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Abstract—Detecting human mental fatigue is crucial because
it significantly impacts work efficiency, especially in system
operation control. In our earlier research, we developed a video-
based system for detecting mental fatigue using physiological
indicators analyzed through deep learning models. However, this
approach is computationally expensive and requires processing of
videos with various machine learning models to estimate multiple
vital signs and facial features. To improve its efficiency, this
paper introduces feature importance techniques that identify the
most significant indicators of fatigue. This not only enhances
our model’s performance but also provides insights into the
factors contributing to fatigue. Additionally, we transitioned
from using traditional machine learning techniques (i.e. Random
Forest) to a more advanced architecture such as the Tabular
Transformer. This shift offers several advantages, including better
generalization and effective handling of tabular data, resulting in
an impressive accuracy of 89%. Our findings promise to deliver
more accurate and reliable assessments of mental fatigue in real-
world applications.

Keywords—operator fatigue detection; computer vision; phys-
iological indicator, features importance, tabular transformers.

I. INTRODUCTION

Mental fatigue is becoming a serious issue in the advanced

work environment. When employees are given tasks that

require higher levels of complexity and the cognitive demands

on them build up, the results can be disadvantageous in terms

of productivity, decision-making, and personal well-being [1].

However, with the advancement of technology, organizations

now have the ability to proactively monitor and address mental

fatigue, ensuring their employees remain engaged, focused,

and resilient.

The advantages of monitoring mental fatigue in the work-

place are significant. It enhances both individual well-being

and work performance, while also boosting the organization’s

success and reducing the risk of errors. Employees who

have healthy mental states are more likely to make good

decisions, work with their colleagues more effectively, all of

which positively impact the organization’s financial and social

performance.

The primary aim of fatigue detection approaches is to

identify the early warning signs of mental fatigue and sub-

sequently alert the individual to this potentially dangerous

state. The majority of these techniques use advanced ma-

chine learning classifiers or deep learning models to construct

highly effective models capable of accurately detecting signs

of fatigue [2]. Much of the existing research on fatigue

monitoring has focused on identifying signs of fatigue during

cognitively demanding tasks, such as driving [3]. However,

there is some research and effort to detect fatigue in more

natural situations, where individuals are not actively engaged

in challenging cognitive activities [4]. These non-intrusive

techniques often utilize remote or webcam-based eye-tracking

to monitor variations in an individual’s pupil response, blink

rate, and eye movement patterns, which can serve as reliable

indicators of fatigue. However, there are several drawbacks

to depending exclusively on these features. The individual

variability in these physiological measures can complicate

finding a consistent and generalizable thresholds or patterns for

detecting fatigue. Additionally, these features can be affected

by environment conditions, such as lighting, task demands, and

emotional states, which might not be directly tied to fatigue,

resulting in false positives or negatives. Fatigue is a complex

phenomenon, and these eye-related and mouth-related features

may only reflect a limited aspect of the fatigue experience,

potentially overlooking other significant factors.

This motivated us to propose our previous machine learning-

based approach to assessing human mental fatigue using video

recordings of working operators [5]. The incorporated features,

estimated by deep learning models, encompass head move-

ment, vital signs, and eye and mouth states. This approach

eliminates the need for manual detection or external sensors,

offering a more practical and scalable solution for organi-

zations. Our results demonstrated that the Random Forest

technique consistently achieved high accuracy (98%) and F1

score (94%) in detecting mental fatigue.

Our approach to fatigue detection can be quite resource-

intensive, as it typically involves processing videos with dif-

ferent machine learning and deep learning models to estimate

multiple vital signs and both eyes and mouth states. To tackle

this issue and enhance our model’s efficiency, we opted in

this paper to utilize feature importance techniques to highlight

the most significant features that play a crucial role in fatigue

detection. By excluding less critical features, we can lower the

computational demands of our model and concentrate on the

primary indicators of fatigue. This not only boosts our model’s

performance but also helps us to better understand the factors

that lead to fatigue. Additionally, we explored moving from

Random Forest, to a more sophisticated architecture such as

the Tabular Transformer. The benefits of adopting the Tab-

ular Transformer include improved generalization, effective
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management of tabular data, and better performance, all of

which can contribute to more precise and dependable fatigue

assessments in practical scenarios.

This research makes important contributions to the under-

standing of mental fatigue as follows:

1) Finding Key Physiological Features: We identified Heart

Rate, Oxygen Saturation, Blood Pressure (both Systolic

and Diastolic), and Average Pitch as the most important

physiological signs for measuring mental fatigue. By fo-

cusing on these key features, we improved the accuracy

of fatigue detection while also making the process less

resource-intensive.

2) Improving Analytical Methods: We used several dif-

ferent methods to analyze which features are most

important, including SHAP analysis and Permutation

Importance. This approach shows the value of using

various techniques to get a complete picture of what

affects mental fatigue, helping to clarify the complexities

involved in its assessment.

3) Using Advanced Deep Learning Models: We switched to

a tabular transformer model, which led to better perfor-

mance, achieving an accuracy of 89%. This shows that

transformer models can effectively handle complex data

relationships, suggesting new paths for future research

in this area.

The paper is structured in three main sections. Section

II, describes numerous studies on the impact of fatigue on

physiological indicators, as well as various approaches to

feature estimation and the datasets used for fatigue and

drowsiness detection. Section III, provides an overview of our

previous work and presents our framework, which includes

using feature importance techniques and a specific procedure

to obtain a more effective fatigue detection model. Finally,

Section IV outlines the experiments conducted and the results

of employing the proposed approach enhancement.

II. LITERATURE REVIEW

In this section, we explore research that examines the con-

nection between fatigue and various physiological indicators.

This will be followed by an overview of the models and

methodologies employed to derive these indicators, along with

a brief review of the datasets collected for the purpose of

detecting fatigue and drowsiness.

