downloads the script from the bucket storage by matching

the name provided in the YAML file and starts the training

process.

H. Internode Communication

At the beginning of each and every service, the RabbitMQ

connection will be initialized. A RabbitMQ client, a channel

for sending messages, and a channel for receiving messages

are being created and added to the application context. Then

a consumer will be started and services will continuously

listen to the defined queue. When the service needs to send

a message to a relevant queue, the producer channel and the

RabbitMQ client will be taken by the context and send the

message. To identify the different messages, a heading-type

has been introduced. When a message comes to the service,

it checks the heading-type and calls the necessary functions

accordingly.

For synchronous communication, the reply-to queue is used.

An empty string will be sent with such messages, and when

replying, a unique queue will be created by RabbitMQ and

send the reply on it.

I. Service management (service-runner)

Since the control plane is operated by several microservices,

managing them individually is challenging in both production

and development environments. Therefore, to centrally manage

them using a program, the service-runner service has been im-

plemented. This service has two docker-compose files. One is

docker-compose.dev, and the other is docker-compose.prod.

These compose files are used to spin up the Docker containers

for each and every microservice by pulling the newest Docker

image from Docker Hub.

1) Development Environment: In the development environ-

ment, developers should be able to see real-time Docker logs

for their changes. The challenge is to track the file changes

and build the service again. For that, there is a live server tool

called Air for Go. It will track the new changes and build the

Go binary inside the Docker container. To do so in the Docker

compose file, the file path to the service needs to be added as

a volume instead of the Docker image.

In the development environment, to do testing, a local

Kubernetes cluster needs to be created. For that kind, or

Minikube can be used. When connecting to the Kubernetes,

the .kube/config is needed by the monitoring service and the

job scheduling service. In the kind cluster, the Kube API

server is running on a localhost url. Hence, in the development

environment, the network mode of all services needs to be

changed to host. But Minikube uses a Docker container

environment to make its single-node cluster. So, when using

Minikube, the monitoring service and the job scheduling

service need to be added to the Minikube Docker network,

otherwise these services cannot access the Kube config file.

Fig.6 illustrates the high-level architecture of the Service

Runner in the development environment. As shown in the

figure, the Service Runner interacts with the Docker Compose

environment, where each service is configured to mount its

respective file path and environment variables. devStart.sh

shell script is used to run the Service Runner in development

environment and it executes dockerfile.dev to spin up docker

containers within the development environment.

Fig. 6. Service Runner service in a development environment.

2) Production environment: In the production environment,

built Docker images are used to spin up the services. On

the devOps side, when a new change is merged to the main
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branch of the github repository, a new image will be created

by incrementing the existing tag by one. After pushing the

new Docker image to the Docker hub, the Github action

creates a ssh connection to the testing environment, and a

new pipeline is created. After doing some testing, the changes

will be added to the production VM. When adding them the

service-runner program runs a script. It scrapes the newest

tags of the services and if there is a new tag of one of

the services, that image will be automatically pulled, and a

Docker container will be automatically spinned up with the

new changes. Since the binary files are used in the production

environment container size has been reduced in a significant

amount than the development environment. Fig.7 illustrates the

high-level architecture of the Service Runner in the production

environment. As shown in the figure, the Service Runner in-

teracts with the Docker Compose environment, where images

of each service is pulled from the Docker Hub and configured

with their environment variables. prodStart.sh shell script is

used to run the Service Runner in production environment

and it executes dockerfile.prod to spin up docker containers

within the production environment.

Fig. 7. Service Runner service in production environment.

3) Environment Variable Management: Without adding the

.env files in the production environment for the services itself

all the environmental variables are included in the service

runner. In the service runner, there is a folder which contains

all the .env files specific to the services. Then in the docker

compose file these .env files are loaded. With this setup,

managing secret data for all the services can be handled in

one place. Since all the secret values are included here, this

service has been secured more than the other services.

J. Security Measures

To ensure secure communication during distributed training,

our system utilizes a VPN-based overlay network, which inher-

ently provides encrypted pod-to-pod communication. On the

execution side, the inherent isolation provided by containerized

environments helps mitigate code injection risks to some

extent. However, to further strengthen the system’s security

posture, we are planning to introduce sandboxing mechanisms

for containers in future iterations. This will provide additional

layers of isolation, preventing unauthorized code execution or

lateral movement within the system.

To safeguard against resource-based attacks or unintentional

overuse, such as memory leaks or CPU overflows, system-

enforced resource limits and quotas in Kubernetes deployment

configurations. These limits help ensure system stability and

fair usage across distributed GPU nodes.

V. PERFORMANCE EVALUATION

Evaluating the performance of our system is crucial to

understanding its efficiency in handling distributed machine

learning workloads. This section presents the hardware speci-

fications, execution performance, and resource utilization met-

rics gathered during multi-node training experiments.

A. Platform

Our system utilizes NVIDIA GeForce RTX 4070 Ti Super

GPUs, each offering 2048 MB VRAM, 450 TFLOPS theoret-

ical performance, and 4 PCIe lanes. These GPUs serve as the

foundation for our distributed training environment, ensuring

high computational efficiency and scalability.

B. GPU Utilization Analysis

To evaluate distributed training performance, we analysed

the GPU utilization, SM Clocks, temperature and power

consumption for single and multi-node training tasks. We

measured execution times for both single-node and two-node

configurations to assess the scalability and efficiency of our

approach. Table summarizes the execution times.