A. Relationship between mental fatigue and physiological
indicators

In the domain of mental fatigue detection, researchers tend

to rely on correlation between mental fatigue and various

physiological indicators. However, this correlation is not robust

and may differ significantly for particular people. Among

these physiological parameters are vital signs, such as blood

pressure, heart rate, and respiratory rate, as well as head

movement and ocular characteristics, including pupil diameter,

blink rate, and others. This section provides an overview of

existing research exploring the relationship between mental

fatigue and these physiological parameters, highlighting their

relevance in detecting and understanding cognitive fatigue.

1) Vital Signs: Vital signs are essential for the detection of

mental fatigue. For instance, a study investigated the impact

of inducing a hypnotic state of fatigue on the respiration rate

and blood pressure of labor employees [6]. The researchers

identified significant changes in these physiological parameters

after participants completed demanding tasks. Notably, blood

pressure exhibited a marked upward trend, while respiration

rate decreased. In another investigation, features related to

heart and respiratory rates were utilized to train classifiers

aimed at detecting both physical and mental fatigue [7]. The

authors employed Random Forest [8] and causal Convolu-

tional Neural Network (cCNN) [9]. Additionally, in a study

involving 14 participants performing a complex task in a

flight simulator, these indicators were significantly influenced

by mental workload [10]. During the high-stress landing

phase, systolic and diastolic blood pressures were elevated

compared to other phases, and respiratory activity slowed but

deepened after landing, contributing to HRV changes. These

physiological changes, combined with subjective reports and

task performance, confirmed that landing represents a period

of heightened mental workload for pilots. Moreover, a study

evaluating the cardiovascular and subjective stress responses to

combined physical and mental workloads revealed significant

findings regarding blood pressure changes [11]. The introduc-

tion of mental stressors during standardized computer work

resulted in a notable increase in blood pressure compared to

baseline measurements, with this elevation persisting even af-

ter the stressors were removed. Specifically, diastolic pressure

continued to rise during subsequent control sessions, indicating

a prolonged impact of the experienced stress.

2) Head Pose: Head movement, including nodding and

sudden shifts in position, has been a focal point in fatigue

analysis. An innovative driver fatigue detection system [12]

integrates a residual channel attention network (RCAN) with

head posture estimation, utilizing Retinaface for facial local-

ization and recording five key facial landmarks. Additionally,

a study [13] employed a single-axis MEMS accelerometer

alongside statistical and fractal analysis to discern fatigue

characteristics. Another approach [14] in this field utilized

the XSENS motion capture system to monitor drivers’ head

posture motions, combined with a modified bidirectional

long short-term memory (BiLSTM) deep neural network for

sequence-to-sequence classification. Experiments conducted

on 15 subjects using a driver-in-loop simulator demonstrated

the effectiveness of this method, achieving high performance.

Notably, the way individuals nod can signify varying cognitive

states. Research indicates that up-nods may reflect a cogni-

tive shift following other people contribution or conversation

(such as colleagues), whereas down-nods suggest stability in

cognitive state [15]. This differentiation in nodding behavior

offers valuable insights into the cognitive processes underlying

communication and social interaction.

3) Eyes and Mouth Features: There is a significant cor-

relation between the features of the eyes and mouth and
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the experience of mental fatigue. Analyzing ocular attributes,

including pupil size, blink frequency, and mouth movements

such as yawning and mouth openness, has proven effective in

detecting signs of fatigue and drowsiness [16]. The authors of

[17] employed a pre-trained model using Histogram-Oriented

Gradients (HOG) [18] and a linear Support Vector Machine

(SVM) to detect facial features and calculate eye aspect

ratio (EAR), mouth opening ratio (MOR), and nose length

ratio (NLR) to detect the drowsiness. They applied adaptive

thresholding for initial classification of behaviors like blinking

and yawning, followed by machine learning algorithms to

distinguish between drowsy and non-drowsy states. Research

has shown that cognitive workload is closely linked to changes

in ocular behavior, including increased pupil dilation, higher

blink frequency, reduced average fixation duration, and slower

saccadic movements [19]. Eyes and mouth related metrics have

been consistently associated with mental effort, highlighting

their importance in evaluating both fatigue and cognitive

demands.

4) Summary of the Relationship Among Mental Fatigue
and Physiological Indicators: In discussing the key findings

regarding physiological changes experienced by individuals

after engaging in cognitively demanding tasks, it is noted

that those exhibiting signs of fatigue show distinct ocular

characteristics. These include an increased blink rate, larger

pupil size, decreased saccadic velocity, and a higher ratio of

eye closure. Additionally, vital signs indicate that fatigue is

associated with a decrease in respiratory rate and an elevation

in blood pressure. Furthermore, fatigued individuals tend to

exhibit more frequent jaw opening [20] and head nodding

compared to energetic people.

B. Physiological Indicator Estimation Based on Computer
Vision

The concept of acquiring physiological indicators has at-

tracted significant interest within the domains of computer

vision and deep learning. This interest stems from the potential

applications of these estimations, which may facilitate the

reduction or elimination of reliance on traditional medical

devices. Furthermore, such advancements could enable the

monitoring of individuals in scenarios where attaching devices

to the body is impractical, such as during driving. In this

section we will present the state of the art approaches devoted

for this purpose.

1) Vital Signs: This study [21] introduces a novel approach

to heart rate estimation using photoplethysmography (PPG)

that combines hybrid artifact removal, signal reconstruction,

and deep learning techniques. This method effectively ad-

dresses motion artifacts in dynamic environments, outper-

forming traditional methods. Another article [22] presents a

novel signal quality ranking and fusion (SQRF) approach for

improving non-contact heart rate (HR) estimation using remote

photoplethysmography (rPPG). By analyzing multiple regions

of interest on the face and employing wavelet synchrosqueezed

transform to enhance signal stability, the method significantly

reduces mean absolute error (MAE) by up to 58.7% compared

to traditional single-region methods. As for blood pressure,

study [23] introduces a non-contact, video-based blood pres-

sure estimation method (V-BPE), addressing the limitations of

traditional contact-based devices. V-BPE leverages Pulse Tran-

sit Time and subject-specific parameters, such as blood vessel

length, derived through computer vision and demographic

data, to estimate blood pressure. Moreover, research described

in [24] proposes RBP-CNN, a network for non-contact blood

pressure (BP) estimation using remote photoplethysmography

(rPPG) from facial videos. This network uses residual con-

volution, local and global attention mechanism, By extracting

features like blood volume pulse (BVP), heart rate (HR), age,

and BMI from facial videos, the authors used Random Forest

to fuse these features to identify implicit BP-related features.

Additionally, many research efforts focused on respiration

rate (RR) estimation, for example, study [25] introduced

ACTNet, a dual-branch network for non-contact respiratory

rate estimation using facial videos. Combining a CNN for

capturing subtle facial color changes with a Transformer for

long-term temporal modeling, ACTNet effectively fuses local

features and global information for achieving effective remote

RR estimation. Furthermore, paper [26] presented an end-to-

end deep learning method for estimating respiratory rate from

thermal video data, utilizing a detection transformer to identify

the facial region of interest. By employing 3D convolutional

neural networks and bi-directional long short-term memory

layers, the method effectively estimates respiratory signals

while addressing phase shifts with a novel loss function.

Finally, oxygen saturation estimation has received considerable

attention in the field of deep learning, similar to the other

vital signs. for instance, study [27] introduced CCSpO2Net, a

camera-based contactless oxygen saturation (SpO2) estimation

model designed for clinical and laboratory settings. By com-

bining a spatial feature extractor and a global temporal feature

extractor, along with pixel-level skin region detection using the

SAM model, CCSpO2Net effectively estimates SpO2 from

facial video data. In addition, article [28] presented a novel

method for estimating oxygen saturation (SpO2) levels using

smartphone cameras and video-based photoplethysmography

(PPG). The proposed framework analyzes 20-second facial

videos through a cloud-based server employing deep learning

techniques to extract remote PPG signals and predict SpO2

levels using a Support Vector Regression (SVR) model.

2) Head Pose: A significant amount of research has been

dedicated to head pose estimation due to its critical role

in monitoring and understanding an individual’s state. The

authors of [29] introduced a robust method for head pose

estimation using a multi-loss convolutional neural network

trained on the 300W-LP dataset. Unlike traditional approaches

relying on keypoint detection and 2D-to-3D correspondence,

this method directly predicts Euler angles (yaw, pitch, roll)

from image intensities through joint classification and regres-

sion. Another study [30] introduced HyperFace, a deep con-

volutional neural network (CNN) algorithm for simultaneous

face detection, landmark localization, head pose estimation,

and gender recognition. HyperFace enhances performance
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by fusing intermediate CNN layers and leveraging multi-

task learning to benefit from the harmony among the tasks.

Two variants are proposed: HyperFace-ResNet, which builds

on ResNet-101 for improved accuracy, and Fast-HyperFace,

which prioritizes speed using a high-recall face detector.

Moreover, article [31] proposed a method for accurate 3D

head pose estimation using a commodity depth camera. The

approach registers a morphable face model for depth data

using particle swarm optimization (PSO) combined with the

iterative closest point (ICP) algorithm, eliminating the need

for explicit initialization or training. This method handles large

pose angles and partial occlusions by adapting to visible facial

regions and generalizes across different depth sensors.

3) Eye and Mouth states: Eye closure ratio and yawning

detection has captured a lot of interest due to their significant

role in characterizing states of drowsiness and fatigue. Study

[32] presented a novel method for accurate and robust yawn

detection. The approach uses a 3D deep learning network

with Low Time Sampling rate (3D-LTS) to extract spatial and

temporal features for subtle facial action recognition, along

with a keyframe selection algorithm to eliminate redundant

frames and outliers. Another approach [33] was to extract the

mouth region using a face and landmark detector, then uses

a pre-trained CNN for spatial features and a combination of

1D-CNN and bi-directional LSTM (Bi-LSTM) for temporal

yawn evaluation. Regarding the eyes features, this work [34]

presented a real-time algorithm for eye blink detection using

video from standard cameras. It relies on robust facial land-

mark detectors to estimate the eye openness level through the

Eye Aspect Ratio (EAR) in each frame. Blinks are identified

either via an SVM classifier analyzing EAR patterns over time

or a hidden Markov model coupled with a state machine.

A further examination of eye aspect ratio measurement is

presented in [35] where Viola-Jones method was utilized for

facial detection to accurately identify the position of the right

eye. They systematically collected six coordinates that define

the eye by moving clockwise around the eye region, starting

from the left corner. Following this, they applied a formula

introduced in [34] to calculate the eye aspect ratio (EAR) and

established a threshold of 0.3 for the aspect ratio within their

system.

C. Datasets for fatigue and drowsiness detection

This section presents an overview of several commonly

used datasets specifically created for detecting fatigue and

drowsiness. Our research focuses on video datasets being

recorded using standard cameras without physical sensors.

The YawDD dataset [36] consists of two publicly accessible

sub-datasets containing RGB videos. In these videos, partici-

pants simulate driving scenarios while the vehicle remains sta-

tionary. The first sub-dataset features a camera located under

the front mirror, resulting in 322 videos (three or four video

per suject) with and without eyewear, representing a range

of ethnic backgrounds. The second sub-dataset comprises 29

videos captured from a camera mounted on the dashboard in

front of the driver, showcasing various mouth states, including

normal, talking/singing, and yawning.