TABLE I PERFORMANCE METRICS FOR SINGLE AND MULTI-NODE

TRAINING

Mode Utilization (%) Temperature (°C) Time (s)

Mean Max Mean Max

Single GPU 1.90 20 40.5 43 16.62
Multi-GPU (two) 23 83 43.95 52 29.28

GPU Utilization and SM Clocks: The utilization graphs

shown in Fig.8 provide a detailed view of performance metrics

during multi-GPU training. The upper graph displays the

GPU SM(Streaming Multiprocessors) Clocks, which remained

stable throughout the execution, indicating that the computa-

tional resources of the GPUs were fully utilized. The lower

graph shows GPU Utilization, where the workload is evenly

distributed across the two nodes, with both GPUs experiencing

significant utilization peaks, reflecting the efficient handling of

the training process.

Temperature and Power Consumption: Fig.9 displays the

GPU temperature and power consumption metrics for a multi-

GPU training process. The graphs show that the temperature

was consistently maintained at safe levels (around 44°C),

while power usage remained stable within expected limits,
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Fig. 8. Grafana utilization for muti-GPU training

peaking at a maximum of 1.58 kW, reflecting the system’s

efficient performance during multi-GPU training.

Fig. 9. Grafana statistics for muti-GPU training

These results demonstrate that our system not only re-

duces training latency but also efficiently distributes workloads

across multiple nodes while maintaining stable operational

conditions. Future work will further optimize multi-node task

scheduling and incorporate performance benchmarks to en-

hance the evaluation scope.

VI. FUTURE WORK

While our GPU resource pooling system significantly han-

dles resource utilization, there are several areas for future

enhancement. There are many variations in GPUs and their

performance also vary with the specifications. Future work

will focus on scheduling work such that the workload given

to a user created cluster to be divided among the work

nodes considering the heterogeneity of GPUs. Currently the

system is designed such that it has a centralized management

setup with the Kubernetes control plane and the microservices

deployed in the same virtual machine. This creates a single

point of failure. So, we plan to migrate these microservices

in a distributed manner that reduces dependency on a central

controller.

In the process of distributed machine learning, the calculated

gradients should be synchronised with the master node. This

has to be optimized to reduce unnecessary communication

between the worker nodes. Finding an optimal frequency for

this gradient synchronisation is also planned as a future work

in our system.

During the task execution there is a possibility for a worker

node to be offline due to a connection issue or current failure.

We plan to have a fault-tolerant mechanism to address these

issues. This can be achieved by implementing checkpoints

to save task execution progress in cloud storage, allowing

recovery from the last checkpoint instead of restarting the

process. Enabling dynamic node switching by migrating tasks

to a new node within an optimal budget range specified by

the user is also a mitigation method that we have planned. In

that case, with enough power from the modern GPUs, several

machine learning tasks can be run on the same GPU but with

proper VRAM and storage management. Using that advantage

we are planning to create an algorithm to calculate an average

usage of currently busy GPUs and choose GPUs that have

an average usage below 50 percent and further distribute the

remaining task of the failed GPU among those GPUs.

Although this system is focused on machine learning train-

ing tasks, this system has the ability to be expanded for more

general purpose applications. Therefore we plan to introduce

a new extension language by providing specific functionalities

to distribute programming tasks among multiple nodes using

MPI like libraries. Moreover this system can be expanded to

use cases like video editing, weather prediction, etc.

VII. CONCLUSION

In this paper, the discussed GPU pooling system has the

ability to efficiently manage GPU resources in a wide GPU

pool, and provide custom clustering facility to users who

want to have their machine learning training to be done in

a cost effective and reliable manner. This system facilitates

dynamic scheduling to ensure efficient usage of available GPU

resources. Experimental results validate the effectiveness of

the system.

Despite of these successful outcomes, there are several chal-

lenges that remain to be addressed. One significant concern is

the fair workload distribution concerning the heterogeneity of

GPUs. For efficient workload distribution more portion of data

can be allocated for high-end GPUs of the cluster. There is

also a concern with the concurrency handling when selecting

GPUs by the users. Ensuring fairness and priority handling in

such scenarios will be critical.

Additionally, system robustness against hardware failures

and network latency needs further attention to guarantee

uninterrupted service and high availability. Fault tolerance

should be addressed in various aspects such as considering

about shifting fault processes to a user suggested backup GPU,

or handling the GPU migration automatically by the system

itself.

To improve the efficiency of distributed training, we are

currently focusing on reducing pod-to-pod network latency
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by transitioning from a centralized VPN topology to a de-

centralized mesh VPN. In the current system, the system uti-

lizes OpenVPN, where all inter-pod communication is routed

through a central VPN server. This setup introduces additional

latency due to the server acting as a middleman for all

traffic. To address this bottleneck, we are planning to migrate

to the mesh VPN architecture, which enables peer-to-peer

communication between pods without a central intermediary.

It will help to reduce network latency and improve overall

training performance.
During the evaluation phase of our system, we faced re-

source constraints that limited our ability to scale experiments

beyond two GPUs. Currently, we are utilizing two GPUs

provided by the university, which has allowed us to validate the

core functionality and distributed training workflow. However,

we acknowledge the importance of evaluating the system at a

larger scale to demonstrate its full potential and robustness. To

address this, we have applied for additional funding to support

resource expansion by using GPU instances from Google

Cloud Platform (GCP) to extend the number of participating

nodes in our distributed setup.
By utilizing GPU pooling organizations and individuals

can achieve more sustainable, cost effective computing in-

frastructure, opening new opportunities for innovation and

advancement in productivity of high performance workload

management.
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