The researchers behind [37] developed a multimodal

database named DROZY, which was created using data col-

lected from 14 participants. These individuals participated in

three consecutive sessions of a modified psychomotor vigi-

lance test (PVT), originally proposed by [38], under conditions

of increasing sleep deprivation. The PVT is designed to

provide an objective assessment of vigilance and, by exten-

sion, drowsiness. For every participant and each PVT ses-

sion, the database contains synchronized raw data, including

polysomnography (PSG) signals, Karolinska Sleepiness Scale

(KSS) scores [39], PVT results (such as reaction times), and

near-infrared (NIR) intensity and range images of the face.

The SUST-DDD dataset [40] consists of 2074 videos

recorded by participants using their mobile phone cameras

in real-world driving situations, capturing both fatigued and

normal states. Nineteen participants were asked to record

videos using their personal phones placed in front of the

driver’s seat whenever they felt drowsy or alert. Importantly,

participants were not instructed to perform specific actions

while driving, ensuring the naturalness and safety of the

driving experience.

The authors of [41] developed the Licensed Crane Operators

dataset, which includes videos gathered through interviews

with five experienced crane operators. These videos capture

three specific behavioral states: alertness, reduced vigilance,

and fatigue. The recordings were taken from multiple camera

angles and conducted in a variety of settings, such as computer

workstations, simulated or real driving environments, and

simulated crane operations. The participants display a wide

range of facial features, behaviors, and ethnic diversity.

In conclusion, the integration of physiological indicators,

advanced computational approaches, and high quality datasets

offers a sophisticated framework for understanding and de-

tecting mental fatigue. This approach not only enhances our

ability to monitor cognitive states but also paves the way for

practical applications in critical fields such as transportation,

healthcare, and workplace safety. As we mentioned, physiolog-

ical indicators, such as vital signs, head movements, and ocular

and mouth features, have shown strong correlation with mental

fatigue. These indicators provide a foundation for understand-

ing mental fatigue and overload. Furthermore, advancements

in computer vision and deep learning have enabled non-contact

estimations and real-time monitoring of these indicators. These

methods eliminate the need for traditional medical devices,

making them particularly valuable in scenarios where physical

sensors are impractical, such as driving or workplace moni-

toring. In addition, the availability of robust datasets specif-

ically designed for fatigue and drowsiness detection further

strengthens this framework. Therefore, in this paper, we aim

to enhance our approach of detecting mental fatigue [5] using

indicators estimated through our deep learning models [42]–

[47] applied to a video dataset that provide a more reliable

fatigue metric [48]. This improvement will be achieved by

focusing on the feature importance techniques and exploring
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how eliminating some features can affect the accuracy. Our

objective is to maintain the high performance of our model

while also reducing its computational cost.

III. APPROACH

The section provides a quick review of the proposed ap-

proach aimed at enhancement, including a brief description of

the dataset utilized and the deep learning models applied to

estimate the physiological indicator. Furthermore, it outlines

the enhancement pipeline, detailing the techniques employed

for the analysis of feature importance, the process of feature

selection, the development of models based on the refined

feature set, and the improvement of the resulting model

through feature transformation.

A. Dataset Description

In our previous work [5], the OperatorEYEVP dataset,

introduced in [48], was utilized for the development of a

fatigue detection system. This dataset includes video record-

ings of ten distinct individuals engaged in various activities

at three different times of the day over a span of eight to ten

days. The experimental protocol began each day with a sleep

quality survey conducted prior to the morning session. This

was followed by the VAS-F questionnaire, a choice reaction

time task (CRT), reading a scientific-style text, performing

the ”Landolt rings” correction test, playing the ”Tetris” game,

and a second CRT. On average, the total duration of these

sessions was approximately one hour. To evaluate fatigue lev-

els, we focused on the results of the Landolt test, specifically

mental performance, as it effectively captures the cognitive

and attentional dimensions associated with fatigue. Based

on the experiments described in [5], a threshold for mental

performance was established. Values below this threshold were

classified as indicative of a fatigue state, while values above

it represented a non-fatigued state.

As previously mentioned, our primary objective is to de-

tect fatigue through the analysis of physiological indicators

estimated via deep learning and computer vision techniques.

To achieve this, we annotated each minute of the aforemen-

tioned dataset videos with several key indicators obtained

using computer vision models, including blood pressure, heart

rate, oxygen saturation, and respiratory rate. Additionally, we

estimated head pose using Euler angles (roll, pitch, yaw),

calculated ratios of eye closure and mouth openness, and

assessed characteristics related to breathing patterns, such as

rhythmicity and stability.

B. Deep Learning Models

This section provides a brief overview of the models used

for the estimation of physiological indicators.

1) Respiratory Rate and Breathing Characteristics: The

respiratory rate model [42] involved detecting chest keypoints

with OpenPose, followed by displacement analysis using the

SelFlow neural network. The displacement data was processed

through signal processing techniques to enhance accuracy,

resulting in a mean absolute error of 1.5 breaths per minute.

However, the model’s effectiveness is limited by its inability

to accommodate body movement, making it unsuitable for

scenarios where the subject is in motion, such as walking or

driving.

2) Heart Rate: The heart rate estimation model [43] uti-

lized in this study follows a structured approach, beginning

with the extraction of facial regions and processing through

a Vision Transformer model. The outputs are then analyzed

using a block structure that incorporates various layers to

calculate heart rates through a weighted averaging scheme.

Although this model shows improved accuracy over previous

methods, it may yield inaccurate results for subjects with

extreme heart rates due to insufficient training data.

3) Blood Pressure: The blood pressure estimation model

[44] begins with the identification of the left and right cheeks

as Regions of Interest (ROIs) in video frames. A Convolu-

tional Neural Network (CNN) was employed to extract spatial

features, using EfficientNet architectures for systolic and an

ensemble approach for diastolic blood pressure estimation. The

outputs were then processed through a Long Short-Term Mem-

ory (LSTM) network to capture temporal features, followed

by fully connected layers to derive blood pressure values.

The model achieved mean absolute errors of 11.8 mmHg

for systolic and 10.7 mmHg for diastolic blood pressure,

with accuracies of 89.5% and 86.2%, respectively. However,

challenges included a lack of diversity in the training dataset,

particularly regarding skin tones, which affected the model’s

predictive accuracy for individuals with darker skin.

4) Oxygen Saturation: The estimation of oxygen saturation

in this study was based on the method proposed in [45],

which involved several key steps. Initially, the face region

was extracted using the 3DDFA V2 framework, followed by

feature extraction through the pre-trained VGG19 model. The

resulting features were then processed using the XGBoost

algorithm to estimate oxygen saturation values. The model

achieved Mean Absolute Errors (MAE) of 1.17% and 0.84%

on two test datasets, respectively. However, a significant chal-

lenge was the limited representation of SpO2 levels below

85 in the training samples, which could hinder accuracy for

individuals with specific health conditions.

5) Head Pose: The head pose estimation model [46] starts

with face detection using the YOLO Tiny framework. Fol-

lowing this, a 3D face reconstruction technique aligns facial

landmarks to ensure accurate detection, even for partially

visible features. The analysis of landmark transitions across

frames allows for the calculation of Euler angles, providing

head pose information. However, the model is limited to

estimating head angles up to 70 degrees, which restricts its

applicability in scenarios requiring detection of larger angles

and results in slower performance compared to other detectors.

6) Eye and Mouth states: The eye state is determined

using a trained model that processes the detected face from

the FaceBoxes framework to indicate whether the eyes are

open or closed. Mouth state detection is achieved through a

modified MobileNet model [47], which boasts an accuracy of

95.20%. However, the model’s reliance on a private dataset
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for validation may limit the generalizability of its findings to

the broader population.

C. Previous proposed approach

Our proposed approach in [5], as shown in Figure 1, in-

volves the extraction of physiological indicators from operator

videos using a set of specialized models. These indicators

encompass heart rate, respiratory rate, blood pressure, oxygen

saturation, eye closure ratio, head pose, among others, and

are calculated on a per-minute basis to provide continuous

data for the fatigue detection process. Once extracted, these

indicators serve as input features for our fatigue detection

model, which evaluates the operator’s fatigue state based on

mental performance (AU) derived from the Landolt rings test.

This test offers insights into the operator’s cognitive state.

Our hypothesis posits that mental performance diminishes

as fatigue increases. To predict fatigue states, we assessed

various methods, including Support Vector Classifier (SVC),

logistic regression, Multi-Layer Perceptron (MLP), decision

tree, XGBoost, and Random Forest. The results indicated that

the Random Forest model achieved the highest F1 score of

0.947 for fatigue prediction based on vital signs.

This approach, while effective, is computationally intensive

due to the reliance on deep learning models with complex

architectures for estimating physiological indicators. As a

result, it poses challenges for deployment on devices with

limited computational resources. To address this limitation, the

focus of this article is on reducing the number of features

used, thereby minimizing the reliance on multiple models.

Achieving this requires a thorough analysis of feature impor-

tance through various tests and techniques to identify the most

impactful features for fatigue detection. The goal is to optimize

the system’s performance while evaluating how this reduction

affects key metrics, such as accuracy and F1 score, ensuring

the model remains effective despite the simplification.

D. Used Techniques for Features Importance Analysis

Feature importance methods help to understand which fea-

tures contribute most to machine learning model’s predictions.

This section summarizes five common techniques that are used

in this work: SHAP (Shapley Additive Explanations), Permuta-

tion Importance, Mutual Information (MI), Mean Decrease in

Impurity (MDI), and Maximal Information Coefficient (MIC).

1) SHAP (Shapley Additive Explanations): SHAP [49] is

based on game theory and provides a globally consistent

way to compute feature importance. SHAP calculates feature

importance by considering all possible combinations (subsets)

of features and measuring how the prediction changes when a

feature is added. Mathematically, for each feature, it computes

the average marginal contribution of that feature across all

possible feature subsets.

The SHAP value for a feature is computed as:

φi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |! [f(S ∪ {i})− f(S)] (1)

where:

• F is the full feature set.

• S is a subset of features excluding i
• f(S) is the model’s prediction when only features in S

are used.

• φi is the Shapley value representing feature i’s contribu-

tion.

SHAP has several advantages:

1) Local and Global Interpretability: Individual predictions

can be explained locally and it is possible to define

features that are generally most important across the

dataset.

2) Model-Agnostic: Works with any machine learning

model (though optimized for tree-based models via

TreeSHAP).

3) Fair: Based on a solid mathematical foundation from

game theory.

2) Permutation Importance: Permutation importance [50]

s a straightforward and model-agnostic technique used to

measure how much each feature contributes to a model’s

predictive performance. It measures how shuffling a feature’s

values affects a model’s performance. If a feature is important,

randomizing its values should lead to a significant performance

drop.

The importance score of feature j is:

Ij =
1

M

M∑
m=1

(
Perf −Perf

(m)
perm ,j

)
(2)

where:

• Perf is the original model performance.

• Perf
(m)
perm ,j is the model performance after shuffling

feature

• M is the number of permutation rounds.

Permutation Importance is a valuable technique due to

its versatility and simplicity. It is model-agnostic, meaning

it can be applied to any type of machine learning model.

The method is intuitive and easy to implement. Moreover,

it directly measures the real impact of each feature on the

model’s output by observing how performance changes when

a feature is disrupted. However, it has limitations, such as

being less effective when features are highly correlated and

requiring significant computational resources for large datasets

or complex models.

3) Mutual Information: Mutual information [51] measures

the dependency between a feature and the target variable using

information theory. It quantifies how much knowing a feature

reduces uncertainty about the target.

Mutual Information (MI) is given by:

I(X,Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(3)

where:

• p(x, y) is the joint probability distribution of feature X
and target Y
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Fig. 1. Fatigue detection approach proposed in [5] .

• p(x) and p(y) are the marginal probabilities.

Mutual Information is a powerful method for capturing both

linear and non-linear dependencies between variables, unlike

simple correlations. It is model-agnostic and useful in feature

selection, as it identifies the most informative features based on

their dependency with the target variable. However, it has some

limitations, such as being sensitive to how data is discretized,

which can affect the results, especially for continuous features.
4) Mean Decrease in Impurity (MDI, Gini Importance):

MDI [52]is a feature importance metric used primarily with

tree-based models, such as Decision Trees and Random

Forests. It measures the contribution of each feature to re-

ducing the impurity of the nodes in a decision tree. Impurity

is a measure of how mixed the target variable is in the node.
The MDI importance of a feature computed with an infinite

ensemble of fully developed totally randomized trees and an

infinitely large training sample is:

Imp (Xm) =

p−1∑
k=0

1

Ck
p

1

p− k

∑
B∈Pk(V −m)

I (Xm;Y | B) (4)

where:

• I(Xm;Y | B is the conditional mutual information of

Xm and Y given the variables in B.

• Pk(V
−m) is the set of subsets of V −m of cardinality k.

• V −m denotes the subset V \{Xm}.

MDI is a computationally efficient method well-suited for

large datasets and tree-based models like Random Forests,

Gradient Boosting Machines, and Decision Trees. It provides

a global feature importance ranking, helping with feature

selection and model interpretation. However, MDI has limi-

tations, such as a bias towards numerical features, difficulty

distinguishing between correlated features, and being specific

to tree-based models, making it unsuitable for other model

types like neural networks or support vector machines.

E. Maximal Information Coefficient (MIC)

MIC [53] detects both linear and nonlinear relationships be-

tween features and the target by adapting mutual information

to large datasets. It is part of the Maximal Information-based

Nonparametric Exploration (MINE) framework, designed to

capture complex dependencies in data that other traditional

methods like correlation might miss.

MIC equation is:

MIC(X,Y ) = max
(x,y)∈G(n)

I(X,Y )

log2(min(x, y))
(5)

where:

• G(n) is the set of all possible grid partitions of the data.

• I(X,Y ) is the mutual information.

• x and y represent bin sizes in the partition.

MIC is a powerful tool for detecting relationships between

variables, It is model-agnostic, meaning it can be used with

any type of data and does not require assumptions about

data distribution or model type. MIC is particularly use-

ful for datasets with complex structures and dependencies.

However, it has some limitations, such as being sensitive

to data discretization, which can impact results, and being

computationally intensive, especially for large datasets

F. Feature Selection

To derive a robust feature importance ranking, we in-

tegrate the results from the five complementary methods:

SHAP, Permutation Importance, Mutual Information, MDI,

and MI. Each offering distinct perspectives on feature rel-

evance. SHAP and Permutation Importance provide model-

specific insights: SHAP quantifies per-feature contributions to

individual predictions, while Permutation Importance assesses

performance degradation upon feature randomization. In con-

trast, MI and MIC are statistical measures, with MI estimating

general dependence between features and the target, and MIC
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emphasizing non-linear associations. MDI, intrinsic to tree-

based models, reflects impurity reduction during splits. The

challenge here is that each method has different scales and

rankings. Directly averaging them isn’t feasible because of

the scale differences. So, normalization is reasonable to bring

all values to a comparable scale. The importance scores within

each method should be scaled to a [0,1] range relative to the

method-specific maximum. Features are then ranked within

each method (1 = most important). Finally, we compute ag-

gregated scores and ranks by averaging normalized values and

ranks across all methods. This approach synthesizes model-

specific, statistical, and tree-based perspectives into a unified

ranking, mitigating biases inherent to individual techniques

while preserving their complementary strengths.

G. Used Model to Predict the Fatigue State
For fatigue state classification, we implemented the tab-

ular transformer. The architecture is designed to leverage

transformer-based attention mechanisms for capturing com-

plex interactions in tabular physiological and behavioral data.

Figure 2 shows the architecture of the used model. The model

Fig. 2. The model used to predict the fatigue state

processes standardized input features through an embedding

layer that projects the features into a 64 dimensional latent

space. This embedding step transforms the physiological fea-

tures into dense representations suitable for capturing non-

linear relationships. The core of the architecture consists of

a transformer encoder with four stacked layers. Each one

employs a multi-head self-attention mechanisms with four

heads per layer. The transformer layers process the embedded

features as a sequence, which allows the model to relate

features through attention scores. The output of the transformer

blocks pass to a global average pooling layer. This layer

reduces the dimension by averaging the input across the

sequence length to produce a single 64-dimensional vector

that encapsulates the aggregated feature interactions. The

layer output is then passed to a linear layer that maps the

latent vector to logits for the two output classes. The input

physiological features are standardized using StandardScaler

to ensure zero mean and unit variance.

IV. EXPERIMENTS

A. Performance of the Original Model

As we mentioned earlier, our original random forest model

performed quite well, achieving an accuracy of 98% and an F1

score of 94% which indicates that the issue of the imbalanced

data that we suffered from did not seem to hinder our model’s

ability to maintain consistent performance across different

classes. It is worth noting that we achieved the best results

when we included the participant ID as one of the features.

This addition positively affected the model’s performance,

suggesting that individuals experience fatigue can vary sig-

nificantly. The positive effect of participant identification was

observed in the F1 Score, which increased from 81% when

only physiological indicators were utilized. This F1 Score

of 81% still demonstrates the good performance achieved

through the application of these indicators, as estimated using

deep learning models. However, for our feature importance

analysis, we will leave out the participant ID so we can focus

on the other continuous numerical features (the physiological

indicators) used.

B. Feature Importance Analysis

As explained before we used the features importance an-

alyzing techniques listed in Section III-D . Using multiple

feature importance techniques enhances the reliability and

robustness of the analysis by providing comprehensive in-

sights. This approach helps mitigate model-specific biases and

improves explainability. Additionally, it aids in better decision-

making for feature selection by identifying consistently impor-

tant features across methods.

Starting with the first technique, SHAP values indicate

the impact of individual features on model predictions, with

positive values increasing fatigue predictions and negative

values decreasing them. The summary plot in Figure 3 presents

feature importance ranked by their impact, with colors repre-

senting feature values (high in red, low in blue).

As illustrated in Figure 3, heart rate is the strongest

predictor, with higher values increasing fatigue predictions.

Respiratory Rate (Average RR), however, shows an inverse

relationship — higher RR is associated with lower fatigue,

suggesting a more alert physiological state. Head movements

(average Pitch, average Roll, average Yaw) contribute notably,
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Fig. 3. Results of SHAP

with increased movements linked to fatigue, possibly due

to postural instability. Oxygen saturation follows a similar

pattern, where lower levels increase fatigue predictions. Eye

Closure Ratio and Mouth Openness Ratio are also impactful.

Increased eye closure correlates with fatigue, while greater

mouth openness (yawning) is a known fatigue indicator. Blood

Pressure (BP Systolic, BP Diastolic) plays a secondary role,

and Rhythmicity/Stability Coefficients (Rhythmicity Coeff,

Stability Coeff) have minimal impact.

Table I presents the average absolute SHAP values for

each feature. We believe that this representation of SHAP

importance is more interpretable for our objectives, as it

provides numerical values that enable comparisons of feature

importance across the five techniques within the same frame-

work, thereby enhancing the reliability of the comparisons.

TABLE I FEATURE IMPORTANCE SCORES FROM SHAP
ANALYSIS

Feature SHAP Importance
Heart Rate 0.057

Average Pitch 0.033
Oxygen Saturation 0.031

Average Roll 0.024
Average RR 0.024

Eye Closure Ratio 0.015
BP Systolic 0.015

Average Yaw 0.012
BP Diastolic 0.010

Mouth Openess Ratio 0.009
Rhythmicity Coefficient 0.005

Stability Coefficient 0.003

Subsequently, the results obtained from the other techniques

are presented in the following tables: Permutation Importance

(Table II), Mutual Information (Table III), Mean Decrease

in Impurity (Table IV), and Maximal Information Coefficient

(Table V). The features are organized in descending order of

impact, from the most significant to the least, based on the

coefficients and outcomes of these techniques.

TABLE II PERMUTATION IMPORTANCE

RESULTS

Features Permutation Importance Score
Heart Rate 0.034

Average Pitch 0.032
Oxygen Saturation 0.024

Average Roll 0.017
Average RR 0.012

Eye Closure Ratio 0.010
BP Systolic 0.010

Mouth Openess Ratio 0.008
BP Diastolic 0.006
Average Yaw 0.004

Stability Coefficient 0.001
Rhythmicity Coefficient 0.001

TABLE III MUTUAL

INFORMATION RESULTS

Features MI Score
BP Diastolic 0.142
BP Systolic 0.136

Oxygen Saturation 0.104
Average Pitch 0.039
Average RR 0.035
Average Yaw 0.021

Heart Rate 0.020
Eye Closure Ratio 0.017

Mouth Openess Ratio 0.017
Average Roll 0.012

Stability Coefficient 0.005
Rhythmicity Coefficient 0.000

The results of our analysis reveal notable variations across

different techniques. While SHAP analysis, Permutation im-

portance scores and MDI agree on the importance ranking

of many features, we observe that Mutual Information scores

and Maxiaml Information Coefficient provide different results.

This emphasizes the importance of using multiple test and

analysis techniques to determine the most critical features.

By finding a common set of important features that have

significant ranks across the different analytical approaches, we

can establish a more robust and reliable foundation for our

fatigue detection model.

Next we aggregated the results as explained in section

III-F from the five different methods to determine the most

important features. Table VI shows the average normalized

feature importance scores for the physiological features, which

were determined by aggregating the findings from five differ-

ent feature importance methods (SHAP, Permutation Impor-

tance, Mutual Information, MDI, and MIC). By combining

the insights from these diverse methods, we aim to capture

a comprehensive and balanced view of which features most

significantly contribute to predicting mental fatigue.

These results indicate that heart rate, oxygen saturation, av-

erage pitch, systolic and diastolic blood pressure are the most

influential features for fatigue detection, as they consistently

appeared as the most important across the different feature

importance techniques. This suggests that these physiological
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TABLE IV MEAN DECREASE IN

IMPURITY RESULTS

Features MDI Score
Heart Rate 0.156

Average Pitch 0.136
Oxygen Saturation 0.126

BP Systolic 0.091
Average Roll 0.090
Average RR 0.082

Eye Closure Ratio 0.080
BP Diastolic 0.076
Average Yaw 0.073

Mouth Openess Ratio 0.043
Rhythmicity Coefficient 0.022

Stability Coefficient 0.019

TABLE V MAXIMAL INFORMATION COEFFICIENT

RESULTS

Features MIC Score
BP Systolic 0.281
BP Diastolic 0.260

Oxygen Saturation 0.215
Average Pitch 0.158
Average Yaw 0.132
Average RR 0.131
Heart Rate 0.131

Eye Closure Ratio 0.126
Average Roll 0.123

Mouth Openess Ratio 0.093
Stability Coefficient 0.029

Rhythmicity Coefficient 0.026

indicators are crucial for accurate mental fatigue prediction.

The used model is illustrated in Section III-G. It was

optimized using the Adam optimizer with a learning rate of

0.001 and trained for 150 epochs, the cross-entropy loss was

used. The architecture operates on CPU-based computation

and leverages PyTorch’s automatic differentiation for efficient

gradient calculation. The used hyperparameters include the

embedding dimension which was experimentally chosen as

64, the number of transformer layers and attention heads were

set to 4. The final classification probabilities are derived by

applying a SoftMax function to the logits, though this is

implicitly handled by the Cross-Entropy loss during training.

The data was split into 5 folds. The result of the model using

the top five features (BP Systolic and Diastolic, Heart Rate,

Oxygen Saturation and Average Pitch Angle) is introduced in

Table VII in addition to the result of the Random Forest model

used previously for comparison.

Both the Random Forest (RF) and Tabular Trans-

former models delivered consistent performance across cross-

validation folds with the Tabular Transformer achieving

slightly stronger results overall. The Tabular Transformer

achieves a mean F1-Score of 0.741 and Accuracy of 89.90%

compared to RF’s F1 score of 0.714 and accuracy of 88.97%.

Notably, the Tabular Transformer exhibits greater stability

in F1 scores across folds what indicates a better robustness

to dataset variations. The RF’s lower variance in accuracy

TABLE VI AVERAGE NORMALIZED FEATURE

IMPORTANCE SCORES

Feature Average Normalized Score Final Rank
Heart Rate 0.722 1

Oxygen Saturation 0.719 2
Average Pitch 0.652 3
BP Systolic 0.621 4
BP Diastolic 0.558 5
Average RR 0.409 6
average Roll 0.405 7

Eye Closure Ratio 0.335 8
Average Yaw 0.285 9

Mouth Openess Ratio 0.226 10
Stability Coefficient 0.074 11

Rhythmicity Coefficient 0.072 12

TABLE VII CROSS-VALIDATION PERFORMANCE OF RANDOM FOREST AND

TABULAR TRANSFORMER MODELS

Fold Mean1 2 3 4 5
F1 score (RF) 0.69 0.75 0.70 0.70 0.71 0.71
Accuracy (RF) 86.8 89.9 89.8 88.6 89.5 88.9
Precision (RF) 0.64 0.81 0.696 0.77 0.77 0.74
Recall (RF) 0.76 0.70 0.70 0.64 0.66 0.69
F1 score (TT) 0.70 0.75 0.76 0.73 0.76 0.74
Accuracy (TT) 86.6 90.2 91.9 89.2 91.48 89.9
Precision (TT) 0.72 0.86 0.702 0.78 0.83 0.78
Recall (TT) 0.69 0.65 0.83 0.69 0.70 0.71

suggests simpler interpretability at the cost of slightly re-

duced performance. These results align with the hypothesis

that transformer-based architectures with their self-attention

mechanisms better model intricate dependencies in tabular

data compared to traditional tree-based methods. However, the

modest performance gap implies that dataset characteristics,

such as feature sparsity or non-linearity, may influence the

relative advantage of transformers over ensemble methods.

C. Enhancement of the Computational Cost

The computational cost required with our approach when

using all twelve features, is approximately 32 minutes and 28

seconds for processing a one-minute video. This duration was

determined while executing all models on a Central Processing

Unit (CPU), which explains the high computational cost.

In contrast, when employing only the five most significant

features on the same CPU, the processing time was reduced

to 26 minutes and 12 seconds, indicating a cost reduction of

approximately 20%.

Notably, the majority of the processing time is attributed to

the calculation of heart rate, which requires around 22 minutes

to analyze one-minute video on CPU. This long duration is

primarily due to the use of a vision transformer model, which

necessitates extensive processing time on the CPU. However,

we anticipate that utilizing a Graphics Processing Units (GPU)

will significantly decrease this computational cost, since they

are specifically designed to handle parallel processing tasks,

making them highly efficient for the types of computations
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required by Vision Transformers (ViTs) and Convolutional

Neural Networks (CNNs), thereby facilitating the application

of our approach in real-time scenarios.

V. CONCLUSION

This study builds on our earlier work in contactless mental

fatigue detection, with a focus on enhancing computational

efficiency while maintaining high performance. A central

contribution of this research is the identification of the most

informative physiological features through a comparative anal-

ysis of five feature importance techniques. Despite some

discrepancies among methods, Heart Rate, Oxygen Saturation,

Blood Pressure (Systolic and Diastolic), and Average Pitch

consistently emerged as the most critical indicators.

Using only these five features, we achieved 88% ac-

curacy and a 71% F1 score with a Random Forest

model—demonstrating that significant dimensionality reduc-

tion is possible with minimal performance loss. Notably, this

refined feature set maintained strong results, despite excluding

seven other features used in our earlier model.

We further validated these findings with a Tabular Trans-

former model, which achieved 89% accuracy and a 74%

F1 score, indicating enhanced robustness and stability across

varied data. These results highlight both the effectiveness

of the selected physiological indicators and the potential of

transformer-based architectures for fatigue detection in tabular

data.

This research faced challenges that hindered performance

in assessing mental fatigue. Individual variability complicates

model generalization, while feature selection requires careful

analysis to identify relevant variables. Additionally, dataset

constraints, such as small sizes and unbalanced targets, nega-

tively impacted model stability.

This work has broad implications to develop effective and

non-invasive monitoring systems of mental fatigue across

different real-life applications. By identifying key physio-

logical indicators like heart rate and oxygen saturation, the

study encourages the utilization of lightweight models for

transportation, healthcare, and workplace safety technologies.

It also opens opportunities for personalized health tools and

devices that adapt to users’ cognitive states. Additionally, the

findings provide a foundation for future research on scalable

and generalizable fatigue detection systems that can enhance

human performance and health.

Our future research in mental fatigue detection will focus on

exploring advanced transformer architectures customized for

tabular data may enhance model performance and robustness.

Addressing dataset limitations by collecting larger and more

diverse datasets will also be essential for generalizability.
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